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Abstract:

• In this paper, we study the nonparametric estimator of the conditional hazard func-
tion using the k nearest neighbors (k-NN) estimation method for a scalar response
variable given a random variable taking values in a semi-metric space. We give the
almost complete convergence (its corresponding rate) of this estimator and we estab-
lish the asymptotic normality. Then the effectiveness of this method is exhibited by
a comparison with the kernel method estimation given in Ferraty et al. ([12]) and
Laksaci and Mechab ([15]) in both cases simulated data and real data.
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1. INTRODUCTION

The conditional hazard function remains an indispensable tool in survival

analysis and many other fields (medicine, reliability or seismology).

The nonparametric estimation of this function in the case of multivariate

data is abundant. The first works date back to Waston and Leadbetter ([31]), they

introduce the hazard estimate method, since, several results have been developed,

see for example, Roussas ([26]) (for previous works), Li and Tran ([18]) (for recent

references). The literature has paid quite some attention to nonparametric hazard

rate estimation when the data are functional. The first work which deals with this

question is Ferraty et al. ([12]). They established the almost complete convergence

of the kernel estimate of the conditional hazard function in the independent case.

This result was extended to the dependent case by Quintela-del-Ŕıo ([23]), he

treats the almost complete convergence, the mean quadratic convergence and

the asymptotic normality of this estimate. The uniform version of the almost

complete convergence (with rate) in the i.i.d. case was obtained by Ferraty et al.

([10]). Recently, Laksaci and Mechab ([16]) consider the spatial case. The almost

complete convergence rate of an adapted estimate of this model are given.

Estimating the conditional hazard function is closely related to the condi-

tional density, and for the last one, the bandwidth selection is very important for

the performance of an estimate. The bandwidth must not be too large, so as to

prevent over-smoothing, i.e. substantial bias, and must not be too small either,

so as prevent detecting the underlying structure. Particularly, in nonparametric

curve estimation, the smoothing parameter is critical for the performance.

Starting from this point of view, this work deals with the nonparametric

estimation with k nearest neighbors method k-NN, more precisely we consider a

kernel estimator of the hazard function constructed from a local window to take

into account the exact k nearest neighbors with real response variable Y and

functional curves X.

The k nearest neighbor or k-NN estimator is a weighted average of response

variables in the neighborhood of x. The existent bibliography of the k-NN method

estimation dates back to Royall ([27]) and Stone ([30]) and has received, since,

continuous developments (Mack ([20]) derived the rates of convergence for the bias

and variance as well as asymptotic normality in the multivariate case, Collomb

([4]) studied different types of convergence (probability, a.s., a.co.) of the estimator

of the regression function. Devroye ([6]) obtained the strong consistency and the

uniform convergence. For the functional data studies, the k-NN kernel estimate

was first introduced in the monograph of Ferraty and Vieu ([13]), Burba et al. ([2])

obtained the rate of almost complete convergence of the regression function using

the k-NN method for independent data and the asymptotic normality of robust

nonparametric regression function was established in Attouch and Benchikh ([1]).
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This paper is organized as follows. In Section 2 we present the model and

the k-NN estimator. Section 3, is dedicated to fix notations, hypotheses and

the presentation of the main results, the almost complete convergence and the

asymptotic normality. Section 4 is devoted to some applications in several prob-

lems of nonparametric statistics. Some technical auxiliary results are deployed in

Section 5, subsequently, in Section 6, we show the proofs of our main result.

2. MODELS AND ESTIMATORS

Let (Xi, Yi)i=1,n be an independent sequence identically distributed (i.i.d.)

as (X, Y ) which is a random pair valued in E×R. Here (E , d) is a semi-metric

space. E is not necessarily of a finite dimension, and we do not suppose the

existence of a density for the functional random variable X.

Our goal, in this article, is to estimate the conditional hazard function

defined by:

(2.1) hX(Y ) =
fX(Y )

1 − FX(Y )
,

where

fX(Y ) is the conditional density function of Y given X ,

FX(Y ) is the conditional distribution function of Y given X .

For a fixed x ∈ E , the k-NN kernel estimator of hx(Y= y) is given by:

(2.2) ĥx
k−NN (Y= y) = ĥx(y) =

f̂x(y)

1 − F̂ x(y)
,

with

F x(y) = P
[
Y≤ y/X= x

]

= E
[
1I]−∞,y]/X= x

]

= r
(
1I]−∞,y]

)
,

where r(·) is the regression function defined in Ferraty and Vieu ([13]). Therefore:

F̃ x(y) = r̂
(
1I]−∞,y]

)
=

n∑

i=1

1I]−∞,y] K
(
H−1

n d(x, Xi)
)

n∑

i=1

K
(
H−1

n d(x, Xi)
)

.
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Finally, by Roussas ([25]), Samanta ([28]) and Ferraty and Vieu ([13]), the esti-

mator of the conditional distribution function is given by

(2.3) F̂ x(y) =

n∑

i=1

K
(
H−1

n d(x, Xi)
)
R
(
g−1
n (y−Yi)

)

n∑

i=1

K
(
H−1

n d(x, Xi)
)

, ∀ y ∈ R ,

where K is an asymmetrical kernel, Hn is a positive random variable, defined as

follows:

(2.4) Hn(x) = min

{
h ∈ R

+/
n∑

i=1

1IB(x,h)(Xi) = k

}
,

with

B(x, h) =
{

x′ ∈ E ; d(x, x′)< h
}

.

