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Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez,
Chile
victorleivasanchez@gmail.com www.victorleiva.cl

Michelli Barros

– Departamento de Estat́ıstica, Universidade Federal de Campina Grande,
Brazil
michelli.karinne@gmail.com

Received: June 2013 Revised: September 2013 Accepted: September 2013

Abstract:

• The Birnbaum–Saunders (BS) distribution is a model that is receiving considerable
attention due to its good properties. We provide some results on moments of a repa-
rameterized version of the BS distribution and a generation method of random num-
bers from this distribution. In addition, we propose estimation and inference for
the mentioned parameterization based on maximum likelihood, moment, modified
moment and generalized moment methods. By means of a Monte Carlo simulation
study, we evaluate the performance of the proposed estimators. We discuss applica-
tions of the reparameterized BS distribution from different scientific fields and analyze
two real-world data sets to illustrate our results. The simulated and real data are
analyzed by using the R software.
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1. INTRODUCTION

The Birnbaum–Saunders (BS) distribution is being widely considered. This

distribution is unimodal and positively skewed, has positive support and two pa-

rameters corresponding to its shape and scale; see Birnbaum & Saunders (1969a),

Johnson et al. (1995) and Athayde et al. (2012). Interest in the BS distribution is

due to its physical theoretical arguments, its attractive properties and its relation-

ship with the normal model. Although the BS distribution has its genesis from

material fatigue, it has been used for applications in: agriculture, business, con-

tamination, engineering, finance, food, forest and textile industries, informatics,

insurance, medicine, microbiology, mortality, nutrition, pharmacology, psychol-

ogy, quality control, queue theory, toxicology, water quality and wind energy; see

Leiva et al. (2007, 2008c, 2010a,b, 2011, 2012, 2014a,b,d), Ahmed et al. (2008),

Barros et al. (2008), Balakrishnan et al. (2009a,b, 2011), Bhatti (2010), Kotz

et al. (2010), Vilca et al. (2010), Sanhueza et al. (2011), Santana et al. (2011),

Villegas et al. (2011), Azevedo et al. (2012), Ferreira et al. (2012), Paula et al.

(2012), Fierro et al. (2013), Marchant et al. (2013a,b) and Saulo et al. (2013).

One of the most studied topics in the BS distribution is its estimation

and inference. Several types of estimators for its original parameterization have

been proposed. Birnbaum & Saunders (1969b) found its maximum likelihood

(ML) estimators. Bhattacharyya & Fries (1982) mentioned that the lack of an

exponential family structure for the BS distribution complicates the statistical

inference of its parameters. Engelhardt et al. (1981), Achcar (1993), Chang &

Tang (1994) and Dupuis & Mills (1998) proposed other types of estimators of

the original parameters. However, in all of these cases, it is not possible to find

explicit expressions for its estimators, so that numerical procedures must be used.

Ng et al. (2003) introduced a modified moment (MM) method for estimating the

BS model parameters, which provides simple analytical expressions to compute

them. From & Li (2006) presented and summarized several estimation methods

for the BS distribution. Results about improved inference for this distribution are

attributed to Lemonte et al. (2007) and Cysneiros et al. (2008). Thus, different es-

timation aspects related to the BS distribution have been considered by a number

of authors. Nevertheless, not much attention has been paid to parameterizations

that are different from that originally proposed by Birnbaum & Saunders (1969a),

which was based on the physics of materials. Some works on reparameterizations

of the BS distribution were proposed by Volodin & Dzhungurova (2000), Ahmed

et al. (2008), Lio et al. (2010) and Santos-Neto et al. (2012). The present work

is focused on Santos-Neto et al. (2012)’s reparameterization.

Our main motivation for studying this reparameterization of the BS dis-

tribution is based on the search of estimators with good statistical properties.

Such a reparameterization is useful, because, first, moment estimates for the orig-

inal parameterization of the BS distribution do not have a closed-form, but this is
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possible with Santos-Neto et al. (2012)’s reparameterization and, second, it allows

a response variable to be modeled in its original scale (see Leiva et al., 2014c),

which is not possible with the parameterizations proposed until now.

The objectives of this paper are:

(i) to provide some results on moments of a reparameterized version of

the BS distribution and a generator of random numbers;

(ii) to propose estimators for this reparameterization;

(iii) to study the performance of these estimators;

(iv) to apply the results to real-world data.

The proposed estimators are based on generalized moment (GM), ML, MM and

moment methods.

The article is organized as follows. In Section 2, we present some results of

the reparameterized version of the BS distribution that include a shape analysis, a

generator of random numbers, its characteristic function (CF) and its moments.

In Section 3, we develop estimation and inference for this reparameterization

based on the GM, ML, MM and moment methods. In Section 4, we evaluate the

performance of the proposed estimators through Monte Carlo (MC) simulations.

In Section 5, we conduct an application with two real-world data sets, one from

engineering and another from economics, which is a new application of the BS

distribution. In Sections 4 and 5, computational aspects based on packages in the

R software are discussed. In Section 6, we sketch some conclusions of this study.

2. BS DISTRIBUTIONS

In this section, we present some results of a reparameterized version of the

BS distribution, including a shape analysis, a generator of random numbers and

its moments.

2.1. The original parameterization

The first parameterization of the BS distribution was proposed by Birn-

baum & Saunders (1969a) based on the physics of materials in terms of shape (α)

and scale (β) parameters. Thus, if a random variable (RV) Y follows the BS dis-

tribution with parameters α > 0 and β > 0, the notation Y ∼ BS(α, β) is used

and the corresponding probability density function (PDF) is given by

(2.1) f(y; α, β) =
1√
2π

exp

(
− 1

2α2

[
y

β
+

β

y
− 2

])
[y + β]

2α
√

βy3
, y > 0 .
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2.2. A reparameterized version of the BS distribution

Recently, Santos-Neto et al. (2012) proposed a reparameterized version of

the BS distribution, given, with respect to the original parameterization, by

α =
√

2/δ and β = δµ/[δ+1], such that δ = 2/α2 and µ = β[1 + α2/2], where

δ > 0 and µ > 0 are shape and mean parameters, respectively. For details about

motivations and justifications for this reparameterized version, see Santos-Neto

et al. (2012) and Leiva et al. (2014c).

Thus, the PDF of Y ∼ BS(µ, δ) is given by

f(y; µ, δ) =
exp(δ/2)

√
δ+1

4
√

πµ y3/2

[
y +

δµ

δ+1

]

(2.2)

× exp

(
−δ

4

[
y{δ+1}

δµ
+

δµ

y{δ+1}

])
, y > 0 .

