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Abstract:

• The matrix S =
[
tr(WiQWjQ)

]
i,j=1,...,k

where Q is a symmetric positive definite ma-

trix and Wi = X′

iDiXi, i = 1, ..., k is formed by data tables Xi and diagonal matrices
of weights Di, plays a central role in dual STATIS method. In this paper, we ap-
proximate the distribution function of the entries of S, assuming data tables Xi given
by Ui + Ei, i = 1, ..., k with independent random matrices Ei representing errors, in
order to obtain (approximately) the distribution of Sv, where v is the orthonormal
eigenvector of S associated to the largest eigenvalue. To achieve this goal, we ap-
proximate uniformly the distribution of each entry of S. In general, our technique
consists in to approximate uniformly the distribution sequence

{
g(Vn + µn), n > 1

}
,

where g is some smooth function of several variables, {Vn, n > 1} is a sequence of
identically distributed random vectors of continuous type and {µn} is a non-random
vector sequence.
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1. INTRODUCTION

The dual STATIS method is an exploratory technique of multivariate data

analysis used to study simultaneously multiple data tables, each with information

of groups of individuals measured on the same set of variables (see [4], [8] or [9]).

The purpose of this method is to analyze the relationship between data tables and

combine them into a compromise matrix corresponding to an optimal agreement

between the data.

In this paper, we shall consider the ni-by-p random data tables Xi, i =

1, ..., k consisting in the measurements of k groups of ni individuals on the same

set of p variables, the ni-by-ni diagonal matrices Di of positive weights attached

to the ni observations of each matrix Xi in order to define

(1.1) Wi = X′
iDiXi ,

where prime denotes transpose. If the columns of Xi are Di-centered then Wi is

the covariance matrix between the p variables of Xi and its elements corresponds

to the scalar products between the variables in R
ni . To evaluate the closeness

of two data configurations in R
ni and R

nj , the trace tr(WiQWjQ), where Q is

a p-by-p symmetric positive definite matrix, is commonly used as scalar product

between Wi and Wj , known as Hilbert–Schmidt scalar product between Wi and

Wj (see [8], page 38).

We shall set sij = tr(WiQWjQ), i, j = 1, ..., k as being the entries of the

k-by-k interstructure matrix S. The vectorial correlation coefficient RV of Wi

and Wj is defined as

RV(Wi,Wj) =
tr(WiQWjQ)√

tr(WiQWiQ) tr(WjQWjQ)
.

(see [4]), which appears as a measure of similarity between Wi and Wj . The

reader is referred to [13] for further details on the RV coefficient. Moreover, from

Cholesky decomposition (see [5], page 229), there exists a unique upper triangular

p-by-p matrix T with positive diagonal elements such that Q = T′T and putting

Ai = D
1/2
i XiT

′ we get

A′
iAi = TX′

iDiXiT
′

which implies

tr(WiQWjQ) = tr(A′
iAiA

′
jAj) =

∣∣∣∣∣∣AiA
′
j

∣∣∣∣∣∣2
tr

> 0

where |||A|||tr =
√

tr(A′A) (see [5], page 60). Denoting by aiℓ, ℓ = 1, ..., ni the

rows of Ai and ajm, m = 1, ..., nj the rows of Aj , aiℓa
′
jm is the covariance between

aiℓ and ajm so that

tr(WiQWjQ) =

ni∑

ℓ=1

nj∑

m=1

[
cov(aiℓ,ajm)

]2
.
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Consider the eigenvalues ρ1 > ρ2... > ρk of S and the corresponding or-

thonormal eigenvectors v1,v2, ...,vk. From the spectral theorem for symmetric

matrices (see [7], page 104) we get

S = ρ1v1v
′
1 + ... + ρkvkv

′
k = PΛP′

where Λ is the diagonal matrix whose elements are the corresponding eigenvalues

and P′P = I, where I is the k-by-k identity matrix. From the above expression,

we can plot the ith stage in R
k as a point Mi whose coordinates are the ith row

of PΛ1/2 (see [9]). Along all text, we will assume that points Mi are all near by

each other lying on around first axis, which lead us to ρi ≈ 0, for each i = 2, ..., k

and

(1.2) S ≈ ρvv′

setting ρ = ρ1 and v = v1. In our model, we will also assume random errors on

the data i.e.

(1.3) Xi = Ui + Ei

where Ei are independent ni-by-p random matrices representing the errors with

i.i.d. continuous entries and Ui are ni-by-p non-random matrices. Moreover, we

shall admit that E(S) has rank one, so that the spectral theorem for symmetric

matrices allow us to write

(1.4) E(S) = λαα′

where λ is the largest eigenvalue of E(S) associated to the orthonormal eigenvector

α. Hence, we are led to consider the model

(1.5) S = λαα′ + E

for some p-by-p random matrix E satisfying E(E) = O (null matrix).

