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Abstract:

• Bayesian latent-class models have been widely applied for assessing the performance
of diagnostic tests in the absence of a gold standard. We provide a short discussion on
identifiability issues appearing under the absence of a gold standard, and construct an
extension of the well-known Hui–Walter stratification model which allows for stratum-
dependent parameters. We illustrate our approach using a Chagas disease case study
on blood donors from Brazil.
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1. INTRODUCTION

In the area of diagnostic medicine, it is common that the medical practi-

tioner considers one or more complementary diagnostic tests for decision-making

and detailed clinical analysis. Within this context, it is important that the physi-

cian knows the parameters of the test to be used, such as sensitivity and/or

specificity, false-positive and/or false-negative rates, and positive and/or nega-

tive predictive values. The modeling structure for this estimation problem is

relatively simple and straightforward when the subjects being investigated are

submitted to the so-called gold standard test for confirmation, as they are usu-

ally 100% sensitive and specific (Kraemer, 1992).

However, in many practical situations no patient under investigation is sub-

mitted to a confirmatory test (Joseph et al., 1995), either due to the lack of such a

test or its high invasiveness, or to the high cost of its large scale implementation,

or to the presence of subgroups with different prevalence rates (Hui and Walter,

1980).

Our main objectives here are to provide a short discussion on identifiability

issues appearing under the absence of a gold standard, and to construct an exten-

sion of the Hui–Walter stratification model which allows for stratum-dependedent

performance parameters. In the next section we discuss the modeling concepts

and the inference techniques. In Section 3 we report details on numerical exper-

iments, and we provide an illustration to Chagas disease data in Section 4.

2. MODELING WITHOUT A GOLD STANDARD

2.1. Absence of gold standard

In the case where the health condition of a subject (D) cannot be verified,

due to the absence of a gold standard, the likelihood for a random sample of n

subjects, can be written as

(2.1) L (θ) =
n

∏

i=1

L
∏

l=1

{

ξ se
ti,l
l (1− sel)

1−ti,l + (1−ξ) sp
1−ti,l
l (1− spl)

ti,l

}

,

where, θ = (ξ, se, sp)T, with ξ denoting the disease prevalence, and

se = (se1, ..., seL)T , sp = (sp1, ..., spL)T ,
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Here sel and spl are respectively the sensitivity and specificity of the lth test,

and ti,l is the outcome of the lth diagnostic test on the ith subject (0: negative,

1: positive). In this model there are 2L + 1 parameters to be estimated, and

2L − 1 degrees of freedom.

A popular approach for modeling the performance of diagnostic tests, under

the absence of a gold standard, is to consider latent classes. In this setting,

the health condition yi of the ith subject (healthy or diseased) can be modeled

through a Bernoulli random variable, Y , with probability of success,

(2.2) τi =

ξ

L
∏

l=1

se
ti,l
l (1− sel)

1−ti,l

ξ

L
∏

l=1

se
ti,l
l (1− sel)

1−ti,l + (1−ξ)
L

∏

l=1

sp
1−ti,l
l (1− spl)

ti,l

.

By combining the likelihood of the incomplete data (2.1) with the likelihood of the

latent variable, Y , we can write the augmented likelihood (Dempster et al., 1977;

Tanner and Wong, 1987) for the case where L diagnostic tests are conducted, as

(2.3) L (θ) =
n

∏

i=1

L
∏

l=1

[

{

ξ se
ti,l
l (1− sel)

1−ti,l

}yi
{

(1−ξ) sp
1−ti,l
l (1− spl)

ti,l

}1−yi

]

,

where yi is the unobservable health condition of the ith subject (0: healthy;

1: diseased), which is modeled through a Bernoulli distribution with probability

of success τi as given in (2.2). Estimation can then be conducted through numeric

methods, such as the Expectation-Maximization algorithm (em) (Dempster et al.,

1977), in the frequentist context, and Gibbs sampling (Gelfand and Smith, 1990)

or a Metropolis–Hastings algorithm (Chib and Greenberg, 1995), in the Bayesian

context.

According to Swartz et al. (2004), a primary difficulty regarding latent-

class models is related to identifiability issues, and one of the practical lessons

obtained by using them is that this issue becomes relatively less important as the

dimension of the model increases.

2.2. Identifiability

The modeling approach discussed in §2.1 has been widely applied in the

literature, for the case where the model obeys what we will call throughout as

the basic identifiability condition,

(2.4) df ≥ p ,
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where df is the number of degrees of freedom, and p is the number of param-

eters to be estimated. For example, for the latent-class model in §2.1 to obey

the basic identifiability condition, df = 2L − 1 ≥ 2L + 1 = p, a minimum of three

conditionally independent tests is required.