From (2.1) and considering the indicated reparameterization, one can note that

BS and standard normal RVs are related by

Y =
δµ

δ+1


 Z√

2δ
+

√{
Z√
2δ

}2

+ 1




2

and

(2.3)

Z =

√
δ

2



√

{δ+1}Y

µδ
−
√

µδ

{δ+1}Y


 .

Hence, from (2.3), the cumulative distribution function (CDF) and the quantile

function (QF) of Y ∼ BS(µ, δ) are, respectively, given by

F (y; µ, δ) = Φ



√

δ

2



√

{δ+1}y

µδ
−
√

µδ

{δ+1}y




 , y > 0 ,

and

y(q; µ, δ) = F−1(q) =
δµ

δ+1


 z(q)√

2δ
+

√{
z(q)√

2δ

}2

+ 1




2

, 0 < q < 1 ,

where z(q) is the qth quantile of the standard normal distribution and F−1 is the

inverse CDF of Y . The hazard rate function of Y is defined by

h(y; µ, δ) =
f(y; µ, δ)

1 − F (y; µ, δ)
=

exp(δ/2)
√

δ+1

4
√

πµy3

[
y +

δµ

δ+1

]

×
exp

(
− δ

4

[
y{δ+1}

δµ + δµ
y{δ+1}

])

Φ

(
−
√

δ
2

[√
{δ+1}y

µδ −
√

µδ
{δ+1}y

]) , y > 0 .
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2.3. Shape analysis

Figures 1(a)–1(b) show shapes for the PDF of Y ∼ BS(µ, δ) considering

different values of µ, when δ is fixed, and different values of δ, when µ is fixed.

From Figure 1(a), note that the parameter µ controls the scale of the PDF, so

that it is a scale parameter and also the mean of the distribution. This aspect can

be formally verified because b Y ∼ BS(b µ, δ), with b > 0. From Figure 1(b), notice

that the parameter δ controls the shape of the PDF, making it more platykurtic

as δ increases. Figure 1(c) shows a graphical plot of δ versus Var[Y ], for µ = 1.0.

This figure allows the effect exerted by δ on the variance of the distribution to

be detected. Note that such a variance decreases as δ increases, and it converges

to 5.0, when δ goes to zero. Then, by means of this graphical analysis, we note

that δ is a precision parameter.
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Figure 1: PDF plots of a reparameterized BS distribution for different
values of µ with δ = 100.0 (a) and of δ with µ = 1.0 (b), and
plot of δ versus Var[Y ] (c).

2.4. Number generation

Random numbers from the reparameterized BS distribution can be obtained

by using the generator described in Algorithm 1.

Algorithm 1 – Generator of BS random numbers

1: Generate a random number z from a RV Z∼ N(0, 1);

2: Set values for µ and δ of Y ∼ BS(µ, δ);

3: Compute a random number y from Y ∼ BS(µ, δ), using formula given in (2.3);

4: Repeat steps 1 to 3 until the required amount of numbers to be completed.
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2.5. Moments

Another way to characterize a distribution is by using its CF, which allows

us to obtain its moments. Here, we provide some results on the CF and moments

of the reparameterized BS distribution. Moments for the original parameteriza-

tion of the BS distribution can be found in Leiva et al. (2008a) and Balakrishnan

et al. (2009a). In the literature on the BS distribution, the CF is practically not

studied. From the PDF given in (2.2), we obtain the CF of Y ∼ BS(µ, δ) in the

following theorem.

Theorem 2.1. Let Y ∼ BS(µ, δ). Then, the CF ϕ : R → C of Y is

ϕ(t) = E
[
exp(itY )

]

=
1

2

[{
1 +

√
δ+1√

1 + δ− 4tiµ

}
exp

(
δ
{√

δ+1 −
√

1 + δ− 4tiµ}
2
√

δ+1

)]
, t ∈ R ,

where i =
√
−1 is the imaginary unit.

Proof: The result is obtained using algebraic and integration methods.

Corollary 2.1. Let Y ∼ BS(µ, δ) with CF ϕ as given in Theorem 2.1.

Then, the rth derivative of ϕ with respect to t, evaluated at the point t = 0, is

ϕ(0)(r) =
drϕ(t)

dtr

∣∣∣∣
t=0

= ir E
[
Y r exp(itY )

] ∣∣∣
t=0

=
1

2
√

π [δ+1]
3
2

[
irµrδ2 exp

(
δ

2

)

×
{(

δr− 1
2 +δr− 3

2

)
(δ+1)

1
2
−rKr+ 1

2

(
δ

2

)
+ δr− 3

2 (δ+1)
3
2
−rKr− 1

2

(
δ

2

)}]
,

where Kv is the modified Bessel function of second type.

Table 1 displays the values of the function Kv (see Abramowitz & Stegun,

1972) for some values of v, which are useful for calculating the moments around

zero of the BS distribution.
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Table 1: Values of Kv(δ/2) for the indicated values of v.

v Kv(δ/2)

1
2

√

π exp
�
−

1
2

δ
�

√

δ

3
2

K1

2

�
δ
2

�h
1 + 2

δ

i
5
2

K1

2

�
δ
2

�h
1 + 6

δ
+ 12

δ2

i
7
2

K1

2

�
δ
2

�h
1 + 12

δ
+ 60

δ2 + 120
δ3

i
9
2

K1

2

�
δ
2

�h
1 + 20

δ
+ 180

δ2 + 840
δ3 + 1680

δ4

i
By means of Theorem 2.1 and Corollary 2.1, it is possible to obtain the

moments around zero of Y ∼ BS(µ, δ). By using the fact that ϕ(0)(r) = irE[Y r],

we can easily find, for example, the four first moments of Y as

E
[
Y
]

= µ , E
[
Y 2
]

= µ2 [δ2 + 4δ + 6]

[δ + 1]2
,

E
[
Y 3
]

= µ3 [δ3 + 9δ2 + 36δ + 60]

[δ + 1]3
and(2.4)

E
[
Y 4
]

= µ4 [δ4 + 16δ3 + 120δ2 + 460δ + 840]

[δ + 1]4
.

The rth central moment of Y ∼ BS(µ, δ), which we denote by µr, is given by

(2.5) µr = E
[
Y − µ

]r
=

r∑

j=0

(
r

j

)
(−1)r−j E

[
Y j
]
µr−j , r = 2, 3, ...