R is a distribution function and (gn)n∈N is a sequence of strictly positive real

numbers (depending on n). Under a differentiability assumption of F̂ x(y), we

can obtain the conditional density function by differentiating the conditional dis-

tribution function, then we have

f̂x(y) =
∂

∂y
F̂ x(y)

and then

(2.5) f̂x(y) =

n∑

i=1

K
(
H−1

n d(x, Xi)
)
g−1
n R′(g−1

n (y − Yi)
)

n∑

i=1

K
(
H−1

n d(x, Xi)
)

.

In parallel, in order to emphasize differences between the k-NN method and the

traditional kernel approach, we define the estimator of the conditional hazard

function Ferraty et al. ([12]) by:

(2.6) ĥx
kernel(y) =

f̂x
kernel(y)

1 − F̂ x
kernel(y)

,

with

(2.7) f̂x
kernel(y) =

n∑

i=1

K
(
h−1

n d(x, Xi)
)
g−1
n R′(g−1

n (y − Yi)
)

n∑

i=1

K
(
h−1

n d(x, Xi)
)
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and

(2.8) F̂ x
kernel(y) =

n∑

i=1

K
(
h−1

n d(x, Xi)
)
R
(
g−1
n (y−Yi)

)

n∑

i=1

K
(
h−1

n d(x, Xi)
)

,

where K is a kernel, R is a distribution function and (hn)n∈N, (gn)n∈N are se-

quences of strictly positive numbers.

3. ASYMPTOTIC PROPERTIES OF THE k-NN METHOD

3.1. The almost complete convergence (a.co.)

We focus in the pointwise the almost complete convergence1 and rate of

convergence2 of the k-NN estimator of the conditional hazard function ĥx(y)

defined on (2.2).

Before giving the main asymptotic result, we need some assumptions. The

first one is about the concentration function ϕx(h) and can be interpreted as a

small ball probability of the functional variable x given by:

(H1) ϕx(h) = P
(
X ∈B(x, h)

)

= P
[
X ∈

{
x′∈E ; d(x, x′)< h

}]
,

with ϕx(h) continuous and strictly increasing in a neighborhood of 0

and ϕx(0) = 0.

(H2) We also need a kernel K:

The kernel K is a function from R into R
+, we say that K is a

kernel of type I, so that: there exist two real constants C1, C2,

0 < C1 < C2 < ∞, such that

C11I[0,1] < K < C21I[0,1] .

1Let (Xn)n∈N be a sequence of real random variables. We say that (Xn)n∈N converges almost
completely (a.co.) to some r.r.v. X if and only if:

∀ ǫ > 0 ,

∞X
n=1

P
�
|Xn−X|> ǫ

�
< ∞ .

2Let (un)n∈N be a sequence of positive real number. We say that Xn = Oa.co.(un) if and only

if: ∃ ǫ > 0, so that,

∞X
n=1

P
�
|Xn|> ǫ un

�
< ∞. This kind of convergence implies both almost sure

convergence and convergence in probability.
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K is a kernel of type II, so that: the support of K is [0, 1] and if

its derivative K ′ exists on [0, 1] and satisfies, for two real constants

−∞ < C1 < C2 < 0,

C1 < K ′ < C2 .

In this case, we also suppose that: ∃C3 > 0, ∃ ǫ0:

∀ ǫ < ǫ0 ,

∫ ǫ

0
ϕx(u) du > C3 ǫ ϕx(ǫ) .

(H3) R is a differentiable function such that:

∃C <∞ , ∀ (x1, x2) ∈ R
2, |R′(x1) − R′(x2)| ≤ C|x1 − x2| .

R′ is of the support compact [−1, 1] .

(H4) ∃ ζ > 0:




∀ (x1, x2) ∈ R
2 , |R(x1) − R(x2)| ≤ C|x1 − x2| ,

∫
|t|ζR′(t) dt < ∞ .

(H5) (gn)n∈N is a strictly positive sequence such that:




lim
n→∞

gn = 0 , ∃ a > 0, lim
n→∞

nagn = ∞ ,

lim
n→∞

log n

n gnϕx(h)
= 0 .