Several procedures for assessing identifiability have been documented in the

literature. For example, Goodman (1974) discusses a Jacobian-based criterion,

whereas Garret and Zeger (2000) proposes a graphical method to assess weak

identifiability, which is based on the idea that weak identifiability is associated

with smaller sample sizes relatively to the number of latent classes, case in which

the number of subjects may be insufficient to assign an element to each class.

The Bayesian approach offers here an important advantage: Although a

certain model may not be identifiable, it is always valid as data can be suitably

described from both its identifiable parameters and prior information (Lindley,

1971); this point is reinforced by Neath and Samaniego (1997), who support the

view that Bayesian analysis may yield reasonable answers even for nonindentifi-

able models.

2.2.1. Hui–Walter stratification

To reestablish the basic identifiability condition many approaches have been

considered, such as the introduction of constraints on the parameter space (Walter

and Irwig, 1988), the choice of informative priors according to well defined criteria

(Gustafson, 2005), or stratification-based approaches (Hui and Walter, 1980).

These latter approaches are known as the Hui–Walter paradigm, and will be of

particular interest for the remainder of this article; the Hui–Walter stratification

paradigm has been widely discussed in the literature, and it has been modeled

through a wealth of Bayesian and frequentist approaches (Singer et al., 1998;

Johnson et al. 2001; Nielsen et al., 2002; Gustafson, 2005; Gardner, 2004; Toft et

al., 2005; Branscum et al., 2005; Bertrand et al., 2005; Toft et al., 2007, among

others).

The Hui–Walter stratification model is based on stratum-dependent disease

prevalence rates, although it uses equal performance parameters across strata.

Stratification increases the number of parameters to 2L + V and the number of

degrees of freedom to 2LV −V ; hence, if the population is divided into two strata

(V = 2), a minimum of two conditionally independent tests (L = 2) is sufficient

to obey the basic condition for identifiability (2.4). As a byproduct, stratification

also allows us estimate specific disease prevalence rates in each homogeneous

subpopulation.

For the absence of gold standard, the likelihood of the Hui–Walter stratifi-
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cation model can be written as

L (θ) =
V
∏

v=1

nv
∏

i=1





{

ξv

L
∏

l=1

se
ti,l
l (1− sel)

1−ti,l

}yi,v

×

{

(1−ξv)
L

∏

l=1

sp
1−ti,l
l (1− spl)

ti,l

}1−yi,v



 ,

where nv and ξv are respectively the number of subjects and the prevalence

rate in the vth stratum, whereas yi,v is the unobservable health condition of the

ith subject in the vth stratum, modeled through a Bernoulli distribution with

probability of success τi,v.

Toft et al. (2005) pointed out some potential pitfalls of the Hui–Walter

paradigm, particularly regarding the accuracy of estimates, which are strongly

influenced by the magnitude of the difference in disease prevalence rates between

strata, suggesting that the greater the difference of the prevalence rates the higher

the estimation accuracy (smaller amplitude of 95% credibility interval) in the case

of two tests (L = 2) and two strata (V = 2). Moreover, sensitivity and specificity

may be overestimated.

2.2.2. Extended stratification

Since in most practical situations it is rather challenging to find a stratifi-

cation factor in which both sensitivity and specificity of the tests are kept similar

across strata, here we propose an extension of the Hui–Walter model which as-

sumes that not only prevalences (ξ)—but also sensitivities and specificities—are

stratum-dependent. Specifically, our setting is the following: We assume that L

diagnostic tests are conducted—none of which being a gold standard—and we

assume that the population is divided into V strata, with stratum-dependent

prevalences
{

ξv = Pv(D = 1): v = 1, ..., V
}

,

and with stratum-dependent performance parameters,
{

(sel,v, spl,v) : l = 1, ..., L; v = 1, ..., V
}

.

The unobservable health condition of a subject in the vth stratum, Yv, can be

modeled through a Bernoulli distribution, with probability of success τv. With

our extension of the Hui–Walter model, the number of parameters increases

to 2LV + V , whereas the number of degrees of freedom remains unchanged

(df = 2LV − V ). This means that, for example, for a population stratified into

two strata (V = 2), at least three tests need to be conducted (L ≥ 3), so that the

model obeys the basic condition for identifiability (2.4). (Compare with §2.2.1.)
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The augmented data likelihood of the latent class model, for the general

case of L conditionally independent tests and V strata, can be written as

L (θ) =

V
∏

v=1

nv
∏

i=1





{

ξv

L
∏

l=1

se
ti,l,v
l,v (1− sel,v)