From (2.4) and (2.5), we have that the variance of Y is Var[Y ]=µ2[2δ+5]/[δ+1]2,

which allows the parameter δ to be interpreted as a precision parameter because,

for µ fixed, the variance of Y decreases when δ increases. In addition, we can

rewrite this variance as Var[Y ]=V (µ)/φ, where φ=[δ+1]2/[2δ+5] and V (µ)=µ2,

with V (µ) acting as a “variance function”, such as in generalized linear models.

Another interesting result is that the reparameterized BS distribution pre-

serves the reciprocation property of the original BS distribution, that is, 1/Y

is in the same family of distributions of Y . Thus, if Y ∼ BS(µ, δ), then 1/Y ∼
BS([δ+1]2/µδ2, δ) and, consequently,

E
[
1/Y

]
=

[δ + 1]2

µδ2
and Var

[
1/Y

]
=

[2δ + 5][δ + 1]2

µ2 δ4
.
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3. ESTIMATION

In this section, we derive estimation and inference for the parameters, in

the sequel denoted by θ = [µ, δ]⊤, of the reparameterized BS distribution based

on the GM, ML, MM and moment methods.

3.1. Maximum likelihood estimation

Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from Y ∼ BS(µ, δ). Then,

the log-likelihood function for θ is

(3.1) ℓ(θ) =
n∑

j=1

ℓj(θ) ,

where ℓj(θ) is the logarithm of the PDF given in (2.2) replacing y by yj . Figure 2

displays graphical plots of the log-likelihood function and its respective contours,

considering, as illustration, a sample from Y ∼ BS(µ=1.5, δ=10). In this figure,

note that the shape of the log-likelihood function is well behaved and, through its

contours, it is easy to see the region where the values that maximize the function

ℓ(θ) given in (3.1) are located.
ℓ
(
θ
)

µ
δ
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(a) (b)

Figure 2: Plots of the log-likelihood function (a) and its respective contours (b),
for the BS(µ=1.5, δ=10) distribution.

As is well-known, to obtain the ML estimates of the parameters, we must

equal the score functions to zero. In the case of the reparameterized BS distri-
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bution, the score vector for θ is given by U(θ) = [Uµ, Uδ]
⊤, where

Uµ =
∂ℓ(θ)

∂µ
=

n∑

j=1

[
δ

δyj + yj + δµ
+

yj {δ+1}
4µ2

− δ2

4yj {δ+1} − 1

2µ

]

and

Uδ =
∂ℓ(θ)

∂δ
=

n∑

j=1

[
yj + µ

δyj + yj + δµ
− yj

4µ
− δ{δ+2}µ

4{δ+1}2 yj
+

δ

2{δ+1}

]
.

Such as in the case of the original BS parameterization, for the reparameterized

version, it is not possible to find closed-form estimators for its parameters. Then,

we must use an iterative numerical method to optimize the function ℓ(θ) given in

(3.1). For example, a Newton–Raphson type algorithm can be used in this case.

The corresponding expected Fisher information matrix, denoted by K(θ) =

[Kθjθk
], has elements

Kµµ = −E

[
∂2ℓ(θ)

∂µ2

]
= n

[
δ

2µ2
+

δ2

{δ+1}2
I(θ)

]
,

Kδµ = −E

[
∂2ℓ(θ)

∂µ ∂δ

]
= n

[
1

2µ{δ+1} +
δµ

{δ+1}3
I(θ)

]
and(3.2)

Kδδ = −E

[
∂2ℓ(θ)

∂δ2

]
= n

[
δ2
j + 3δj + 1

2δ2
j {δj +1}2

+
µ2

j

{δj +1}4
I(θ)

]
,

where Kδµ = Kµδ and

I(θ) =

∫ ∞

0

[
y +

µδ

δ+1

]−2

f(y; θ) dy .

Under regularity conditions (see Cox & Hinkley, 1974), we have that the cor-

responding variance-covariance matrix is Cov[µ̂, δ̂] =K(θ)−1, whose elements of

K(θ) are given in (3.2). In addition, in general, as is well-known, ML estimators

have an asymptotic bivariate normal joint distribution. Thus, in our case, [µ̂, δ̂]⊤

approximately follows the distribution

N2

([ µ
δ

]
, K(θ)−1

)
.

3.2. Moment estimation

Moment conditions are needed to estimate parameters by using the moment

method; see Mátyás (1999). Next, we define these conditions.

Definition 3.1. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

any distribution. We want to estimate an unknown p×1 parameter vector θ,
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with true value θ0. Let g(Yj , θ) be a q×1 vector, which is a continuous function

of θ, and assume that E[g(Yj , θ)] exists and it is finite for all j and θ. Then, the

moment conditions to estimate θ are that E[g(Yj , θ0)] = 0.

We want to estimate the vector θ using the moment conditions given in

Definition 3.1. First, we consider the case when p = q, that is, when θ is exactly

identified by the moment conditions. Thus, these conditions represent a set of p

equations, with p unknown parameters. Solving these equations, we find the true

value of θ, θ0 say, which satisfies the mentioned moment conditions. However,

it is not possible to observe E[g(Yj , θ)], but only g(yj , θ). In this way, a natural

procedure is to define the sample moments of g(Yj , θ), given by

(3.3) gn(θ) =
1

n

n∑

j=1

g(Yj , θ) .

If the sample moments are estimators of the population moments with good prop-

erties, we then hope that the estimator θ̃ holding the sample moment conditions

gn(θ) = 0 is a good estimator of the true value θ0, which holds the population

moment conditions E[g(Yj , θ)] = 0. Hence, θ̃ is a moment estimator of θ.

Theorem 3.1. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, the moment estimators of µ and δ are, respectively,

µ̃ = Ȳ and δ̃ =
Ȳ 2 − S2 +

√
Ȳ 4 + 3 Ȳ 2S2

S2
,

where Ȳ = [1/n]
∑n

j=1Yj and S2 = [1/n]
∑n

j=1[Yj − Ȳ ]2.

Proof: Recall from (2.4) and (2.5) that E[Y −µ]2 = µ2[2δ +5]/[δ +1]2 and

E[Y ] = µ. Also, recall θ = [µ, δ]⊤ and define the vector of functions

g(Yj , θ) =

[
Yj −µ, {Yj −µ}2 − µ2{2δ+5}

{δ+1}2

]⊤
.

