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– Université de Strasbourg et CNRS, IRMA, UMR 7501,
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Abstract:

• A strong statistical research effort has been devoted in multivariate extreme value
theory in order to assess the strength of dependence among extremes. This topic
is particularly difficult in the case where block maxima are near independence.
In this paper, we adapt and study a simple inference tool inspired from geostatistics,
the madogram, to the context of asymptotic independence between pairwise block
maxima. In particular, we introduce an extremal coefficient and study the theoreti-
cal properties of its estimator. Its behaviour is also illustrated on a small simulation
study and a real data set.
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1. INTRODUCTION

One recurrent question in multivariate extreme value theory (MEVT)

is how to infer the strength of dependence among maxima. To illustrate this

inquiry by an example, monthly maxima of hourly precipitation measured at two

french stations from February 1987 to December 2002 are displayed in Figure 1.

The two stations belong to the same hydrological basin of Orgeval

(https://gisoracle.cemagref.fr/) that is located in France, west of Paris.

For each season, a scatterplot between the two stations shows the original

45 (15 years × 3 months per season) monthly maxima recorded in millimeters.

The dependence structure seems to vary according to seasons and it is not clear

if the largest summer values are close to independence.
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Figure 1: Monthly maxima of hourly precipitation for each season,
measured at two stations in the basin of Orgeval (near Paris)
during 1987-2002.

This concept of asymptotic independence has been studied by many au-

thors. In this paper, we follow the approach introduced by Ledford and Tawn

(1996) and extended by Ramos and Ledford (2009). Before explaining the de-

tails of our method, we need to recall a few basic concepts about MEVT and to

introduce some notations. Suppose that we have at our disposal n independent

and identically distributed pairs (Xi, Yi) with unit-Fréchet margins (P(Xi ≤ x) =

exp(−1/x) for x > 0) and that the component-wise maxima vector (MX,n, MY,n)=
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(max(X1, ..., Xn), max(Y1, ..., Yn)) converges in the following way:

lim
n→∞

P

(
MX,n

n
≤ x,

MY,n

n
≤ y

)
= G(x, y), for x, y > 0.(1.1)

The limiting distribution function G is called the bivariate extreme value distri-

bution and it can be written as G(x, y) = exp{−V (x, y)}, with

V (x, y) =

∫ 1

0
max

(
ω

x
,
1 − ω

y

)
dH(ω),

where H(.) is a finite non-negative measure on [0, 1] such that
∫ 1
0 ωdH(w) =∫ 1

0 (1−ω)dH(w) = 1. This latter condition on H ensures that the margins G(x,∞)

and G(∞, y) are unit-Fréchet distributed. The function V is called the pairwise

extremal dependence function. It is homogeneous of order −1, i.e. V (tx, ty) =

t−1V (x, y) for any positive t and G is max-stable, i.e. Gt(tx, ty) = G(x, y). By

definition of H, the function V has no explicit form and various non-parametric

estimators of V have been studied (e.g. Capéraà et al., 1997). As an example,

an approach based on a classical geostatistical tool, the madogram (Matheron,

1987), was proposed by Naveau et al. (2009). Its simplest version (Cooley et al.,

2006) focused on the estimation of the extremal coefficient θ = V (1, 1). This coef-

ficient provides a quick summary of the dependence between maxima. It belongs

to the interval [1, 2]. If θ equals two, the pairwise maxima are independent, and

if θ equals one, it is the complete dependence case. Cooley et al. (2006) defined

the so-called F -madogram

ν =
1

2
E |F (MX,n) − F (MY,n)| ,(1.2)

where F denotes the distribution function of MX,n and MY,n, in order to express

the extremal coefficient as

θ =
1 + 2ν

1 − 2ν
.(1.3)

Going back to the maxima displayed in Figure 1, one may wonder if con-

vergence (1.1) provides an appropriate probabilistic framework to study the near

independence seen in our summer rainfall data. Convergence (1.1) implies that

limnP

(
Xi
n > x or Yi

n > y
)

= − log G(x, y). Hence

lim
n−→∞

nP

(
Xi

n
> x and

Yi

n
> y

)
= log G(x, y) − log G(x,∞) − log G(∞, y).