1−ti,l,v

}yi,v

×

{

(1−ξv)
L

∏

l=1

sp
1−ti,l,v
l,v (1− spl,v)

ti,l,v

}1−yiv



 ,

(2.5)

where, θ = (ξ, se1, ..., seV , sp1, ..., spV )T with

ξ = (ξ1, ..., ξV )T , sel = (se1,v, ..., seL,v)
T , spl = (sp1,v, ..., spL,v)

T ,

for v = 1, ..., V . Here, ξv is prevalence rate in the vth stratum, whereas sel,v and

spl,v are the sensibility and specificity of lth test in the vth stratum, respectively;

in addition, ti,l,v is the lth test result for the ith subject in the vth stratum, and

yi,v is the unobservable health condition of the ith subject in the vth stratum,

which is modeled through a Bernoulli with success probability,

τi,v =

ξv

L
∏

l=1

se
ti,l,v
l,v (1− sel,v)

1−ti,l,v

ξv

L
∏

l=1

se
ti,l,v
l,v (1− sel,v)

1−ti,l,v + (1−ξv)
L

∏

l=1

sp
1−ti,l,v
l,v (1− spl,v)

ti,l,v

,

for i = 1, ..., nv and v = 1, ..., V .

The non-stratified model (V = 1) in (2.3), and the Hui–Walter model in

(2.2.1) are particular cases of our stratification model with stratum-dependent

parameters.

2.2.3. Inference

A fully Bayesian approach is here used for conducting inference. This choice

is based on the fact that each parameter in (2.5) is directly interpreted within

the context of diagnostic tests, including the availability of expert opinions that

can be modeled separately in terms of prior distribution for each parameter. We

consider Beta(1, 1) prior distributions for the components of θ, all independent

among them; by combining the likelihood (2.5) with the joint prior of θ we

obtain the joint posterior and full conditionals, which can then be used in a

Gibbs sampler, and which are given by

ξv |Xξv
∼ Beta(αξv

, βξv
) ,

sel,v |Xsel,v
∼ Beta(αsel,v

, βsel,v
) ,

spl,v |Xspl,v
∼ Beta(αspl,v

, βspl,v
) ,

(2.6)
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where, Xξv
= {aξv

, bξv
, yi,v, nv},

Xsel,v
= {asel,v

, bsel,v
, ti,l,v, yi,v, } , Xspl,v

= {aspl,v
, bspl,v

, ti,l,v, yi,v} ,

and

αξv
=

nv
∑

i=1

yi,v + aξv
, βξv

= nv −

nv
∑

i=1

yi,v + bξv
,

αsel,v
=

nv
∑

i=1

ti,l,v yi,v + asel,v
, βsel,v

=

nv
∑

i=1

(1− ti,l,v) yi,v + bsel,v
,

αspl,v
=

nv
∑

i=1

(1− ti,l,v) (1−yi,v) + aspl,v
, βspl,v

=

nv
∑

i=1

ti,l,v (1−yi,v) + bspl,v
.

3. SIMULATION STUDY

We consider a simulation study to compare the performance of our model

with the Hui–Walter model. Following Georgiadis et al. (2003), we simulate data

according to the following steps.

Step 1. Calculate the probabilities for each combination of outcomes of the L

tests under investigation in vth stratum, given the health condition of

a subject, D ∈ {0, 1}, i.e.

Pv|D=1

(

T1,v = t1,v, ..., TL,v = tL,v | D = 1
)

,

(3.1)
Pv|D=0

(

T1,v = t1,v, ..., TL,v = tLv | D = 0
)

.

Step 2. Calculate the amount of Xv|D elements for each combination of out-

comes of the L tests under investigation in vth stratum, given the

health condition of a subject, D ∈ {0, 1},

E(Xv|D) = nv

{

ξv Pv|D=1

(

T1,v = t1,v, ..., TL,v = tL,v | D = 1
)

(3.2)
+ (1−ξv)Pv|D=0

(

T1,v = t1,v, ..., TL,v = tL,v | D = 0
)

}

.

For the structure of conditional independence we have conditional probabilities

(3.1) given by

Pv|D=1

(

T1v = t1,v, ..., TL,v = tL,v | D = 1
)

=
L

∏

l=1

se
ti,l,v
l,v (1− sel,v)

1−ti,l,v ,

(3.3)

Pv|D=0

(

T1v = t1,v, ..., TL,v = tL,v | D = 0
)

=

L
∏

l=1

sp
1−ti,l,v
l,v (1− spl,v)

ti,l,v .
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Table 1: Settings under which data were simulated; here ξ denotes preva-
lence, whereas ‘se’ and ‘sp’ denote sensitivity and specificity.
Data have been simulated with the following sample sizes:
n = 50, 100, 500, 1000.