Let us start with the following question: if the sequence of matrices Ei, i =

1, 2, ..., k are independent with i.i.d. continuous entries how can we compute the

distribution function of each entry sij of the matrix S? Generally, the distribution

function of sij is hard to compute, so that our proposal answer to this question will

be to approximate the distribution of sij by some computable distribution. More

precisely, our results will permit us to approximate uniformly the distribution

function of each entry of the random matrix S by its linear part. The Section 2

will describe in detail all the theoretical results required to fulfill our intentions.

Once the distribution of the elements of S is achieved, we will be able to obtain

(approximately) the distribution of β̂ = Sv, which will be taken as an estimator

of β = λα. The example exhibited in last section considering the elements of Ei

i.i.d. normal distributed with zero mean and variance σ2, it will illustrate our

inferential purposes in a very clear way.
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2. UNIFORM APPROXIMATIONS

In general way, our idea to approaching the distribution function of the

entries of S, will consist in expanding asymptotically a sequence of r.v.’s (with

unknown distribution) to obtain a random sequence with identifiable distribu-

tion. Thereafter, with the aid of a uniform bound, we will establish the uniform

approximation results imposing on the remainder term the asymptotic condition

oPr(1).1 The driving tool in the our proof technique is to consider asymptotic

Taylor expansions.

Let us introduce the following notation: ‖a‖ =
(∑κ

i=1 a2
i

)1/2
for the Eu-

clidean norm of a vector a ∈ R
κ (see [7], page 264) and |||A||| =

(∑κ
i,j=1 a2

ij

)1/2

for the norm of a real matrix A =
[
aij

]
i,j=1,...,κ

(known as Frobenius norm, see

[7] page 291). Given a differentiable mapping ϕ : R
N → R

M we shall denote the

jacobian matrix of ϕ at the point x by Dϕ(x). For a differentiable real-valued

function ϕ : R
N → R having second partial derivatives, Dϕ(x) and D2ϕ(x) will

denote, respectively, the gradient vector and the Hessian matrix of ϕ at the

point x.

Lemma 2.1. Ifϕ ∈ C1(RN , RN ) satisfies |||Dϕ(x)||| = o
(
‖ϕ(x)‖

)
, ‖x‖ →

∞ then
∣∣∣∣∣∣Dϕ

(
x+ θ(x)

)∣∣∣∣∣∣ = o
(
‖ϕ(x)‖

)
, ‖x‖ → ∞ for any bounded function

θ(x).

Proof: We have,
∣∣∣∣∣∣Dϕ

(
x+ θ(x)

)∣∣∣∣∣∣
‖ϕ(x)‖ =

∣∣∣∣∣∣Dϕ
(
x+ θ(x)

)∣∣∣∣∣∣
∥∥ϕ
(
x+ θ(x)

)∥∥

∥∥ϕ
(
x+ θ(x)

)∥∥
‖ϕ(x)‖

and it is sufficient to prove that
∥∥ϕ
(
x+ θ(x)

)∥∥ ∼ ‖ϕ(x)‖ as ‖x‖ → ∞. Consid-

ering h : [0, 1] → R defined by

h(t) = log
∥∥ϕ
(
x+ tθ(x)

)∥∥

and setting ϕ(x) =
(
ϕ1(x), ..., ϕN (x)

)
we get

d
dth(t) = ϕ1(x+tθ(x)) θ(x)·Dϕ1(x+tθ(x))+...+ϕN (x+tθ(x)) θ(x)·DϕN (x+tθ(x))

‖ϕ(x+tθ(x))‖2 .

Hence,
∣∣∣∣
d

dt
h(t)

∣∣∣∣6
|ϕ1(x+tθ(x))| ‖θ(x)‖‖Dϕ1(x+tθ(x))‖+...+|ϕN (x+tθ(x))| ‖θ(x)‖‖DϕN (x+tθ(x))‖

‖ϕ(x+tθ(x))‖2

6 N ‖θ(x)‖ |||Dϕ(x+tθ(x))|||
‖ϕ(x+tθ(x))‖

1Xn = oPr(1) means Xn
Pr
−→ 0 as n → ∞.
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and mean value theorem lead us to
∣∣log

∥∥ϕ
(
x+ θ(x)

)∥∥− log ‖ϕ(x)‖
∣∣ = |h(1) − h(0)| =

=

∣∣∣∣
dh

dt
(c)

∣∣∣∣ 6 κ ‖θ(x)‖
∣∣∣∣∣∣Dϕ

(
x+ cθ(x)

)∣∣∣∣∣∣
∥∥ϕ
(
x+ cθ(x)

)∥∥ , 0 < c < 1

which implies
∥∥ϕ
(
x+ θ(x)

)∥∥ ∼ ‖ϕ(x)‖ as ‖x‖ → ∞.