Then, the moment conditions are E[g(Yj , θ0)] = 0. We have that gn(θ̃) = 0, with

gn defined in (3.3), implies that

1

n

n∑

j=1

Yj − µ̃ = 0 and
1

n

n∑

j=1

[Yj − µ̃]2 − µ̃2 [2 δ̃+5]

[δ̃+1]2
= 0 ,

which, after some algebraic manipulations, result to be

µ̃ = Ȳ and δ̃ =
1 − κ̃2 +

√
3 κ̃2 + 1

κ̃2
,(3.4)

where κ̃ =
√

S2/Ȳ is the sample coefficient of variation (CV), with 0 < κ̃ <
√

5.

Therefore, we have that (3.4) can be rewritten as

µ̃ = Ȳ and δ̃ =
Ȳ 2 − S2 +

√
Ȳ 4 + 3 Ȳ 2S2

S2
.
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Theorem 3.2. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, µ̃ and δ̃ have an asymptotic bivariate normal joint distribu-

tion, that is, [µ̃, δ̃]⊤ approximately follows the distribution

N2



[
µ
δ

]
,

1

n




µ2{2δ+5}
{δ+1}2 −µ{2δ2+8δ−3}

{δ+1} {δ+4}

−µ{2δ2+8δ−3}
{δ+1} {δ+4}

2δ4+28δ3+122δ2+126δ+57
{δ+4}2




 .

Proof: Let Y = [Y1, ..., Yn]⊤ be independent identically distributed (IID)

RVs according to Y ∼ BS(µ, δ) and E[Y 4] given in (2.4) be finite. In addition, let

µ̃ = f1(Ȳ, S2) and δ̃ = f2(Ȳ, S2) be the moment estimators of the parameters µ

and δ, respectively. Assume that the random vector

√
n

[
Ȳ − E[Y ]

S2 − E[Y −µ]2

]

approximately follows the distribution

N2

([
0
0

]
, Σ

)
, where Σ =

[
ν µ3

µ3 µ4−ν2

]
,

with

ν = Var[Y ] =
µ2[2δ+5]

[δ+1]2
, µ3 =

4[3δ+11]µ3

[δ+1]3
and µ4−ν2 =

8µ4 [δ2+20δ+76]

[δ+1]4
.

We want to determine the asymptotic joint distribution of the estimators µ̃ =

f1(Ȳ, S2) and δ̃ = f2(Ȳ, S2). These estimators can be expressed as

f1(x, y) = x and f2(x, y) =
x2 − y +

√
x4 + 3x2y

y
.

By using the delta method (see Rao, 1965), we obtain that the random vector

√
n

[
µ̃ − µ

δ̃ − δ

]

approximately follows the distribution

N2

([
0
0

]
, Σ

)
,

where

Σ =




µ2{2δ+5}
{δ+1}2 −µ{2δ2+8δ−3}

{δ+1} {δ+4}

−µ{2δ2+8δ−3}
{δ+1} {δ+4}

{2δ4+28δ3+122δ2+126δ+57}
{δ+4}2


 .
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3.3. Modified moment estimation

Ng et al. (2003) used the fact that the BS distribution satisfies the recipro-

cation property to propose MM estimates for its parameters. The MM estimation

method is a variation of the moment estimation method, substituting the expres-

sion that equates the second population and sample moments by equating the

expected value of 1/Y with [1/n]
∑n

j=1 1/Yj . Because the reparameterized BS

distribution preserves the reciprocation property, once again, the MM estimates

of its parameters µ and δ can be easily obtained.

Theorem 3.3. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, the MM estimators of µ and δ are, respectively,

µ̆ = Ȳ and δ̆ =



√

Ȳ

Ȳh
− 1



−1

,

where Ȳh =
[
{1/n}∑n

j=1{1/Yj}
]−1

.

Proof: Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from Y ∼ BS(µ, δ).

Then, E[Y ] = µ and E [1/Y ] = [δ+1]2/[µδ2]. Thus,

g(Yj , θ) =

[
Yj − µ ,

1

Yj
− {δ+1}2

µδ2

]⊤
.

Recall the moment conditions are E[g(Yj , θ0)] = 0. We have that gn(θ̆) = 0, with

gn defined in (3.3), implies that

(3.5)
1

n

n∑

j=1

Yj − µ̆ = 0 and
1

n

n∑

j=1

1

Yj
− [δ̆+1]2

µ̆ δ̆2
= 0 .

Hence, solving (3.5), we obtain the MM estimators

µ̆ = Ȳ and δ̆ =



√

Ȳ

Ȳh
− 1



−1

,

where Ȳh is defined in Theorem 3.3. In addition, we have that δ̆ is well-defined

for Ȳh 6= Ȳ , when Ȳh < Ȳ .

Theorem 3.4. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, µ̆ and δ̆ have an asymptotic bivariate normal joint distribu-

tion, that is, [µ̆, δ̆]⊤ approximately follows the distribution

N2



[

µ
δ

]
,

1

n




µ2{2δ+5}
{δ+1}2 − 2µδ

δ+1

− 2µδ
δ+1 2δ2




 .
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Proof: Let Y = [Y1, ..., Yn]⊤ be IID RVs according to Y ∼ BS(µ, δ) and

E[Y 4
j ] < ∞. Then, the vector [Ȳ, Ȳ −1

h ]⊤ follows an asymptotic bivariate normal

distribution, which implies that

√
n

[
Ȳ − E[Y ]

Ȳ −1
h − E[Y −1]

]
·∼ N2

([
0
0

]
, Σ

)
,

where “
·∼” means “approximately follows the distribution” and

Σ =

[
Var[Y ] Cov[Y, Y −1]

Cov[Y, Y −1] Var[Y −1]

]
,

with

Var[Y ] =
µ2[2δ+5]

[δ+1]2
, Cov[Y,Y −1] = 1− [δ+1]2

δ2
and Var[Y −1] =

[2δ+5][δ+1]2

µ2 δ4
.

However, our interest is to find the asymptotic joint distribution of µ̆ = f1(Ȳ, Ȳ −1
h )

and δ̆=f2(Ȳ,Ȳ −1
h ). For these estimators, consider f1(x,y)=x, f2(x,y)=[

√
xy−1]−1

and the delta method. Then,

√
n

[
µ̆ − µ

δ̆ − δ

]
·∼ N2

([
0
0

]
, Σ

)
,

where

Σ =




µ2{2δ+5}
{δ+1}2 − 2µδ

δ+1

− 2µδ
δ+1 2δ2


 .