If we are in the asymptotically independent case, i.e. G(x, y) can be written as

the product G(x, y) = G(x,∞)G(∞, y), the right-hand side of the last conver-

gence is nothing else than zero. This result is uninformative about the degree of

dependence among our rainfall maxima. A conceptual extension is needed to im-

prove our understanding of the probability of having joint extremes. To fill in this
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gap, Ledford and Tawn in a series of papers (e.g. Ledford and Tawn, 1996, 1997,

1998) introduced a new tail model of the distribution which has been simplified

by Ramos and Ledford (2009) as follows

(1.4) P (X > x, Y > y) = (xy)
− 1

2η L(x, y), for some η ∈ (0, 1],

with L a bivariate slowly varying function at infinity. The coefficient of tail de-

pendence, η, is a measure of asymptotic independence. It is equal to one in the

asymptotic dependence case and less than one in the asymptotic independence

one. Condition (1.4) is tailored to analyze large excesses in the asymptotic in-

dependent case but it needs a reformulation in order to be used with pairs of

maxima, as the ones pictured in Figure 1. This reformulation has been recently

proposed by Ramos and Ledford (2011) who studied an extension of (1.1) by

proving under the tail model (1.4) that, for x, y > 0,

lim
ε→0

lim
n→∞

P

[
MX,n,εbn

bn
≤ x,

MY,n,εbn

bn
≤ y

]
= Gη(x, y) = exp

[
− Vη(x, y)

]
,(1.5)

where the normalising constants bn are defined implicitly as nP(X > bn, Y >

bn) = 1, M•,n,ε corresponds to the component-wise maxima such that (Xi, Yi)

occur within the set Rε = {(x, y) : x > ε, y > ε} and

Vη(x, y) = η

∫ 1

0

[
max

(
ω

x
,
1 − ω

y

)] 1

η

dHη(ω),(1.6)

with Hη a finite and non-negative measure satisfying the constraint

η−1 =

∫ 1

2

0
ω

1

η dHη(ω) +

∫ 1

1

2

(1 − ω)
1

η dHη(ω).

The new dependence function Vη is homogeneous of order − 1
η :

Vη(tx, ty) = t
− 1

η Vη(x, y),

and the distribution Gη(x, y) obeys an extended max-stable property:

Gt1/η

η (tx, ty) = Gη(x, y).

In (1.1), a normalisation of n−1 is required in order to stabilize the component-

wise maxima whereas in (1.5) bn is of order O(nη).

The main goal of this paper is to adapt the concept of madogram to this

framework of asymptotic independence. The asymptotic properties of our es-

timators are also derived. A small simulation study allows us to compare our

inference scheme with the maximum likelihood estimation approach. All these

estimators are applied to our rainfall data set.
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2. THE F -MADOGRAM IN THE ASYMPTOTIC INDEPEND-

ENCE CASE

Denote (M∗
X , M∗

Y ) the bivariate vector that follows the distribution Gη(x, y),

i.e.

P (M∗
X ≤ x, M∗

Y ≤ y) = exp{−Vη(x, y)},(2.1)

with Vη(x, y) of the form (1.6).

Concerning the marginals, we denote

F ∗X(x) := P (M∗
X ≤ x) = exp

[
− σXx

− 1

η

]
and F ∗Y (y) := exp

[
− σY y

− 1

η

]
,(2.2)

with σX = Vη(1,∞) and σY = Vη(∞, 1). As the scaling coefficients σX and σY

are not necessarily equal, the Fréchet margins of M∗
X and M∗

Y differs by a mul-

tiplicative factor. In the classical MEVT setup defined by (1.1), the extremal

coefficient θ = V (1, 1) was simple to explain. It always varied between one (de-

pendence) and two (independence). Having different marginals in (2.2) makes it

difficult to find simple and interpretable summaries like the extremal coefficient.

One possible way around this interpretability issue is to go back to the madogram

distance because it is trivial to interpret it as a metric and it is marginal free.

The F -madogram for the pair (M∗
X , M∗

Y ) can be defined as

(2.3) νη :=
1

2
E |F ∗X (M∗

X) − F ∗Y (M∗
Y )| ,

and we can derive from (1.6) and (2.2) the relationship (see Appendix)

θη =
1 + 2νη

1 − 2νη
,(2.4)

where θη := Vη(σ
η
X , ση

Y ) could be viewed as an analog of the classical extremal

coefficient, comparing equations (1.3) and (2.4). If νη equals zero, then θη equals

one. As the distance νη increases, the coefficient θη also increases. If M∗
X and

M∗
Y are independent, then F ∗X (M∗

X) and F ∗Y (M∗
Y ) are independent and uniformly

distributed random variables. It follows that νη = 1/6. From (2.4), we deduce

that θη = 2.