Next, we present the main uniform approximation result.

Theorem 2.1. Let Vn = (V1n, ..., VNn) be a sequence of random vectors

of continuous type such that {Vin, n > 1} (1 6 i 6 N) is identically distributed

and supn>1 ‖Vn‖ 6 W for some r.v. W . If Xn := g(Vn + µn) where µn is a

non-random vector sequence verifying ‖µn‖ → ∞ and g is a C2(RN ) map such

that
Dg(t)

‖Dg(t)‖ exists as ‖t‖ → ∞ and
∣∣∣∣∣∣D2g(t)

∣∣∣∣∣∣ = o
(
‖Dg(t)‖

)
, ‖t‖ → ∞ then,

with Yn := g(µn) + Dg(µn) · Vn, the law of Xn is uniformly approximate by the

law of Yn for large values of n, that is,

sup
x∈R

|FXn(x) − FYn(x)| → 0 .

Proof: Using the Taylor formula for g we get

Xn := g(µn + Vn) = g(µn) + Dg(µn) · Vn+
1

2
D2g(µn + θnVn) · V 2

n =

= Yn +
1

2
D2g(µn + θnVn) · V 2

n , 0 < θn < 1

where Dg(a) · Vn =
∑

i

∂g

∂xi
(a)Vin and D2g(a) · V 2

n =
∑

i,j

∂2g

∂xi∂xj
(a)VinVjn (see

[11], page 150). For ε > 0 fixed we have

Pr
{
Xn 6 x

}
= Pr

{
Xn 6 x,

|Xn − Yn|
‖Dg(µn)‖ 6 ε

}
+ Pr

{
Xn 6 x,

|Xn − Yn|
‖Dg(µn)‖ > ε

}

6 Pr {Yn 6 x + ε ‖Dg(µn)‖} + Pr

{ |Xn − Yn|
‖Dg(µn)‖ > ε

}

and

Pr {Yn 6 x − ε ‖Dg(µn)‖} = Pr {Yn 6 x − ε ‖Dg(µn)‖ , Xn 6 x}+

+ Pr {Yn 6 x − ε ‖Dg(µn)‖ , Xn > x}

6 Pr
{
Xn 6 x

}
+ Pr

{ |Xn − Yn|
‖Dg(µn)‖ > ε

}

that is,

−Pr
{

|Xn−Yn|
‖Dg(µn)‖ > ε

}
+ FDg(µn)·V 1

(x − g(µn) − ε ‖Dg(µn)‖) 6 FXn(x) 6

6 FDg(µn)·V 1
(x − g(µn) + ε ‖Dg(µn)‖) + Pr

{
|Xn−Yn|
‖Dg(µn)‖ > ε

}
.
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We can rewrite the above inequalities as

−Pr
{

|Xn−Yn|
‖Dg(µn)‖ > ε

}
+ FDg(µn)·V 1

‖g(µn)‖

(
x−g(µn)
‖Dg(µn)‖ − ε

)
6 FXn(x) 6

6 FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ + ε

)
+ Pr

{
|Xn−Yn|
‖Dg(µn)‖ > ε

}
.

Therefore,

|FXn(x) − FYn(x)|6
∣∣∣∣FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ + ε

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)∣∣∣∣+

+

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ − ε

)∣∣∣∣+ Pr
{

|Xn−Yn|
‖Dg(µn)‖ >ε

}

and we obtain the following uniform bound,

sup
x∈R

|FXn(x) − FYn(x)| 6 sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ +ε

)
−FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ −ε

)∣∣∣∣+ Pr
{

|Xn−Yn|
‖Dg(µn)‖ >ε

}

(2.1)

Since
Dg(µn) · V 1

‖Dg(µn)‖
d−→ τ · V 1 (τ 6= 0)

and τ ·V 1 =
∑

i

τiVi1 is continuous then Polya’s theorem (see [3], page 3) states

FDg(µn)·V 1
‖Dg(µn)‖

−→ Fτ ·V 1 uniformly on R.