3.4. Generalized moment estimation

The GM method provides estimators that are in general consistent, but

in general not efficient. The GM method is an extension of the usual moment

estimation method; see details in Mátyás (1999) and in the following definition.

Definition 3.2. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

any distribution. We want to estimate an unknown p×1 parameter vector θ, with

true value θ0. Let E[g(Yj , θ0)] = 0 be a set of q moment conditions and gn(θ) be

the corresponding sample moments given in (3.3). Define the criterion function

Qn(θ) = gn(θ)⊤A
−1
n gn(θ) ,

where An is a Op(1) stochastic positive definite matrix. Then, the GM estimator

of θ is

(3.6) θ̌ = argmin
θ

Qn(θ) .
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As mentioned, in general, the GM method provides consistent estimators,

but θ must be the unique solution of E[g(Yj , θ)] and an element of a compact

space. Some assumptions on high order moments of g(Yj , θ) also are needed.

However, there are no restrictions on the model that generates the data, except

for the case of dependent data.

Considering q > p in Definition 3.2, we can perform the J test (see Hansen,

1982) to assess the moment conditions and/or the specification of model, because

it acts as an omnibus test for model misspecification. In this case, the null hypoth-

esis H0: E[g(Yj , θ0)] = 0 can be tested by using the statistic ngn(θ̌)⊤Ǎ−1
n gn(θ̌),

which approximately follows the χ2
q−p distribution under H0; see Mátyás (1999).

If the model is misspecified and/or some of the moment conditions do not hold,

then the J statistic will have a small p-value.

Theorem 3.5. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, the GM estimators of µ and δ, µ̌ and δ̌ say, can be obtained

in a general setting from (3.6).

Proof: The result is direct from (3.6).

Theorem 3.6. Let Y = [Y1, ..., Yn]⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, µ̌ and δ̌ have an asymptotic bivariate normal joint distribu-

tion, that is, [µ̌, δ̌]⊤ approximately follows the distribution

N2

([
µ
δ

]
,

1

n
V

)
,

where

V = E

[
∂g(Yj , θ)

∂θ

]⊤
A

−1
n E

[
∂g(Yj , θ)

∂θ

]
.

Proof: Given some regularity conditions (see Mátyás, 1999, Section 1.3.2),

as n goes to infinity, the GM estimator converges to a bivariate normal distribu-

tion and so the random vector
√

n [θ̌ − θ]
·∼ N2(0, V ), where

V = E

[
∂g(Yj , θ)

∂θ

]⊤
A

−1
n E

[
∂g(Yj , θ)

∂θ

]
.

To obtain point and interval estimates of the parameters of the BS dis-

tribution, we can use the gmm package (see Chaussé, 2010) of the R software

(www.R-project.org). The matrix An, which produces efficient estimators for θ,

can be estimated by an heteroskedasticity and autocorrelation consistent covari-

ance matrix; see Newey & West (1987) and Chaussé (2010). To obtain the

corresponding estimates, we run the gmm function using as starting values µ0 = µ̆

and δ0 = δ̆. To test the specification of estimated model, we use the J test

through of the specTest() function also available in the gmm package.
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4. SIMULATION

In this section, we conduct a study based on MC simulations to evaluate the

performance of the GM, ML, MM and moment estimators for the reparameterized

BS distribution.

MC replications are based on Algorithm 1.For each replication generated

by this algorithm, we calculate GM, ML, MM and moment estimates. The al-

gorithm and estimation methods are implemented in the R software by using the

gamlss (see Stasinopoulos & Rigby, 2007) and gmm packages. For details about

generation of numbers from the BS distribution, see Leiva et al. (2008b) and

Barros et al. (2009). Then, the mean, bias, standard error (SE) and squared root

of the mean squared error (
√

MSE) of these estimators are empirically computed.

We obtain point estimates, confidence intervals (CIs) and their coverage proba-

bilities (CPs) of 95% level, based on the asymptotic results associated with each

estimator given in Section 3. The ML estimates are obtained from the gamlss()

function and the GM estimates from the gmm() function. The CIs based on the

GM estimates are obtained by using the R function confint(), where the main

argument is an object of the gmm class. The scenario of this simulation study con-

siders 10 000 MC replications in each case, sample sizes n ∈ {30, 50, 75, 100, 200}
and values for δ ∈ {0.5, 2.0, 8.0, 32.0, 200} (according to different levels of skew-

ness) and µ = 1.0 (without loss of generality). The obtained results are presented

in Tables 2, 3, 4 and 5.

To perform the GM estimation of the parameters µ and δ of the BS distri-

bution, we consider the following vector of moment conditions:

E [g(Yj , θ)] = E




µ − Yj

µ2{2δ+5}
{δ+1}2 − {Yj−µ}2

{δ+1}2

µδ2 − 1
Yj


 = 0 ,

where the gradient function of gn(θ) is given by

G =
∂gn(θ)

∂θ
= E




1 0

2µ{2δ+5}
{δ+1}2 − 2µ + 2 Ȳ −2µ2{δ+4}

{δ+1}3

−{δ+1}2

{µδ}2 −2{δ+1}
µδ3


 .

From Tables 2 through 5, note that the ML, MM and moment estimators of the

parameter µ present similar statistical properties in relation to the empirical bias

and
√

MSE. However, the GM estimator presents similar properties to the other

estimators only when the sample size is large. In the case of the parameter δ,

its ML and MM estimators present similar properties for the different sample
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sizes and true values assumed for this parameter. Table 3 shows that, in general,

the GM method underestimates the true value of µ. From Tables 4 and 5, note

that the values of the empirical SE and
√

MSE increase as δ increases, for all the

considered methods, in the case of the parameter δ. Nevertheless, in the case of

the parameter µ, we have a reverse behavior, that is, the values of the empirical SE

and
√

MSE decrease as δ increases, for all the considered methods. In addition,

the GM estimator presents the worse behavior in terms of statistical properties,

but, as the sample size increases, the estimators obtained by this method turn to

be more competitive, with respect to the other estimators considered.

Table 6 provides empirical CPs of 95% CIs for the parameters of the

BS(µ, δ) distribution. Note that the CIs based on the GM estimates have CPs

smaller than those from the other methods. However, as the sample size increases,

the distance between CPs for the fixed confidence levels decreases. Also, when

the true value of δ increases, the distance between the confidence level (0.95) and

the empirical CP decreases. Thus, such as in the study based on point estima-

tion, for interval estimation, ML and MM estimators present similar statistical

properties and better than the other estimators considered.