The nonparametric model of the function hx will be determined by regu-

larity conditions of the conditional distribution of Y given X. These conditions

are:

(H6) Nx will denote a fixed neighborhood of x, S will be a fixed compact

subset of R:

We will consider two kinds of nonparametric models. The first one

is called the “Lipschitz-type” model that is defined:

LipE×R :





f : E×R→R , ∀ (x1, x2) ∈ N2
x , ∀ (y1, y2) ∈ S2,

∃C <∞ , ∃α, β > 0 ,
∣∣f(x1, y1) − f(x2, y2)

∣∣ ≤ C
(
d(x1, x2)

α + |y1− y2|β
)
.

(H7) The second one, called the “Continuity type” model, is defined as:

C0
E×R =

{
f : E×R→R , ∀x′ ∈Nx, lim

d(x,x′)→0
f(x′, y) = f(x, y)

}
.

(H8) Finally, we will consider the conditional moments of the response

random variable Y :

∀m ≥ 2, E
[
|Y |m/X = x

]
= σm(x) < ∞ ,

with σm(·) continuous on x.
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Before studying the k-NN estimator, we remind asymptotic properties of

ĥx
kernel defined by equation (2.6). Ferraty et al. ([12]), showed the almost complete

convergence of this estimator.

Theorem 3.1.

• In the “continuity type” model and under the assumptions (H1), (H2),

(H6) and (H8) we have:

ĥx
kernel(y) −→ hx(y) a.co.

• Under the “Lipschitz type” model and the hypotheses (H1), (H2), (H3),

(H5), (H8), we have:

ĥx
kernel(y) − hx(y) = O(hα

n) + O(gβ
n) + O

(√
log n

n ϕx(h)

)
.

Now we state the almost complete convergence for the nonparametric k-NN

method estimate, defined in (2.2).

Theorem 3.2. In the “continuity type” model and under the hypotheses

(H1), (H2), (H4), (H5) and (H6), suppose that k = kn is a sequence of positive

real numbers such that
kn

n
→ 0 and

log n

kn
→ 0, then we have:

lim
n→∞

ĥx(y) = hx(y) a.co.

Proof: We consider the following decomposition:

(3.1) ĥx(y) − hx(y) =
1

1−F̂ x(y)

[
f̂x(y)−fx(y)

]
+ hx(y)

1

1−F̂ x(y)

[
F̂ x(y)−F x(y)

]
.

Then the proof of Theorem 3.2 can be deduced from the following intermediate

results.

Lemma 3.1. Under the hypotheses of Theorem 3.2, we have:

lim
n→∞

f̂x(y) = fx(y) a.co.(3.2)

and

lim
n→∞

F̂ x(y) = F x(y) a.co.(3.3)

Lemma 3.2. Under the hypotheses of Theorem 3.2, we have:

(3.4) ∃ δ > 0 ,
∑

n∈N

P
[(

1−F̂ x(y)
)
< δ
]

< ∞ .
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Theorem 3.3. The hypotheses (H1)–(H8) imply

ĥx(y) − hx(y) = O

(
ϕ−1

x

(
k

n

)α)
+ O

(
gβ
n

)
+ O

(√
log n

kngn

)
a.co.

Proof: We consider the decomposition (3.1), and the proof of this Theo-

rem is a consequence of these results.

Lemma 3.3. Under the hypotheses of Theorem (3.3), we have:

(3.5) f̂x(y) − fx(y) = O

(
ϕ−1

x

(
kn

n

)α)
+ O

(
gβ
n

)
+ O

(√
log n

kngn

)
a.co.

Lemma 3.4. Under the hypotheses of Theorem (3.3), we have:

(3.6) F̂ x(y) − F x(y) = O

(
ϕ−1

x

(
kn

n

)α)
+ O

(
gβ
n

)
+ O

(√
log n

kn

)
a.co.

3.2. Asymptotic normality

This section contains results on the asymptotic normality of ĥx(y). For

this, we have to add the followings assumptions:

(H9) For each sequence Un ↓ 0 as n → ∞ of positive real numbers, there

exists a function λ(·) such that:

∀ t ∈ [0, 1] , lim
Un→∞

ϕx(tUn)

ϕx(Un)
= λ(t) .

(H10) lim
n→∞

(
g2
n − ϕ−1

x

(
k

n

))√
kn = 0 and

1

kngn
= o
(
gβ
n

)
.

Theorem 3.4. Assume that (H1), (H9), (H10) hold, then for any x ∈ A,

we have:

(3.7)

(
kngn

σ2
h(x, y)

)1/2 [
ĥx(y) − hx(y)

] D−→ N (0, 1) as n → ∞ ,

where

σ2
h(x, y) =

α2 hx(y)

α2
1

(
1−F x(y)

)(3.8)

(
with: αj = Kj(1) −

∫ 1

0
(Kj)′(s)λ(s) ds for j =1, 2

)
,

A =
{

x ∈ E ; fx(y)
[
1−F x(y)

]
6= 0
}

,

D−→ means the convergence in distribution.
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Proof: We consider the decomposition (3.1) and we show that the proof

of Theorem (3.4) is a consequence of the following results.