Hence, we can still write

sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣ 6

6 sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ + ε

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣

and

sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣ 6

6 sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ − ε

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣ .
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Choosing ε > 0 small enough, we get for each η > 0

sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣ < η

and

sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣ < η

provided that Fτ ·V 1 is uniformly continuous. Since sup
n>1

‖θnVn‖ 6 W we obtain

from Lemma 2.1,

|Xn − Yn|
‖Dg(µn)‖ 6

‖Vn‖2

2

∣∣∣∣∣∣D2g(µn + θnVn)
∣∣∣∣∣∣

‖Dg(µn)‖ 6
W 2

2

∣∣∣∣∣∣D2g(µn + θnVn)
∣∣∣∣∣∣

‖Dg(µn)‖
a.s.−→ 0

so that for every ε > 0, Pr

{ |Xn − Yn|
‖Dg(µn)‖ > ε

}
= o(1) as n → ∞. Taking ε > 0

small enough, Polya’s theorem permit us to conclude that

sup
x∈R

|FXn(x) − FYn(x)| → 0.

Remark 2.1. Let us note that, in Theorem 2.1, when N = 1 the condition
Dg(t)

‖Dg(t)‖ exists as ‖t‖ → ∞ can be dropped since in this case the uniform bound

(2.1) takes the look

sup
x∈R

|FXn(x) − FYn(x)| 6 sup
x∈R

∣∣∣∣∣FV1

(
x − g(µn)

dg
dx1

(µn)
+ ε

)
− FV1

(
x − g(µn)

dg
dx1

(µn)

)∣∣∣∣∣+

+ sup
x∈R

∣∣∣∣∣FV1

(
x − g(µn)

dg
dx1

(µn)

)
− FV1

(
x − g(µn)

dg
dx1

(µn)
− ε

)∣∣∣∣∣+ Pr

{∣∣∣∣∣
Xn − Yn

dg
dx1

(µn)

∣∣∣∣∣ > ε

}

and FV1 is uniformly continuous.

When N = 1 we can consider functions g : R −→ R defined by g(x) = xr

(power behavior) or more generally any polynomial
∑m

k=0 akx
k with real coeffi-

cients ak. Moreover, functions g such that d
dxg(x) = exp (xr), r < 1 (exponen-

cial behavior) or d
dxg(x) = logr

(
x2 + 1

)
(logarithmic behavior) can be chosen

broadening the important class of polynomials. In the multidimensional case, a

remarkable example occurs when V 1 has multivariate normal distribution with

positive-definite variance-covariance matrix and g is a polynomial function in N

variables x1, ..., xN with arbitrary real coefficients, that is,

g(x1, ..., xN ) =

m1∑

k1=0

...

mN∑

kN=0

ak1...kN
xk1

1 ...xkN

N .
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3. APPLICATION OF THE UNIFORM APPROXIMATIONS TO

THE DUAL STATIS METHOD

Without loss of generality, we will assume that the p-by-p symmetric

positive definite matrix Q and the ni-by-ni diagonal matrix Di introduced in

the first section are, respectively, the identity matrix and the diagonal matrix

diag
(

1
ni

, ..., 1
ni

)
. Indeed, these assumptions can be made performing the linear

transformation Xi to Yi =
√

ni D
1/2
i XiT

′ as a preliminary step. From (1.1) and

(1.3) we have

Wi = X′
iDiXi

= (Ui + Ei)
′Di(Ui + Ei)

=
1

ni
U′

iUi +
1

ni

[
U′

iEi + (U′
iEi)

′
]
+

1

ni
E′

iEi.

Thus,

WiWi =
1

n2
i

(U′
iUi)

2 +
1

n2
i

(U′
iUi)

(
U′

iEi + (U′
iEi)

′
)

+
1

n2
i

(U′
iUi)(E

′
iEi)+

+
1

n2
i

(
U′

iEi + (U′
iEi)

′
)
(U′

iUi) +
1

n2
i

(
U′

iEi + (U′
iEi)

′
)2

+

+
1

n2
i

(
U′

iEi + (U′
iEi)

′
)
(E′

iEi) +
1

n2
i

(E′
iEi)(U

′
iUi)+

+
1

n2
i

(E′
iEi)

(
U′

iEi + (U′
iEi)

′
)

+
1

n2
i

(E′
iEi)

2.

and

tr(WiWi) =
1

n2
i

tr
(
(U′

iUi)
2
)

+
4

n2
i

tr
(
U′

iUiU
′
iEi

)
+

2

n2
i

tr
(
(U′

iUi)(E
′
iEi)

)
+

+
4

n2
i

tr
(
E′

iEiU
′
iEi

)
+

1

n2
i

tr
((

U′
iEi + (U′

iEi)
′
)2)