Table 2: Empirical mean of the estimator of the indicated parameter,
method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 1.004 1.002 1.002 0.869 0.561 0.772 0.561 0.633
2.0 1.001 1.001 1.001 0.929 2.232 2.526 2.232 2.508

30 8.0 1.000 1.000 1.000 0.978 8.886 9.285 8.886 9.949
32.0 1.000 1.000 1.000 1.005 35.477 35.920 35.477 40.352

200.0 1.000 1.000 1.000 1.003 221.734 222.150 221.734 245.663

0.5 0.999 0.998 0.998 0.896 0.536 0.668 0.536 0.578
2.0 0.999 0.999 0.999 0.946 2.137 2.321 2.137 2.319

50 8.0 1.000 1.000 1.000 0.981 8.522 8.775 8.522 9.174
32.0 1.000 1.000 1.000 1.002 34.058 34.339 34.058 37.064

200.0 1.000 1.000 1.000 1.002 212.782 213.040 212.782 227.794

0.5 0.998 0.996 0.996 0.916 0.524 0.610 0.524 0.552
2.0 0.999 0.998 0.998 0.958 2.092 2.210 2.092 2.220

75 8.0 0.999 0.999 0.999 0.985 8.355 8.518 8.355 8.835
32.0 1.000 1.000 1.000 1.000 33.385 33.559 33.385 35.463

200.0 1.000 1.000 1.000 1.001 208.676 208.810 208.676 219.441

0.5 0.999 0.998 0.998 0.933 0.518 0.581 0.518 0.539
2.0 0.999 0.999 0.999 0.967 2.068 2.150 2.068 2.163

100 8.0 1.000 1.000 1.000 0.988 8.261 8.377 8.261 8.634
32.0 1.000 1.000 1.000 0.999 33.022 33.148 33.022 34.590

200.0 1.000 1.000 1.000 1.001 206.366 206.453 206.366 214.828

0.5 0.998 0.997 0.997 0.960 0.509 0.541 0.509 0.521
2.0 0.999 0.999 0.999 0.980 2.036 2.077 2.036 2.085

200 8.0 1.000 0.999 0.999 0.993 8.137 8.195 8.137 8.338
32.0 1.000 1.000 1.000 0.998 32.529 32.600 32.529 33.313

200.0 1.000 1.000 1.000 1.001 203.274 203.362 203.274 207.927
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Table 3: Empirical bias of the estimator of the indicated parameter,
method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.004 0.002 0.002 −0.131 0.061 0.272 0.061 0.133
2.0 0.001 0.001 0.001 −0.071 0.232 0.526 0.232 0.508

30 8.0 0.000 0.000 0.000 −0.022 0.886 1.285 0.886 1.949
32.0 0.000 0.000 0.000 0.005 3.477 3.920 3.477 8.352

200.0 0.000 0.000 0.000 0.003 21.734 22.150 21.734 45.663

0.5 −0.001 −0.002 −0.002 −0.104 0.036 0.168 0.036 0.078
2.0 −0.001 −0.001 −0.001 −0.054 0.137 0.321 0.137 0.319

50 8.0 0.000 0.000 0.000 −0.019 0.522 0.775 0.522 1.174
32.0 0.000 0.000 0.000 0.002 2.058 2.339 2.058 5.064

200.0 0.000 0.000 0.000 0.002 12.782 13.040 12.782 27.794

0.5 −0.002 −0.004 −0.004 −0.084 0.024 0.110 0.024 0.052
2.0 −0.001 −0.002 −0.002 −0.042 0.092 0.210 0.092 0.220

75 8.0 −0.001 −0.001 −0.001 −0.015 0.355 0.518 0.355 0.835
32.0 0.000 0.000 0.000 0.000 1.385 1.559 1.385 3.463

200.0 0.000 0.000 0.000 0.001 8.676 8.810 8.676 19.441

0.5 −0.001 −0.002 −0.002 −0.067 0.018 0.081 0.018 0.039
2.0 −0.001 −0.001 −0.001 −0.033 0.068 0.150 0.068 0.163

100 8.0 0.000 0.000 0.000 −0.012 0.261 0.377 0.261 0.634
32.0 0.000 0.000 0.000 −0.001 1.022 1.148 1.022 2.590

200.0 0.000 0.000 0.000 0.001 6.366 6.453 6.366 14.828

0.5 −0.002 −0.003 −0.003 −0.040 0.009 0.041 0.009 0.021
2.0 −0.001 −0.001 −0.001 −0.020 0.036 0.077 0.036 0.085

200 8.0 0.000 −0.001 −0.001 −0.007 0.137 0.195 0.137 0.338
32.0 0.000 0.000 0.000 −0.002 0.529 0.600 0.529 1.313

200.0 0.000 0.000 0.000 0.001 3.274 3.362 3.274 7.927

Table 4: Empirical SE of the estimator of the indicated parameter,
method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.296 0.298 0.298 0.308 0.162 0.440 0.162 0.257
2.0 0.182 0.182 0.182 0.195 0.638 0.986 0.638 0.925

30 8.0 0.092 0.092 0.092 0.102 2.532 2.993 2.532 3.533
32.0 0.046 0.046 0.046 0.051 10.100 10.627 10.100 13.359

200.0 0.018 0.018 0.018 0.020 63.122 63.636 63.122 78.065

0.5 0.226 0.228 0.228 0.237 0.113 0.340 0.113 0.153
2.0 0.139 0.139 0.139 0.148 0.448 0.733 0.448 0.582

50 8.0 0.071 0.071 0.071 0.078 1.786 2.186 1.786 2.212
32.0 0.035 0.035 0.035 0.040 7.134 7.624 7.134 8.809

200.0 0.014 0.014 0.014 0.015 44.580 45.136 44.580 51.508

0.5 0.185 0.187 0.187 0.193 0.089 0.276 0.089 0.104
2.0 0.114 0.114 0.114 0.121 0.353 0.591 0.353 0.432

75 8.0 0.058 0.058 0.058 0.063 1.404 1.744 1.404 1.663
32.0 0.029 0.029 0.029 0.032 5.609 6.025 5.609 6.693

200.0 0.012 0.012 0.012 0.013 35.043 35.502 35.043 39.398

0.5 0.159 0.160 0.160 0.166 0.075 0.240 0.075 0.084
2.0 0.099 0.099 0.099 0.104 0.299 0.504 0.299 0.347