Lemma 3.5. Under the hypotheses of Theorem (3.4), we have:

(
kngn

σ2
f (x, y)

)1/2[
f̂x(y) − fx(y)

] D−→ N (0, 1) as n → ∞ ,

where

(3.9) σ2
f (x, y) = fx(y)

∫
R′2(t) dt .

Lemma 3.6. Under the hypotheses of Theorem 3.4, we have:

(
kngn

σ2
F (x, y)

)1/2 [
F̂ x(y) − F x(y)

] D−→ N (0, 1) as n → ∞ ,

where

(3.10) σ2
F (x, y) = F x(y)

[
1−F x(y)

]
.

Lemma 3.7. Under the hypotheses of Theorem 3.4, we have:

(
1− F̂ x(y)

)
→
(
1−F x(y)

)
in probability .

4. APPLICATIONS

4.1. Conditional Confidence Interval

The main application of the Theorem (3.4) is the to build confidence inter-

val for the true value of hx(y) for a given curve X = x. A plug-in estimate for the

asymptotic standard deviation σ(x, θx) can be obtained using the estimators ĥx(y)

and F̂ x(y) of hx(y), F x(y) respectively. We get σ̂(x, y) :=

(
α̂2ĥ

x(y)

(α̂1)2 (1− F̂ x(y))

)1/2

.

Then ĥx(y) can be used to get the following approximate (1 − ζ) confidence in-

terval for hx(y)

ĥx(y) ± t1−ζ/2 ×
(

σ̂2
n(x, y)

gnk

)1/2

where t1−ζ/2 denotes the 1 − ζ/2 quantile of the standard normal distribution.
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We estimate empirically α1 and α2 by

α̂1 =
1

kg(x)

n∑

i=1

Ki and α̂2 =
1

kg(x)

n∑

i=1

K2
i ,

where Ki = K

(
d(x, Xi)

φ−1(k/n)

)
.

This last estimation is justified by the fact that, under (H1), (H5) and (H6),

we have, (see Ferraty and Vieu ([13]) p. 44)

1

kg(x)
E[Kj

1 ] → αj , j = 1, 2 .

4.2. A Simulation study

In this section we will show the effectiveness of k-NN method compared to

the kernel estimation using simulated data. For this we considered a sample of a

diffusion process on interval [0, 1], Z1(t) = 2 − cos(πtW ) and Z2(t) = cos(πtW ),

where W is the standard normal distribution and take X(t)=AZ1(t)+(1−A)Z2(t),

where A is random variable Bernoulli distributed. We carried out the simulation

with a 200-sample of the curve X which is represented by the following graph:

0 50 100 150

−3
−2

−1
0

1

Figure 1: The 200 curves X.

For the scalar response variable, we took Y = Ar1(X)+(1−A)r2(X) where

r1 (resp. r2) is the nonlinear regression model r1(X) = 0.25×
(∫ 1

0
X ′(t) dt

)2

+ ǫ,

with ǫ is U([0, 0.5]) (resp. r2(X) is the null function). We choose a quadratic

kernel K defined by:

K(x) =
3

2
(1−x2) 1I[0,1] .
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In practice, the semi-metric choice is based on the regularity of the curves X. For

this we use the semi-metric defined by the L2-distance between the qth derivatives

of the curves. In order to evaluate the MSE (Mean Square Error) we proceed by

the following algorithm:

Step 1. We split our data into two subsets; the first sample, of size n =120

corresponds to the learning sample which will be used, as a sam-

ple, to compute our conditional hazard function estimators for

the 80 remaining curves (considered as the test sample).

• (Xj , Yj)j∈J learning sample,

• (Xi, Yi)i∈I test sample.

Step 2. • We use the learning sample for computing the hazard function

estimator ĥj , for all j ∈ J .

• We set: i∗ = arg minj∈J d(Xi, Xj).

• We put: ∀ i ∈ I,

T̂i = ĥXi∗ (Yi) for kernel method ,

T̂i = ĥXkopt (Yi) for k-NN method ,

where

Xi∗ : is the nearest curve to Xj ,

kopt : arg min
a

(CV (a)) ,

with

CV (a) =
1

n

[
∑

i∈J

∫ (
f̂−i
(a,b)(Xi, y)

)2
dy − 2

∑

i∈J

f̂−i
(a,b)(Xi, Yi)

]

and

f̂−k
(a,b)(x, y) =

b−1
∑

i∈J,i6=k K

(
d(x, Xi)

a

)
R

(
y−Yi

b

)

∑
i∈J K

(
d(x, Xi)

a

) .