+
1

n2
i

tr
(
(E′

iEi)
2
)

provide that tr(A) = tr(A′) and tr(AB) = tr(BA) (see [5], page 50). Moreover,

WiWj =
1

ninj
(U′

iUi)(U
′
jUj) +

1

ninj
(U′

iUi)
(
U′

jEj + (U′
jEj)

′
)
+

+
1

ninj
(U′

iUi)(E
′
jEj) +

1

ninj

(
U′

iEi + (U′
iEi)

′
)
(U′

jUj)+

+
1

ninj

(
U′

iEi + (U′
iEi)

′
)(

U′
jEj + (U′

jEj)
′
)

+
1

ninj

(
U′

iEi + (U′
iEi)

′
)
(E′

jEj)+

+
1

ninj
(E′

iEi)(U
′
jUj) +

1

ninj
(E′

iEi)
(
U′

jEj + (U′
jEj)

′
)

+
1

ninj
(E′

iEi)(E
′
jEj).
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when i 6= j and so

tr(WiWj) =
1

ninj
tr
(
U′

iUiU
′
jUj

)
+

2

ninj
tr
(
U′

iUiU
′
jEj

)
+

+
1

ninj
tr
(
U′

iUi)(E
′
jEj

)
+

2

ninj
tr
(
U′

iEiU
′
jUj

)
+

2

ninj
tr
(
U′

iEiU
′
jEj

)
+

+
2

ninj
tr
(
U′

iEi(U
′
jEj)

′
)

+
2

ninj
tr
(
U′

iEiE
′
jEj

)
+

1

ninj
tr
(
E′

iEiU
′
jUj

)
+

+
2

ninj
tr
(
E′

iEiU
′
jEj

)
+

1

ninj
tr
(
E′

iEiE
′
jEj

)
.

We will apply now the theoretical results of Section 2 to obtain an uniform ap-

proximation for the entries of the matrix S considering gi : R
ni×p −→ R defined

by

gi(X) =
1

n2
i

tr
(
(X′X)2

)
, i = 1, ..., k.

Representing ij the jth column of an identity matrix of unspecified dimensions

we have

∂gi(X)

∂xℓj
=

1

n2
i

tr
(
X′X(X′iℓi

′
j + iji

′
ℓX) + (X′iℓi

′
j + iji

′
ℓX)X′X

)

=
4

n2
i

tr
(
X′XX′iℓi

′
j

)

ℓ = 1, ..., ni, j = 1, ..., p (see [5], pages 299 and 300). Therefore,

gi(Ui) + Dgi(Ui) · Ei =
1

n2
i

tr
(
(U′

iUi)
2
)

+
4

n2
i

tr
(
U′

iUiU
′
iEi

)

and from Theorem 2.1 we obtain

(3.1) sup
x∈R

∣∣Fgi(Ui+Ei) − Fgi(Ui)+Dgi(Ui)·Ei

∣∣→ 0

as ‖vec(Ui)‖ → ∞, where vec(Ui) is the vectorization of Ui (see [5], pages 339

and 340), since the entries of Ei are continuous r.v.’s. For the case i 6= j consider

gi,j : R
ni×p × R

nj×p −→ R defined by

gi,j(X,Y) =
1

ninj
tr
(
X′XY′Y

)
, i, j = 1, ..., k, i 6= j.

Thus,

gi,j(Ui,Uj) + Dgi,j(Ui,Uj)·(Ei,Ej) =
1

ninj
tr
(
U′

iUiU
′
jUj

)
+

+
2

ninj
tr
(
U′

iUiU
′
jEj

)
+

2

ninj
tr
(
U′

jUjU
′
iEi

)

and again, from Theorem 2.1 we have

(3.2) sup
x∈R

∣∣∣Fgi,j(Ui+Ei,Uj+Ej) − Fgi,j(Ui,Uj)+Dgi,j(Ui,Uj)·(Ei,Ej)

∣∣∣→ 0
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as ‖vec(Ui)‖ → ∞ for each i. Therefore, considering S = [sij ]i,j=1,...,k where

sii = gi(Ui) + Dgi(Ui) · Ei and sij = gi,j(Ui,Uj) + Dgi,j(Ui,Uj) · (Ei,Ej),

with i 6= j for all i, j = 1, ..., k, we can state from (3.1) and (3.2) that the distri-

bution of each entry of S can be uniformly approximated by the distribution of

the same entry of S when ‖vec(Ui)‖ → ∞ for each i.