The only difference between equations (1.3) and (2.4) resides in the fact

that the pairwise maxima vector belongs now to the largest family Gη instead of

the classical G. It is also essential to emphasize that the F -madogram should not

be interpreted alone. The coefficient η is paramount to explore the asymptotic

independence domain.
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3. INFERENCE

3.1. A method-of-moment approach

Our main result is the following theorem that deals with the convergence

of the empirical estimator deduced from (2.3).

Theorem 1. Let
(
M∗

Xi,n
, M∗

Yi,n

)
be a sample of N bivariate maxima

vectors of block size n that converges in distribution, as n → ∞, to a bivariate

extreme value distribution with an η-dependence function defined as in (1.6). Let

ν̂η =
1

2N

N∑

i=1

∣∣∣F̂ ∗X(M∗
Xi,n) − F̂ ∗Y (M∗

Yi,n)
∣∣∣ ,(3.1)

where F̂ ∗X , resp. F̂ ∗Y , denotes the empirical distribution function of the sample

M∗
Xi,n

, resp. M∗
Yi,n

. Then, as n → ∞ and N → ∞

√
N
(
ν̂η − νη

)
d−→
∫

[0,1]2
NC(u, v)dJ(u, v),

where J(x, y) = 1
2 |x − y| and NC is a Gaussian process defined by

(3.2) NC(u, v) = BC(u, v) − BC(u, 1)
∂C

∂u
(u, v) − BC(1, v)

∂C

∂v
(u, v),

and BC is a Brownian bridge on [0, 1]2 with covariance function

E{BC(u, v) · BC(u′, v′)} = C(u ∧ u′, v ∧ v′) − C(u, v) · C(u′, v′),

with u ∧ u′ = min(u, u′) and C the copula function with respect to (2.1).

From (2.4), we introduce the following estimator for the extremal coefficient

θ̂η =
1 + 2ν̂η

1 − 2ν̂η
.(3.3)

Applying the delta method, the following corollary follows.

Corollary 2. Under the assumption of Theorem 1, we have

√
N
(
θ̂η − θη

)
d−→ (1 + θη)

2

∫

[0,1]2
NC(u, v)dJ(u, v).
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To infer the value of η, we complement our method-of-moment via a Gen-

eralized Probability Weighted Moment (GPWM) approach (Diebolt et al., 2008)

based on the following moment equality

µω = E(M∗ω(FM∗)) =

∫ +∞

−∞
x ω(FM∗(x))dFM∗(x),

for any variable M∗ with a distribution function FM∗ and ω a suitable continuous

function satisfying

{
ω(t) = O((1 − t)b) for t close to 1, b ≥ 0,

ω(t) = O(ta
′

) for t close to 0, a′ > 0.
(3.4)

If we take M∗ = max(M∗
X,n, M∗

Y,n), whose distribution function equals FM∗(x) =

exp{−Vη(1, 1)x
− 1

η } (using Equation (2.1) and the homogeneous property of Vη)

and if ω(t) := ωa,b(t) = ta(− log t)b, a > a′ then Diebolt et al. (2008) proved that

µa,b := µω =
V η

η (1, 1)

(a + 1)b−η+1
Γ(b − η + 1)(3.5)

where Γ(α) =
∫∞
0 xα−1e−xdx.

A natural estimator for µa,b can be obtained by replacing FM∗ by its em-

pirical version Fn

µ̂a,b =

∫ 1

0
F
−1
n (u)ua(− log u)bdu.

Using (3.5) with suitable values for (a, b) allows us to obtain an estimator for η

in function of µ̂a,b

(3.6) η̂gpwm = 2

(
1 − µ̂1,2

µ̂1,1

)
.

The asymptotic normality of η̂gpwm can then be deduced from the asymptotic

properties of the GPWM estimator, see our Appendix.