Step 3. The error used to evaluate this comparison is the mean of square

error (MSE ) expressed by

1

card(I)

∑

i∈I

∣∣∣h(Yi) − T̂ (Xi, Yi)
∣∣∣
2

,

where T̂ designate the estimator used: kernel or k-NN method

estimation and h is the true hazard function.

Consequently, the k-NN method gives slightly better results than the kernel

method. This is confirmed by the MSE-k-NN= 0.8227394 and MSE-Kernel =

1.347982.
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4.3. Real data application

To highlight the efficiency and robustness of the method of k nearest neigh-

bors with respect to the kernel method in estimating the conditional hazard func-

tion, we will test these two methods in the presence or not of heterogeneous data.

To do this, based on the study of Burba et al. (2009) which emphasizes the

effect of the nature of the data (homogeneous or heterogeneous) on the quality of

the estimate, especially the superiority of the k-nearest neighbors in the presence

of very heterogeneous data.

For this purpose, we apply the described algorithm used in the simulation

study to some chemiometrical real data available on the site3, the original of

these data (215 selected pieces of meat) comes from a quality control problem

in the food industry that controls grease on a sample of finely chopped meat by

chemical processes.

The sample of size 215 was split into learning sample of size 205 (with all

data), 178 (without the heterogeneous data, 27 values) and testing sample of size

10. Figure 2 displays the curves of learning sample for all data and the curves of

learning sample without the heterogeneous one.samplewith heterogeneous data

Time0 20 40 60 80 1002 .02 .53 .03 .5
4 .04 .55 .05 .5

samplewithout heterogeneous data

Time0 20 40 60 80 1002 .02 .53 .0
3 .54 .04 .5

sample heterogeneous sample homogeneous

Figure 2: The learning curves.

For our study, we use the standard L2 semi-metric and a quadratic kernel

function K.

We plot the conditional hazard function estimated for the first 3 values of

the testing sample, Figure 3 depicts that the k-NN method in presence of hetero-

3
http://lib.stat.cmu.edu/datasets/tecator.
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geneous data give a better estimation of the conditional hazard function predic-

tion (regular function) than the kernel method estimation (non-regular function)

and when the data are homogeneous the two method give the same result which

can be easily seen in Figure 4.

0 20 40 60 80

Index

0 20 40 60 80

k−NN method with all data

Index

0 20 40 60 80

Index

0 20 40 60 80

Index

0 20 40 60 80

kernel method with all data

Index

0 20 40 60 80

Index

Figure 3: k-NN method (upper panels) vs kernel method (lower panels)
of conditional hazard function far all data.

0 20 40 60 80Index 0 20 40 60 80
khNN method without heterogeneous d

Index 0 20 40 60 80Index
0 20 40 60 80Index 0 20 40 60 80

kernel method without heterogeneous d
Index 0 20 40 60 80Index

k´NN method for homogeneous data
kernel method for homogeneous data

Figure 4: k-NN method (upper panels) vs kernel method (lower panels)
of conditional hazard function for homogeneous data.
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5. GENERAL TECHNICAL TOOLS

Let (Ai, Bi)i∈N be a sequence of random variables with values in (Ω×R,

A⊗B), independent but not necessarily identically distributed,where (Ω,A) is a

general measurable space, let G : R×Ω → R
+ a measurable function such that:

∀w, w′ ∈ R,

w ≤ w′ =⇒ G(w, z) ≤ G(w′, z) , ∀ z ∈ Ω .

Let c be a not random positive real number and T a real random variable: we

define, ∀n ∈ N
∗,

Cn(T ) =

n∑

i=1

BiG(T, Ai)

n∑

i=1

G(T, Ai)

.

Lemma 5.1 (Burba et al. ([3])). Let (Dn)n∈N be a sequence of real ran-

dom variables and (un)n∈N be a decreasing sequence of positive numbers.

If l = limun 6= 0, and if, for all increasing sequence βn ∈ ]0, 1[ , there exist two

sequences of real random variables (D+
n (βn))n∈N and (D−

n (βn))n∈N:

(L1) ∀n ∈ N, D−
n ≤ D+

n and 1ID−
n ≤Dn≤D+

n
→ 1 a.co.

(L2)

n∑

i=1

G(D−
n , Ai)

n∑

i=1

G(D+
n , Ai)

− βn = O(un) a.co.

(L3) Cn(D−
n ) − c = O(un) a.co.

Cn(D+
n ) − c = O(un) a.co.

Then:

Cn(Dn) − c = O(un) a.co.

If l= 0 and if (L1), (L2), (L3) hold for any increasing sequence βn ∈ ]0, 1[ with

limit 1, the same result holds.