The above exposure can be summarized in the following result

Theorem 3.1. If Xi, i = 1, ..., k are ni-by-p random data tables such that

Xi = Ui + Ei, where Ei are independent ni-by-p random matrices having i.i.d.

continuous entries and Ui are non-random ni-by-p matrices then, for each i, j =

1, ..., k, the distribution of

sij =
1

ninj
tr
[
(Ui + Ei)

′(Ui + Ei)(Uj + Ej)
′(Uj + Ej)

]

is uniformly approximated by the distribution of

sij =
1

ninj
tr
(
U′

iUiU
′
jUj

)
+

2

ninj
tr
(
U′

iUiU
′
jEj

)
+

2

ninj
tr
(
U′

jUjU
′
iEi

)
,

as ‖vec(Ui)‖ → ∞ for each i.

Remark 3.1. Observe that the condition ‖vec(Ui)‖ → ∞ for each i are

related with the smallness coefficient of variation and it is a verifiable assumption

in some scenarios.

3.1. Estimating the eigenvalue and the eigenvector of E(S)

Recovering (1.5) we can write synthetically

(3.3) S
d≈ S = λαα′ + E

when ‖vec(Ui)‖ is large enough for all i (i.e. the distribution of each entry of E

can be computable approximately). From (1.2) and (1.4), one estimates λ by the

eigenvalue ρ and one estimates α by the eigenvector v, that is, we will consider

the following estimators

λ̂ = ρ and α̂ = v

of λ and α, respectively. The choice of λ̂ and α̂ as estimators of λ and α, respec-

tively, arises in a very natural way (the same estimation method of eigenvalues

and eigenvectors was already used in Anderson (1963)). On the other hand, the

symmetry of S implies

β̂ = Sv =
(
I ⊗ v′

)
vec(S)
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where ⊗ denotes the Kronecker product (see [5], page 333) and vec(S) is the

vectorization of S. Using (3.3) we can compute approximately the distribution

of β̂. Indeed, we can consider the approximated estimator β̃ = (I ⊗α′) vec(S)

instead of β̂, since its distribution is always determinable with the aid of the

errors distribution.

3.2. Example with i.i.d. normal errors

Let us consider the entries of Ei i.i.d. normal distributed with zero mean and

variance σ2. Given an non-random q-by-ni matrix M, it is well-known that the

trace tr(MEi) is distributed normally with zero mean and variance σ2 tr(MM′).

Therefore, sii is distributed normally with mean
tr((U′

iUi)
2)

n2
i

and variance

16σ2 tr((U′
iUi)

3)
n4

i

. Moreover, sij is distributed normally with mean
tr(U′

iUiU
′
jUj)

ninj
and

variance
4σ2 tr((U′

iUi)
2U′

jUj+(U′
jUj)

2U′
iUi)

n2
i n2

j

for all i, j = 1, ..., k with i 6= j.

Using the covariance properties we also get

Cov (sii, sii) = Cov
(

4
n2

i

tr(U′
iUiU

′
iEi),

4
n2

i

tr(U′
iUiU

′
iEi)

)
= 16σ2

n4
i

tr
(
(U′

iUi)
3
)

and for i 6= j,

Cov (sii, sjj) = Cov

(
4
n2

i

tr(U′
iUiU

′
iEi),

4
n2

j

tr(U′
jUjU

′
jEj)

)
= 0

Cov (sii, sij) =

= Cov
(

4
n2

i

tr (U′
iUiU

′
iEi) , 2

ninj
tr
(
U′

iUiU
′
jEj

)
+ 2

ninj
tr
(
U′

jUjU
′
iEi

))

= 8σ2

n3
i nj

tr
(
(U′

iUi)
2
U′

jUj

)

Cov (sij , sij) = Cov
(

2
ninj

tr
(
U′

iUiU
′
jEj

)
+ 2

ninj
tr
(
U′

jUjU
′
iEi

)
,

2
ninj

tr
(
U′

iUiU
′
jEj

)
+ 2

ninj
tr
(
U′

jUjU
′
iEi

))

= 4σ2

n2
i n2

j

tr
(
(U′

iUi)
2U′

jUj

)
+ 4σ2

n2
i n2

j

tr
(
(U′

jUj)
2U′

iUi

)
.

For all different i, j, ℓ, q we still have

Cov (sii, sjℓ) = Cov
(

4
n2

i

tr(U′
iUiU

′
iEi),

2
njnℓ

tr(U′
jUjU

′
ℓEℓ) + 2

njnℓ
tr(U′

ℓUℓU
′
jEj)

)

= 0
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Cov (sij , siℓ) = Cov
(

2
ninj

tr(U′
iUiU

′
jEj) + 2

ninj
tr(U′

jUjU
′
iEi),

2
ninℓ

tr(U′
iUiU

′
ℓEℓ) + 2

ninℓ
tr(U′

ℓUℓU
′
iEi)

)

= 4σ2

n2
i njnℓ

tr
(
U′

jUjU
′
iUiU

′
ℓUℓ

)

Cov (sij , sqℓ) = Cov
(

2
ninj

tr(U′
iUiU

′
jEj) + 2

ninj
tr(U′

jUjU
′
iEi),

2
nqnℓ

tr(U′
qUqU

′
ℓEℓ) + 2

nqnℓ
tr(U′

ℓUℓU
′
qEq)

)

= 0

The next table resumes all covariance computations:

Table 1: Covariance between elements of S.