100 8.0 0.051 0.051 0.051 0.055 1.191 1.484 1.191 1.372
32.0 0.025 0.025 0.025 0.028 4.764 5.128 4.764 5.535

200.0 0.010 0.010 0.010 0.011 29.733 30.126 29.733 32.884

0.5 0.114 0.115 0.115 0.118 0.051 0.172 0.051 0.055
2.0 0.070 0.070 0.070 0.073 0.206 0.354 0.206 0.221

200 8.0 0.036 0.036 0.036 0.037 0.820 1.028 0.820 0.884
32.0 0.018 0.018 0.018 0.019 3.283 3.538 3.283 3.563

200.0 0.007 0.007 0.007 0.008 20.510 20.790 20.510 21.865
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Table 5: Empirical
√

MSE of the estimator of the indicated parameter,
method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.296 0.298 0.298 0.334 0.173 0.517 0.173 0.290
2.0 0.182 0.182 0.182 0.208 0.679 1.117 0.679 1.055

30 8.0 0.092 0.092 0.092 0.104 2.683 3.257 2.683 4.035
32.0 0.046 0.046 0.046 0.052 10.682 11.327 10.682 15.755

200.0 0.018 0.018 0.018 0.020 66.759 67.380 66.759 90.440

0.5 0.226 0.228 0.228 0.259 0.119 0.379 0.119 0.172
2.0 0.139 0.139 0.139 0.158 0.469 0.800 0.469 0.663

50 8.0 0.071 0.071 0.071 0.080 1.861 2.320 1.861 2.505
32.0 0.035 0.035 0.035 0.040 7.425 7.975 7.425 10.161

200.0 0.014 0.014 0.014 0.016 46.376 46.981 46.376 58.528

0.5 0.185 0.187 0.187 0.210 0.092 0.297 0.092 0.116
2.0 0.114 0.114 0.114 0.128 0.365 0.627 0.365 0.485

75 8.0 0.058 0.058 0.058 0.065 1.448 1.819 1.448 1.861
32.0 0.029 0.029 0.029 0.032 5.777 6.223 5.777 7.536

200.0 0.012 0.012 0.012 0.013 36.101 36.578 36.101 43.933

0.5 0.159 0.161 0.161 0.179 0.077 0.253 0.077 0.093
2.0 0.099 0.099 0.099 0.109 0.307 0.526 0.307 0.383

100 8.0 0.051 0.051 0.051 0.056 1.219 1.531 1.219 1.511
32.0 0.025 0.025 0.025 0.028 4.873 5.255 4.873 6.111

200.0 0.010 0.010 0.010 0.011 30.407 30.809 30.407 36.072

0.5 0.114 0.115 0.115 0.125 0.052 0.177 0.052 0.059
2.0 0.070 0.070 0.070 0.075 0.209 0.362 0.209 0.237

200 8.0 0.036 0.036 0.036 0.038 0.832 1.046 0.832 0.947
32.0 0.018 0.018 0.018 0.019 3.325 3.589 3.325 3.797

200.0 0.007 0.007 0.007 0.008 20.770 21.060 20.770 23.258

Table 6: CP of 95% CIs for the indicated parameter, method,
n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.899 0.884 0.896 0.622 0.956 0.993 0.957 0.864
2.0 0.917 0.906 0.916 0.707 0.956 0.983 0.956 0.861

30 8.0 0.930 0.924 0.930 0.785 0.956 0.970 0.956 0.858
32.0 0.937 0.935 0.937 0.826 0.956 0.961 0.956 0.836

200.0 0.942 0.940 0.942 0.815 0.956 0.958 0.956 0.880

0.5 0.999 0.903 0.914 0.703 0.955 0.984 0.955 0.886
2.0 0.929 0.921 0.930 0.779 0.954 0.978 0.954 0.878

50 8.0 0.939 0.934 0.938 0.826 0.954 0.967 0.954 0.886
32.0 0.943 0.941 0.942 0.857 0.954 0.960 0.953 0.864

200.0 0.943 0.943 0.943 0.843 0.953 0.954 0.953 0.896

0.5 0.928 0.920 0.926 0.757 0.954 0.982 0.953 0.904
2.0 0.936 0.930 0.936 0.820 0.954 0.973 0.953 0.899

75 8.0 0.941 0.938 0.940 0.862 0.954 0.964 0.954 0.901
32.0 0.943 0.942 0.942 0.880 0.954 0.957 0.953 0.887

200.0 0.944 0.944 0.944 0.862 0.954 0.953 0.954 0.906

0.5 0.935 0.929 0.933 0.794 0.952 0.978 0.952 0.913
2.0 0.942 0.939 0.942 0.848 0.952 0.972 0.952 0.910

100 8.0 0.944 0.942 0.944 0.879 0.953 0.961 0.953 0.911
32.0 0.944 0.940 0.944 0.888 0.952 0.955 0.952 0.897

200.0 0.944 0.944 0.943 0.869 0.952 0.953 0.952 0.912

0.5 0.940 0.935 0.938 0.851 0.952 0.978 0.952 0.926
2.0 0.944 0.942 0.943 0.888 0.951 0.969 0.951 0.926

200 8.0 0.949 0.947 0.948 0.916 0.950 0.958 0.950 0.926
32.0 0.948 0.949 0.948 0.916 0.950 0.952 0.950 0.925

200.0 0.947 0.947 0.947 0.894 0.950 0.950 0.950 0.927
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5. APPLICATIONS

In this section, we provide a practical illustration of the proposed estimation

methods based on two real-world data sets, with moderate and large sample sizes

and from two fields: economics and engineering.

5.1. Data set I (S1): Griffiths et al. (1993)

The first data set (S1) is presented in Griffiths et al. (1993) and corre-

sponds to household expenditures for food in the United States (US) expressed

in thousands of US dollars (M$). These data are provided in Table 7.

Table 7: Household expenditures for food (in M$) (Griffiths et al., 1993).