Lemma 5.2 (Burba et al. ([3])). Let (Dn)n∈N be a sequence of real ran-

dom variables and (vn)n∈N be a decreasing positive sequence. If l′ = lim vn 6= 0,

and if, for all increasing sequence βn ∈ ]0, 1[ , there exist two sequences of real

random variables (D+
n (βn))n∈N and (D−

n (βn))n∈N:

(L′1) ∀n ∈ N, D−
n ≤ D+

n and 1ID−
n ≤Dn≤D+

n
→ 1 a.co.
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(L′2)

n∑

i=1

G(D−
n , Ai)

n∑

i=1

G(D+
n , Ai)

− βn = o(vn) a.co.

(L′3) Cn(D−
n ) − c = o(vn) a.co.

Cn(D+
n ) − c = o(vn) a.co.

Then:

Cn(Dn) − c = o(vn) a.co.

If l′= 0 and if (L′1), (L′2), (L′3) hold for any increasing sequence (βn) ∈ ]0, 1[

with limit 1, the same result holds.

Burba et al. ([3]) use in their consistency proof of the k-NN kernel estimate

for independent data a Chernoff-type exponential inequality to check conditions

(L1) or (L′1).

Lemma 5.3 (Burba et al. ([3])). Let (X1, X2, ..., Xn) be independent ran-

dom variable in {0, 1}. We note X =

n∑

i=1

Xi and µ = E(X): then, ∀ δ > 0,

P
[
X > (1+ δ)µ

]
<
[
eδ/(1+ δ)1+δ

]µ
,

P
[
X < (1− δ)µ

]
<
[
e−δ2/2µ

]
.
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APPENDIX

Proof of Section 3.1

Proof of Lemma 3.1: On one hand, to prove the first result, we apply

Lemma 5.2 with:

(A.1)





vn = 1 ,

Hn = Dn ,

f̂x(y) = Cn(Dn) ,

fx(y) = c .

Choose βn ∈ ]0, 1[, (D−
n ) and (D+

n ) such that:

(A.2)





ϕx(D−
n ) =

√
βn ϕx(h) =

√
βn

kn

n
,

ϕx(D+
n ) =

1√
βn

ϕx(h) =
1√
βn

kn

n
.

Define

(A.3)





h− = D−
n = ϕ−1

x

(√
βn

kn

n

)
,

h+ = D+
n = ϕ−1

x

(
1√
βn

kn

n

)
.

Ferraty and Vieu ([13]) proved under the conditions of Theorem 3.1 that:

1

n ϕx(h)

n∑

i=1

K
(
h−1d(x, Xi)

)
→ 1 a.co.

Under the conditions (A.2) and (A.3), we have:





1

n ϕx(D−
n )

n∑

i=1

K
(
(D−

n )−1d(x, Xi)
)
→ 1 a.co.

1

n ϕx(D+
n )

n∑

i=1

K
(
(D+

n )−1d(x, Xi)
)
→ 1 a.co.

Then:
n∑

i=1

K
(
(D−

n )−1d(x, Xi)
)

n∑

i=1

K
(
(D+

n )−1d(x, Xi)
)

→ βn a.co. ,
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so that (L′2) is checked. Now by using Lemma (6.15) in Ferraty and Vieu ([13])

under the conditions of Theorem 3.1 and

(A.4) Dn −→ 0 ,
log n

nϕx(Dn)
−→ 0 (n → ∞) ,

we have:

Cn(D−
n ) → c a.co.

Cn(D+
n ) → c a.co.

so (L′3) is verified. Finally, we check (L′1). The first part is obvious, and the

second one that: ∀ ǫ > 0,

∑

n≥0

P

[∣∣1ID−
n <Hn<D+

n
− 1
∣∣ > ǫ

]
< ∞ .

We know that:

P

[∣∣1ID−
n <Hn<D+

n
− 1
∣∣ > ǫ

]
≤ P

[
Hn < D−

n

]
︸ ︷︷ ︸

A1

+ P
[
Hn > D+

n

]
︸ ︷︷ ︸

A2

,

A1 ≤ P

[
n∑

i=1

1IB(x,D−
n ) > kn

]
.

And by using Lemma 5.3 with

(A.5)





Xi = 1IB(x,D−
n ) ,

X =
n∑

i=1

1IB(x,D−
n ) ,

P
(
Xi=1

)
= ϕx(D−

n ) ,

µ = E(X) =

n∑

i=1

E
[
1IB(x,D−

n )

]
= n ϕx(D−

n ) ,

we get:

P
[
Hn < D−

n

]
<

[
e

(
1√
β
−1
)/( 1√

β

)− 1√
β

]nϕx(D−
n )

< n

(
− log

√
βn e(1−

√
βn)
)−kn

log n

.

Under the hypotheses (A.4) and as
√

β(e(1−
√

β)) < 1 then:

A1 = P
[
Hn < D−

n

]
< ∞ .