Elements Covariance # of elements

Cov(sii, sii)
16 σ2

n4

i

tr
��

U
′
iUi

�3�
k

Cov(sii, sij)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sii, sji)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sij , sii)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sji, sii)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sii, sjj) 0 k (k−1)

Cov(sii, sjℓ) 0 k (k−1)(k−2)

Cov(sij , sℓℓ) 0 k (k−1)(k−2)

Cov(sij , sij)
4 σ2

n2

i
n2

j

tr
��

U
′
iUi

�2
U

′
jUj

�
+ 4 σ2

n2

i
n2

j

tr
��

U
′
jUj

�2
U

′
iUi

�
k (k−1)

Cov(sij , sji)
4 σ2

n2

i
n2

j

tr
��

U
′
jUj

�2
U

′
iUi

�
+ 4 σ2

n2

i
n2

j

tr
��

U
′
jUj

�2
U

′
iUi

�
k (k−1)

Cov(sij , siℓ)
4 σ2

n2

i
njnℓ

tr
�
U

′
jUjU

′
iUiU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sjℓ)
4 σ2

n2

j
ninℓ

tr
�
U

′
iUiU

′
jUjU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sℓi)
4 σ2

n2

i
njnℓ

tr
�
U

′
iUiU

′
jUjU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sℓj)
4 σ2

n2

j
ninℓ

tr
�
U

′
iUiU

′
jUjU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sqℓ) 0 k (k−1)(k−2)(k−3)

Generally, if Σ+
i is the Moore–Penrose inverse (see [5], page 493) of the

covariance matrix Σi of vec(Ui + Ei) (the vectorization of Ui + Ei) then the

quadratic form vec(Ui + Ei)
′Σ+

i vec(Ui + Ei) has chi-square distribution with

ri = rank(Σi) degrees of freedom and non-centrality parameter δi = U′
iΣ

+
i Ui (see

[12], page 182). Hence, we may use δi to measure the non-centrality of the sample.
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In this case, the covariance matrix of vec(Ei) is known, so that the assumption

‖vec(Ui)‖ → ∞ for each i corresponds to consider observations with low variation

coefficients which implies a large δi.

Since S = λαα′ + E with E(E) = O we get

E
((

I ⊗α′
)
vec(S)

)
=
(
I ⊗α′

)
vec(λαα′) = λα = β

that is, β̂ is approximately unbiased. The covariance matrix of β̂ can also be

computed (approximately) through

(3.4)
(
I ⊗α′

)
Σvec(S) (I ⊗α)

where Σvec(S) is the covariance matrix of S (i.e. the elements of the previous

table). Hence, β̂ will have (approximately) normal distribution with mean value

β and covariance matrix C = (I ⊗α′)Σvec(S) (I ⊗α).

Remark 3.2. Relation (3.4) lead us even to consider

Σ̂ =
(
I ⊗ v′

)
Σvec(S) (I ⊗ v)

as an estimator of the covariance matrix of β̂.

Now, we will construct a non-random k2-by-k2 matrix G (k > 1) such that

the random vector y = Gvec(S) be independent of β̂ and

E
(
Gvec(S)

)
= 0, GΣvec(S)G

′ =

[
σ2I O12

O21 O22

]

where I is the identity matrix of some size less than or equal to k2 and O12,

O21, O22 are matrices with zero elements. First, we can obtain an k2-by-k2

non-random matrix B such that

BE
(
vec(S)

)
= 0 and BΣvec(S)(I ⊗α) = O

taking, for instance,

B = R

(
I −

[
Σvec(S)(I ⊗α) E

(
vec(S)

) ] [
Σvec(S)(I ⊗α) E

(
vec(S)

) ]+)

where R is an arbitrary (conformatable) matrix (see [1], page 295). Hence,

Bvec(S) will have multivariate normal distribution with mean vector BE
(
vec(S)

)

and covariance matrix BΣvec(S)B
′ (see [14], page 32). Since BΣvec(S)B

′ is an

symmetric matrix with rank r such that BΣvec(S)B
′ is either positive definite

(r = k2) or positive semidefinite (r < k2) then:
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(i) If r = k2 then there exists a nonsingular k2-by-k2 matrix H such that

HBΣvec(S)B
′H′ = I.