Proposition 3. Let
(
M∗

Xi,n
, M∗

Yi,n

)
be a sample of N bivariate maxima

vectors of block size n that follows a bivariate extreme value distribution with

an η-dependence function defined as in (1.6). Then the GPWM estimator of η

defined by η̂gpwm converges in the following way

√
N (η̂gpwm − η)

d−→ η23−η

Γ(2 − η)
[I1 − (1 − η/2)I2] ,

with I1 =
∫ 1
0 B(t)(− log t)−η+1 dt, I2 =

∫ 1
0 B(t)(− log t)−η dt and B a Brownian

bridge.
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3.2. The maximum likelihood approach

Besides our aforementioned method-of-moment approach, a Maximum Like-

lihood (ML) method can also be implemented. Our ML method is based on the

normalized sample {Mi} =
{

max
(

M∗Xi,n

ση
X

,
M∗Yi,n

ση
Y

)}
, i = 1, ..., N which admits the

following log-likelihood

log L(M1, ..., MN ; θη, η) = N log

(
θη

η

)
− (1/η + 1)

N∑

i=1

log(Mi) − θη

N∑

i=1

M
−1/η
i .

If η̂mle denotes the ML estimator for η based on the univariate sample{
max

(
M∗

Xi,n
, M∗

Yi,n

)}
with a distribution function given by (2.1), it allows us

to derive

θ̂η,mle =

[
1

N

N∑

i=1

min
(
σ̂X,mle(M

∗
Xi,n)−1/bηmle , σ̂Y,mle(M

∗
Yi,n)−1/bηmle

)]−1

.

The estimates for σX and σY in the above equality can be derived from (2.2) as

σ̂X,mle =
[

1
N

∑N
i=1(M

∗
Xi,n

)−1/bηmle

]−1
and a similar expression for σ̂Y,mle. Thus

we can define

(3.7)

θ̂η,mle =

[
1

N

N∑

i=1

min

(
(M∗

Xi,n
)−1/bηmle

1
N

∑N
j=1(M

∗
Xj ,n)−1/bηmle

,
(M∗

Yi,n
)−1/bηmle

1
N

∑N
j=1(M

∗
Yj ,n)−1/bηmle

)]−1

.

4. EXAMPLES

4.1. A small simulation

To compare our estimators with the ML approach, we simulate 300 samples

of 500 pairs of maxima from the η-asymmetric logistic dependence model (see

Ramos and Ledford, 2011):

Vη(x, y) =
1

2 − 2α/η
(x−1/α + y−1/α)α/η, for x, y > 0,

with α ∈ {0.1, 0.3, 0.5, 0.6} and η = 0.7. This specific value of η corresponds to a

case of asymptotic independence (η < 1) and provides θη = 2α/η.
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Boxplots of the estimators of θ and η are given in Figures 2 and 3 for

different values of α and η. In these figures, the small square represents the true

value of the parameter whereas the horizontal line is the median based on the

300 simulations.

Moment s ML1 .091 .10
1 .111 .12
1 .13

Moment s ML1 .301 .35
1 .401 .45

(a) Case α = 0.1, η = 0.7 (b) Case α = 0.3, η = 0.7

Moment s ML1 .551 .601 .
651 .701 .7
51 .80

Moment s ML1 .71 .8
1 .92 .0
2 .1

(c) Case α = 0.5, η = 0.7 (d) Case α = 0.6, η = 0.7

Figure 2: Simulation: comparing θ̂η from (3.3) with θ̂η,mle from (3.7).

In Figure 2 we can observe that the estimate θ̂η,mle from (3.7) has a higher

variability than θ̂η from (3.3). This is particularly true when α is close to η, i.e.

θ̂η near two.
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Concerning the estimation of η, Figure 3 basically tells the opposite story.

The ML approach appears slightly better than the method-of-moment. This

small simulation study advocates for not restricting one inference approach but

rather to combine or at least compare different inference techniques.

Moments ML0 .600 .65
0 .700 .75
0 .80

Moments ML0 .600 .65
0 .700 .75
0 .80

(a) Case α = 0.1, η = 0.7 (b) Case α = 0.3, η = 0.7

Moments ML0 .600 .65
0 .700 .75
0 .80

Moments ML0 .600 .65
0 .700 .75
0 .80

(c) Case α = 0.5, η = 0.7 (d) Case α = 0.6, η = 0.7

Figure 3: Simulation: comparing η̂gpwm from (3.6) with η̂mle.
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4.2. Orgeval Rainfall data

Table 1 summarizes our inference with respect to the maxima plotted in

Figure 1.