Turning now to the study of A2, we obtain

P
[
Hn > D+

n

]
= P

[
n∑

i=1

1IB(x,D+
n ) < n

√
βϕx(D+

n )

]
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under the modification (A.5), and by applying the Lemma 5.3 we obtain:

P
[
Hn > D+

n

]
< e

−kn(1−
√

β)2

2
√

β

<

(
n

(1−
√

β)2

2
√

β

)−kn
log n

.

Since
(1 −√

β)2

2
√

β
> 0 and

nϕx(h)

log n
→ ∞ then:

P
[
Hn > D+

n

]
< ∞ .

Finally:

P

[∣∣1ID−
n <Hn<D+

n
− 1
∣∣ > ǫ

]
< ∞ .

On the other hand, we prove the second result. For this, we use the preceding

steps with:

(A.6)





vn = 1 ,

Hn = Dn ,

F̂ x(y) = Cn(Dn) ,

F x(y) = c .

Proof of Lemma 3.2: It is clear that:

∣∣1 − F̂ x(y)
∣∣ < 1 − F x(y)

2
=⇒

∣∣F̂ x(y) − F x(y)
∣∣ > 1 − F x(y)

2
.

Turning now, to the term of probability, we obtain:

P

[∣∣1 − F̂ x(y)
∣∣ < 1 − F x(y)

2

]
≤ P

[∣∣F̂ x(y) − F x(y)
∣∣ > 1 − F x(y)

2

]
,

∑

n∈N

P

[∣∣1 − F̂ x(y)
∣∣ < 1 − F x(y)

2

]
≤
∑

n∈N

P

[∣∣F̂ x(y) − F x(y)
∣∣ > 1 − F x(y)

2

]
.

For the second term, by result 3.3, we have:

∑

n∈N

P

[∣∣F̂ x(y) − F x(y)
∣∣ > 1 − F x(y)

2

]
< ∞ .

Then, for δ =
1 − F x(y)

2
, we obtain:

∑

n∈N

P

[∣∣F̂ x(y) − F x(y)
∣∣ > 1 − F x(y)

2

]
< ∞ .
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Proof of Lemma 3.3: To prove this lemma, we use Lemma 5.1. Choose

βn as an increasing sequence in ]0, 1[ with limit 1. Furthermore, we choose D−
n

and D+
n under (A.2), Ferraty and Vieu ([13]) proved under the conditions of

Theorem 3.1 that:

r̂3(x) − E [r̂3(x)] = O

(√
log n

nhnϕx(h)

)
,

with

r̂3(x) =
1

n

n∑

i=1

K
(
h−1

n d(x, Xi)
)
R
(
g−1
n (y − Yi)

)

E
[
K
(
h−1

n d(x, X1)
)] ,

r̂3(x) =
1

n

n∑

i=1

K
(
h−1

n d(x, Xi)
)
Γi(y)

E
[
K
(
h−1

n d(x, X1)
)] ,

Γi(y) = R
(
g−1
n (y − Yi)

)
.

Then,

r̂3(x) − E [r̂3(x)] =
1

n

n∑

i=1

K
(
h−1

n d(x, Xi)
)

EK
(
h−1

n d(x, X1)
) Γi(y)

− 1

n

n∑

i=1

E

[
K
(
h−1

n d(x, Xi)
)

EK
(
h−1

n d(x, X1)
) Γi(y)

]

=
1

nEK
(
h−1

n d(x, X1)
)

n∑

i=1

K
(
h−1

n d(x, Xi)
)
Γi(y)

− 1

EK
(
h−1

n d(x, X1)
) E
[
K
(
h−1

n d(x, X1)
)

E(Γ1(y)/X1)
]

=
1

nEK
(
h−1

n d(x,X1)
)

n∑

i=1

K
(
h−1

n d(x,Xi)
)
Γi(y) − E(Γ1(y)/X1) .

Using the fact that E
[
K
(
h−1

n d(x, Xi)
)]

= O(ϕx(h) (see Ferraty and Vieu ([13])

and under the notations (A.2) and (A.3), we have:




1

nϕx(D−
n )

n∑

i=1

K

(
d(x, Xi)

D−
n

)
Γi(y) = E(Γ1(y)/X1) + O

(√
log n

gnkn

)
,

1

nϕx(D+
n )

n∑

i=1

K

(
d(x, Xi)

D+
n

)
Γi(y) = E(Γ1(y)/X1) + O

(√
log n

gnkn

)
.

By this, we obtain:

n∑

i=1

K

(
d(x, Xi)

D−
n

)

n∑

i=1

K

(
d(x, Xi)

D+
n

) − βn = O

(√
log n

gnkn

)
a.co.
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that (L2) is verified. Now, we apply Lemma (6.15) for Ferraty and Vieu ([13])

under (A.2) and (A.1), we get:

Cn(D−
n ) − c = O

(
ϕ−1

x

(
k

n

)α)
+ O(gβ

n) + O

(√
log n

gnkn

)
a.co.