(ii) If r < k2 then there exists a nonsingular r-by-r matrix H such that

HBΣvec(S)B
′H′ =

[
I O12

O21 O22

]

where O12, O21 and O22 are r-by-(k2 − r), (k2 − r)-by-r and (k2 − r)-

by-(k2 − r) matrices with zero elements, respectively (see [14], page

27). Therefore, we can take

G = σHB

and the components of y will be i.i.d. normal distributed with zero

mean and variance σ2.

For testing the assumption rank
(
E(S)

)
= 1 we can use the following statis-

tical test:

F =
rσ2β̂

′
Σ̂

+
β̂

ν ‖y‖2

where ν is the rank of Σ̂.

Remark 3.3. Let us stand out that Σ̂
+

=
1

σ2
Σ̃

+
where Σ̃

+
is independent

of σ and so F do not depend on σ.

The statistical test F will have (approximately) F-distribution with pa-

rameters ν, r and non-centrality parameter δ = β′Σ̂
+
β (see [6], page 609). Since

rank
(
E(S)

)
= 1 if δ > 0, we will use F to test the null hypothesis H0 : δ = 0

against H1 : δ > 0 and the p-value of this statistical test of hypothesis can be

computed by

p-value = Pr(F > Fobs|δ = 0)

where Fobs is the observed value.

After validate the model, we are able to use statistical hypothesis tests

on the components of the vector β. Given a ℓ-by-k non-random matrix Z and

ψ = Zβ, we can test the hypothesis H0 : ψ = z, where z is a non-random vector.

Considering the estimator ψ̂ = Zβ̂ of ψ then ψ̂ will have (approximately) normal

distribution with mean value ψ = Zβ and covariance matrix ZΣ̂Z′ (see [14], page

32). Moreover, ψ̂ will be also independent from y which lead us to use the

following statistical test:

F =
rσ2(ψ̂ − z)′

(
ZΣ̂Z′

)+
(ψ̂ − z)

ν ‖y‖2
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where ν is the rank of ZΣ̂Z′. Again, F do not depend on σ (see Remark 4). If

H0 is accepted then F will have (approximately) F-distribution with parameters

ν, r and noncentrality parameter

δ = (ψ − z)′
(
ZΣ̂Z′

)+
(ψ − z).

If ZΣ̂Z′ was invertible then δ = 0 is equivalent to the acceptance of H0. Hence,

the p-value of this statistical test of hypothesis is given by

p − value = Pr(F > Fobs|H0 is true)

where Fobs is the observed value.

Remark 3.4. Observe that the above statistical test of hypothesis is a

generalization of the first one, in the sense that we can use it with Z = I and

z = 0 to test the assumption rank
(
E(S)

)
= 1.

Remark 3.5. Furthermore, choosing the matrix Z and the vector z ap-

propriately we can perform statistical tests of hypothesis to compare two or more

components of β = (β1, ..., βk), for instance, H0 : βi = βj against H1 : βi 6= βj (i.e.

z = 0 and Z =
[
zij

]
i=1,...,ℓ
j=1,...,k

defined by z1i = −z1j = 1 with all remaining entries

being zero). Note also that the statistical test H0 : βi = βj against H1 : βi 6= βj

(i 6= j) is equivalent to compare two different components of α provided that

λ 6= 0.

4. CONCLUSIONS

The theoretical results of Section 2 arose to get the solution to the following

problem: when there is no limiting distribution for a sequence of r.v.’s Xn can

we approximate the limit distribution of g(Xn) for large values of n and some

fixed function g? The well-known delta method cannot be used to give an answer

to this question since there is no limiting distribution for Xn. In Theorem 2.1

we partially answer to the above question considering Xn = Vn + µn and giving

sufficient conditions on g to obtain a sequence of random variables which are of

the same type of g(Xn) for large values of n. Let us observe also that our result

allows us to get “normalizing constants” for g(Xn) when n is large enough.

Therefore, besides the uniform approximation of the distribution function

sequence Fg(Vn+µn) by a computable one, this work develops inference results on

the components of the vector λα, where λ and α are, respectively, the eigenvalue

and the eigenvector of the rank one matrix E(S), with S the interstructure matrix

used in dual STATIS method admitting data tables of the form (1.3). So, our
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results appears in the same alignment of Lazraq (see [10]) which considered an

inferencial approach for the validation of the compromise matrix obtained by the

STATIS method.

In our scenario of data tables, remains an open problem the generalization

of the presented inferential results to the case where the rank of E(S) is greater

than one.
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