If one has to guess from Figure 1 some information about the degree of

dependence, precipitation maxima during the Summer season clearly appear to

be the less uncorrelated, followed by the Winter ones. The Spring and Fall seasons

seem to witness a stronger and similar dependence.

Table 1: Estimates with GPWM and ML approaches
for the Orgeval rainfall data.

θ̂η θ̂η,mle η̂gpwm η̂mle

winter 1.44 1.26 0.44 0.71
spring 1.33 1.22 0.50 0.70
summer 1.45 1.47 0.56 0.72
fall 1.36 1.60 0.49 0.51

Concerning the GPWM approach, from Table 1 we can see that the Spring

and Fall seasons basically have the same η and the same θ. This parallel confirms

Figure 1 where the points are strongly clustered for those two panels. Concerning

the Winter and Summer seasons, the corresponding θ̂η are much alike, but the

η̂gpwm are different. Visually, this does not contradict the Winter and Summer

displays, but it is not straightforward to interpret such results.

From Table 1, η̂mle appears to be almost equal to 0.7 for all seasons, but the

Fall. It is puzzling that the Spring season belongs to this group because Figure 1

and the GPWM approach clearly discriminates the Spring from the Winter and

Summer seasons. On the positive for the MLE approach, having the same η for

the Winter, Spring and Summer, we can compare the ML estimates of θ. The

ordering among those three θ̂η,mle is coherent with Figure 1, the Summer has

the largest value and the Spring the smallest one. The Fall season is difficult to

interpret with the MLE approach, η̂mle being quite different to the values in the

other seasons.

Now, if we want to compare the two approaches, GPWM and MLE, looking

at Table 1, we can see that θ̂η is quite stable, which is not the case for θ̂η,mle. At

first sight, as both quantities estimate θ, it is difficult to know what to conclude.

However, if we look at Figure 2(b) where the value of θη is in the range 1.3–1.4
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(corresponding to the values given in Table 1) we can observe that indeed the

variability with the maximum likelihood approach is more important than with

the moment method. Thus this corroborates the instability of θ̂η,mle observed in

Table 1.

Overall, the time period of 1987–2002 may be too short to clearly compare

the dependence among different seasons. Still, this example illustrates that ana-

lyzing jointly θ and η can bring relevant information that may not be obtained

by simply interpreting θ.
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APPENDIX

Proof of (2.4): Applying the equality |a− b|/2 = max(a, b)− (a+ b)/2 to

νη, we get:

1

2
E |F ∗X(M∗

X) − F ∗Y (M∗
Y )| = E max{F ∗X(M∗

X), F ∗Y (M∗
Y )} − 1

2
.

Then we calculate

P[max{F ∗X(M∗
X), F ∗Y (M∗

Y )} ≤ u] = P[M∗
X ≤ F ∗←X (u), M∗

Y ≤ F ∗←Y (u)]

= exp{−Vη(F
∗←
X (u), F ∗←Y (u))}

= exp{log(u)Vη(σ
η
X , ση

Y )} = uVη(ση
X ,ση

Y )

because from the margin model (2.2) we have F ∗←X (u) = (− log(u)/σX)−η and

F ∗←Y (u) = (− log(u)/σY )−η. Therefore, E max{F ∗X(M∗
X), F ∗Y (M∗

Y )} =
Vη(ση

X ,ση
Y )

1+Vη(ση
X ,ση

Y )

from which (2.4) follows.

Proof of Theorem 1: First, we introduce the ‘normalized’ empirical dis-

tribution functions

F̃n,N,X(u) :=
1

N

N∑

i=1

1lh
b−1
n M∗Xi,n≤u

i, F̃n,N,Y (u) :=
1

N

N∑

i=1

1lh
b−1
n M∗Yi,n≤u

i,
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and we rewrite the estimator of the madogram as

ν̂η =
1

2N

N∑

i=1

∣∣∣F̃n,N,X

(
b−1
n M∗

Xi,n

)
− F̃n,N,Y

(
b−1
n M∗

Yi,n

)∣∣∣.