Cn(D+
n ) − c = O

(
ϕ−1

x

(
k

n

)α)
+ O(gβ

n) + O

(√
log n

gnkn

)
a.co.

that verifies condition (L3).

Proof of Lemma 3.4: To verify this Lemma, we pass by the same steps

as before, such that: Ferraty and Vieu ([13]) showed that

r̂1(x) − 1 = O

(√
log n

nϕx(h)

)
,

with

r̂1(x) =
1

n

n∑

i=1

K
(
h−1

n d(x, Xi)
)

EK
(
h−1

n d(x, X1)
) .

Then

1

n

n∑

i=1

K
(
h−1

n d(x, Xi)
)
− ϕx(h) = O

(√
log n

nϕx(h)

)

and under the same choice of h− = D−
n and h+ = D+

n as above, we have:




1

n

n∑

i=1

K

(
d(x, Xi)

D−
n

)
=
√

βn
kn

n
+ O

(√
log n

kn

)
,

1

n

n∑

i=1

K

(
d(x, Xi)

D+
n

)
=

1√
βn

kn

n
+ O

(√
log n

kn

)
.

We get
n∑

i=1

K

(
d(x, Xi)

D−
n

)

n∑

i=1

K

(
d(x, Xi)

D+
n

) − βn = O

(√
log n

kn

)

so that, (L2) is checked. Now we are able to apply Lemma (6.14) in Ferraty and

Vieu ([13]) under (A.6), we obtain

Cn(D−
n ) − c = O

(
ϕ−1

x

(
kn

n

)α)
+ O(gβ

n) + O

(√
log n

kn

)
,

Cn(D+
n ) − c = O

(
ϕ−1

x

(
kn

n

)α)
+ O(gβ

n) + O

(√
log n

kn

)
,

and (L3) is verified.
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Proof of Section 3.2

Proof of Lemma 3.5: We denote:

(A.7)

{
Cn(Hn) = f̂x(y) ,

c = fx(y) .

Under (A.2) and (A.3), we have:

(
kngn

σ2
f (x, y)

)1/2

[Cn(Hn) − c] =

(A.8)

=

(
kngn

σ2
f (x, y)

)1/2 [
Cn(D+

n ) − c
]
+

(
kngn

σ2
f (x, y)

)1/2 [
Cn(Hn) − Cn(D+

n )
]
.

Then, to establish the asymptotic normality of the conditional density function,

we need to show the asymptotic normality of the first term in equation (A.8) and

the second term converges a.co. to 0.

For this, we remind that, under the same assumptions as Lemma 3.5, Quintela-

del-Ŕıo ([23]) in Theorem 5 proved that

(
kngn

σ2
f (x, y)

)1/2 [
Cn(D+

n ) − c
] D−→ N (0, 1) as n → ∞ .

On the other hand, by hypothesis (H2) and the fact that 1I{D−
n ≤Hn≤D+

n } → 1

where
kn

n
→ 0 (see Burba et al. ([3])), we have:

Cn(D+
n ) ≤ Cn(Hn) ≤ Cn(D−

n ) .

Using the fact that:

|Cn(Hn) − Cn(D+
n )| ≤ |Cn(D−

n ) − Cn(D+
n )|

≤ |Cn(D−
n ) − E

[
Cn(D−

n )
]
| + |Cn(D+

n ) − E[Cn(D+
n )]|(A.9)

+ |E[Cn(D−
n )] − E[Cn(D+

n )]| .

For the first term, we can write:

|Cn(D−
n ) − E

[
Cn(D−

n )
]
| ≤ |Cn(D−

n ) − c| + |E
[
Cn(D−

n )
]
− c|

by Lemma (3.3), we have:

|Cn(D−
n ) − c| = O

(
ϕ−1

x

(
kn

n

)α)
+ O(gβ

n) + O

(√
log n

kngn

)
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and Quintela-del-Ŕıo ([23]) proved that:

(A.10) |E
[
Cn(D−

n )
]
− c| = o(gβ

n) + O

(
1

kn

)
.

Finally, under hypothesis (H10), we obtain the almost complete convergence of

the first term of (A.9). And to establish the almost complete convergence of the

second term we apply the same steps as before.

Finally for the third term, we have:

|E[Cn(D−
n )] − E[Cn(D+

n )]| ≤ |E[Cn(D−
n )] − c| + |E[Cn(D+

n )] − c|

the almost complete convergence to 0 of these two terms is verified in (A.10).

Proof of Lemma 3.6: To prove this Lemma, we apply the same steps as

preceding with:

(A.11)

{
Cn(Hn) = F̂ x(y) ,

c = F x(y) .

Proof of Lemma 3.7: It is clear that, the result (3.3) of Lemma (3.1)

permits to conclude that:

F̂ x(y) → F x(y) in probability .
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