15.998 16.652 21.741 7.431 10.481 13.548 23.256 17.976 14.161 8.825
14.184 19.604 13.728 21.141 17.446 9.629 14.005 9.160 18.831 7.641
13.882 9.670 21.604 10.866 28.980 10.882 18.561 11.629 18.067 14.539
19.192 25.918 28.833 15.869 14.910 9.550 23.066 14.751

Table 8 presents a descriptive summary of S1 that includes sample mean

(ȳ), median (ỹ), standard deviation (SD), CV, coefficients of skewness (CS) and

of kurtosis (CK), and minimum (y(1)) and maximum (y(n)) values. Note that

the empirical distribution of the studied RV is slightly positive skewed. Figure 3

presents the boxplots and histogram for S1. From Figure 3(a), note that the ad-

justed and usual boxplots exhibit the same behavior, which makes sense because

the data have little asymmetry. From Figure 3(b), note that the BS distribu-

tion fits the data well, whose PDF is estimated with µ̂ = 15.95 and δ̂ = 15.57.

Point estimates of the µ and δ parameters of the BS distribution for the proposed

methods, and 90% and 95% CIs for these parameters, are displayed in Table 9.

Table 8: Descriptive statistics for S1 (in M$).

y(1) ỹ ȳ y(n) SD CV CS CK

7.431 14.831 15.953 28.980 5.624 0.353 0.525 2.556

Table 9: Estimates and CIs for indicated parameter and method with S1.

Method
µ δ

Estimate CI(90%) CI(95%) Estimate CI(90%) CI(95%)

ML 15.95 [14.41;17.50] [14.11;17.79] 15.57 [ 9.70;21.45] [ 8.57;22.57]
Moment 15.95 [14.47;17.43] [14.19;17.72] 16.91 [ 9.51;24.31] [ 8.10;25.72]

MM 15.95 [14.41;17.50] [14.11;17.79] 15.57 [ 9.70;21.45] [ 8.57;22.57]
GM 15.30 [14.31;16.30] [14.12;16.49] 15.94 [10.96;20.92] [10.00;21.87]
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Figure 3: Boxplots (a) and histogram with estimated PDF (b) for S1.

Next, we evaluate the fitting of theBSdistribution to S1with goodness-of-fit

tests. Consider the null hypothesis H0: “the data come from a RV Y ∼ BS(µ, δ)”

versus the alternative hypothesis H1: “the data do not come from this RV”. We

use the Cramér–von Mises (CM) and Anderson–Darling (AD) statistics to test

these hypotheses; see Barros et al. (2014). The corresponding p-values of the

CM and AD tests obtained for S1, with the BS distribution under H0, are 0.656

and 0.608, respectively. Thus, we do not have evidence to indicate than the BS

distribution does not fit these data well. We check moment conditions of the

GM method for S1 with the J test, by using the R function specTest(), whose

p-value is 0.430. Thus, once again the null hypothesis is not rejected for any

usual significance level. Therefore, we do not have evidence to conclude that the

moment conditions are incorrect or that the BS distribution does not fit S1 well.

5.2. Data set II (S2): Birnbaum & Saunders (1969b)

The second data set (S2) is a classical one used in the literature on the

topic. These data were introduced by Birnbaum & Saunders (1969b) and cor-

respond to lifetimes of 6061-T6 aluminum coupons expressed in cycles (×10−3)

at a maximum stress level of 3.1 psi (×104), until the failure to occur. These

coupons were cut parallel to the direction of rolling and oscillating at 18 cycles

per seconds. The data are displayed in Table 10.

Table 10: Lifetimes (in cycles ×10−3) (Birnbaum & Saunders, 1969b).

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196 212
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Table 11 presents a descriptive summary of S2 in a similar way to S1. Note

that the empirical distribution of the studied RV is relatively symmetric and lep-

tokurtic. Figure 3 presents the boxplots and histogram for S2. From Figure 4(a),

note also that the adjusted and usual boxplots exhibit the same behavior, which

makes sense because the data have little asymmetry. From Figure 4(b), note that

the BS distribution fits the data well, whose PDF is estimated with µ̂ = 133.73

and δ̂ = 68.89. Point estimates of the µ and δ parameters of the BS distribution

for the proposed methods, and 90% and 95% CIs for these parameters, for S2,

are displayed in Table 12. From this table, we note that less accurate CIs are

obtained by the GM method.

Table 11: Descriptive statistics for S2 (in cycles ×10−3).

y(1) ỹ ȳ y(n) SD CV CS CK

70.00 133.000 133.733 212.000 22.356 0.167 0.326 3.973

Table 12: Estimates and CIs for indicated parameter and method with S2.

Method
µ δ

Estimate CI(90%) CI(95%) Estimate CI(90%) CI(95%)

ML 133.73 [129.99;137.47] [129.27;138.19] 68.89 [52.95; 84.84] [49.89;87.89]
Moment 133.73 [130.09;137.37] [129.39;138.07] 72.76 [55.24; 90.27] [51.88;93.63]

MM 133.73 [129.99;137.47] [129.27;138.19] 68.89 [52.95; 84.84] [49.89;87.89]
GM 137.69 [129.62;145.76] [128.08;147.31] 75.36 [33.88;116.85] [25.93;124.80]
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Figure 4: Boxplots (a) and histogram with estimated PDF (b) for S2.

The corresponding p-values of the CM and AD tests obtained for S2 are

0.202 and 0.169, respectively. Thus, we do not have evidence to indicate than the

BS distribution does not fit S2 well. The J test presented a p-value = 0.720, so

that the null hypothesis is not rejected for any usual significance level. Therefore,

we do not have evidence to conclude that the moment conditions are incorrect or

that the BS distribution does not fit S2 well.
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6. CONCLUSIONS

In this paper, we have provided some novel results on moments and gen-

eration of random numbers from a reparameterized version of the Birnbaum–

Saunders distribution. In addition, we have studied several estimation methods

for this parameterization. We have considered the generalized moment, maximum

likelihood, modified moment and moment methods to estimate the corresponding

parameters. Furthermore, we have conducted a Monte Carlo study to evaluate

the performance of these estimators. From this study, we can conclude that the

maximum likelihood and modified moment estimators present similar statistical

properties and better that those of the other estimators considered. Therefore,

due to the modified moment estimators are easier to compute, we recommend

their use for the reparameterized Birnbaum–Saunders distribution. In addition,

we have obtained moment estimators in a closed-form, which is not possible with

the original parameterization of the Birnbaum–Saunders distribution. However,

the parameter estimators obtained by the moment method, as well as those ob-

tained by the generalized moment method, are underperformed with respect to

their statistical properties. Nevertheless, for the case of large sample sizes, all the

studied estimators have similar statistical properties. We have discussed appli-

cations of the BS distribution in different scientific fields and taken advantage of

the computational implementation in the R software for carrying an application

with two real-world data sets, which allowed us to illustrate the obtained results.
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