Before starting the proof, we need to introduce a series of definitions linked to

the copula function C. Although very similar, these definitions represent slightly

different estimators of the same copula function. One difficulty of the proof is to

show how close these versions are:

C̃n,N (u, v) :=
1

N

N∑

i=1

1l{ eFn,N,X

�
b−1
n M∗Xi,n

�
≤u, eFn,N,Y

�
b−1
n M∗Yi,n

�
≤v

},

Cn,N (u, v) :=
1

N

N∑

i=1

1l{
b−1
n M∗Xi,n≤

eF←n,N,X(u),b−1
n M∗Yi,n≤

eF←n,N,Y (v)

},

C̃∗n,N (u, v) :=
1

N

N∑

i=1

1l{
UXi,n≤ eF ∗←n,N,X(u),VYi,n≤ eF ∗←n,N,Y (v)

}

where

F̃X,n(z) := P

(
b−1
n M∗

Xi,n ≤ z
)
, F̃Y,n(z) := P

(
b−1
n M∗

Yi,n ≤ z
)
,

UXi,n := F̃X,n

(
b−1
n M∗

Xi,n

)
, VYi,n := F̃Y,n

(
b−1
n M∗

Yi,n

)
,

F̃ ∗n,N,X(u) :=
1

N

N∑

i=1

1l{UXi,n≤u}, F̃ ∗n,N,Y (v) :=
1

N

N∑

i=1

1l{VYi,n≤v}.

The proof of Theorem 1 is divided into the following five steps.

Step 1. The function C̃n,N (u, v) is very similar to Cn,N (u, v), i.e.

sup0≤u,v≤1 |C̃n,N (u, v) − Cn,N (u, v)| ≤ 2/N .

Step 2. We have Cn,N (u, v) = C̃∗n,N (u, v).

Step 3. Define now the empirical distribution function of (UXi,n, VYi,n) as

H̃∗n,N (u, v) =
1

N

N∑

i=1

1l{
UXi,n≤u,VYi,n≤v

}

and its non-empirical version as

H̃∗n(u, v) = P

(
F̃X,n

(
b−1
n M∗

Xi,n

)
≤ u, F̃Y,n

(
b−1
n M∗

Yi,n

)
≤ v

)
.

We establish that the process
√

N(H̃∗n,N − H̃∗n) tends in distribution to

a Brownian bridge BC . To this end, we prove the convergence of the

finite-dimensional distributions and the tightness of the process.
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Step 4. The process
√

N(C̃∗n,N − H̃∗n) tends in distribution to a Gaussian

process NC .

Step 5. We conclude the proof of our theorem using the integration by

parts.

This proof is only sketched here as it is a slightly modified version of the one

of Proposition 4 in Naveau et al. (2009) which is detailed in http://sama.ipsl.

jussieu.fr/Documents/articles/NaveauBiometrika07DetailedProofs.pdf.

Remark about our Theorem 1. The limiting process is such that

∫

[0,1]2
NC(u, v)dJ(u, v) =

1

2

∫ 1

0
NC(0, v)dv +

1

2

∫ 1

0
NC(u, 0)du −

∫ 1

0
NC(u, u)du.

This limiting process cannot be precised without specifying the copula function

and in special cases where these integrals can be computed. For instance, consider

the Product copula, also called the independent copula, defined as C(u, v) = uv.

In that case

NC(u, v) = BC(u, v) − vBC(u, 1) − uBC(1, v),

from which direct computations lead to

Var

(∫

[0,1]2
NC(u, v)dJ(u, v)

)
=

1

90
.

Proof of Proposition 3: As η ∈ (0, 1], we have according to Theorem 2.1

in Diebolt et al. (2008) that

√
N

(
µ̂1,1 − µ1,1

µ̂1,2 − µ1,2

)
d−→




ηV η
η (1, 1)

∫ 1

0

B(t)

t

(
− log t

)−η−1
t(− log t)dt

ηV η
η (1, 1)

∫ 1

0

B(t)

t

(
− log t

)−η−1
t(− log t)2dt


 ,

where B denotes a Brownian bridge and n → ∞. It follows

√
N (η̂gpwm − η) = − 2

µ̂1,1µ1,1

√
N (µ1,1µ̂1,2 − µ1,2µ̂1,1)

= − 2

µ̂1,1µ1,1

[
µ1,1

√
N(µ̂1,2 − µ1,2) − µ1,2

√
N(µ̂1,1 − µ1,1)

]
.

An application of Slutzky’s theorem leads to

√
N (η̂gpwm − η)

d−→ −2ηV η
η (1, 1)

µ2
1,1

∫ 1

0

B(t)

t

(
− log t

)−η−1
[µ1,1ω1,2(t) − µ1,2ω1,1(t)] dt,

from which Proposition 3 follows.
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