Configuration
Stratum (v)

(CONF)
1 2 3

ξ1 sel,1 spl,1 ξ2 sel,2 spl,2 ξ3 sel,3 spl,3

I 0.30 0.93 0.99 0.70 0.99 0.93 0.50 0.95 0.95
II 0.35 0.93 0.99 0.65 0.99 0.93 0.50 0.95 0.95
III 0.40 0.93 0.99 0.60 0.99 0.93 0.50 0.95 0.95

We have compared the performance of two particular cases of our model:

model i (Hui–Walter stratification) and model ii (Hui–Walter extended strati-

fication).

Table 2: aic, bic, and dic for model i and model ii,
according to the settings in Table 1.

Configuration

(CONF)
n aic bic dic

model i

I

50 1605.4 1626.5 2018.6
100 3701.5 3727.4 4555.8
500 24551.4 24588.6 28832.8

1000 54053.8 54095.9 62572.0

II

50 1587.0 1608.0 1955.9
100 2471.8 2497.7 2583.8
500 23544.8 23581.9 2743.7

1000 51669.2 51711.3 59633.8

III

50 1499.6 1520.7 1835.6
100 3389.0 3414.9 4083.2
500 21695.6 21732.7 25094.1

1000 47547.6 4759.6 54538.5

model ii

I

50 1065.2 1146.5 2524.1
100 2565.6 2665.6 6393.4
500 11676.3 11819.7 15908.6

1000 27800.0 27962.1 36265.5

II

50 1094.4 1175.7 1395.8
100 2578.1 2678.1 3279.6
500 17765.8 17909.2 21554.1

1000 40106.1 40268.3 47881.8

III

50 1169.7 1251.0 1451.0
100 2660.1 2760.1 3298.8
500 17623.7 17767.2 21019.9

1000 39340.7 39502.8 46184.2
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Two MCMC parallel chains of 50.000 iterations were generated from pos-

terior conditionals (2.6), discarding the first 5.000 iterations (burn-in) of each

chain; after thining, we were left with a posterior sample of size n = 2.000. The

convergence of posterior conditionals (2.6) to the posterior marginals of θ, was

monitored by using the potential scale reduction factor (R) (Gelman and Rubin,

1992), and the posterior marginals were graphically evaluated in terms of sym-

metry, unimodality, and variability of estimates based on the amplitude of 95%

credibility interval and mean standard errors. The aic, bic, and dic criteria

were used to evaluate the performance of the models (Iliopoulos et al., 2007),

and according to these criteria our model (model ii) overperforms model i; see

Table 2.

We observe estimates with smaller standard error as we increase the sam-

ple size and/or absolute mean difference in disease prevalence rates between the

strata, with slightly smaller rates of sensitivity (sel,v) and specificity (spl,v) being

found in more prevalent and less prevalent strata, respectively; see Figure 2.

Despite presenting a slightly larger standard error to that of model i, our

model (model ii) had stationary marginals and estimates very close to the true

ones; in addition, we note that sensitivity and specificity are always overestimated

with model i; see Figure 3.
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Figure 1: Standard error (× 10−2) to the sensitivities
and specificities of the first test in model i

according to the settings in Table 1.
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Figure 2: Standard error (× 10−2) to the sensitivities
and specificities of the first test in model ii

according to the settings in Table 1.
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Figure 3: Posterior mean to the sensitivities and specifici-
ties of the first test in model i and model ii

according to the settings in Table 1.
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4. ILLUSTRATION ON CHAGAS DISEASE DATA

We now consider an illustration using a Chagas disease case study in Brazil.

The data were gathered from 238 blood donors attending a blood center in the

region of Triângulo Mineiro, Brazil, who were randomly selected from two groups

with different prevalences. Stratum I consists of 29 samples from blood bank

donors with positive serology in three conventional serological reactions for Cha-

gas’ disease (positive control), and 30 blood samples with five or more negative

donations (negative control). Stratum II consists of 179 samples from blood bank

donors collected between 2005 and 2008, whose values were low, or within the

region denominated ‘gray zone’ ± 20% of the reactivity threshold (undetermined

serology). Several commercially available kits have been used to determine the

diagnostic performance of the four tests, namely: One immunoblotting TB (TESA-

blot), and three ELISA-based tests, viz.: ELISA Wienner total extract from the

subclass IgG1, E-BIO (ELISA BioMérieux) and E-WIE (ELISA Winner recombi-

nant).

Table 3: Results of four serological tests in two subgroups of blood donors.

Test Group

IgG1 E-BIO E-WIE TB Control Inc.

− − − − 30 78
− − − + 0 1
− − + − 0 13
+ − − − 0 11
+ − + − 0 18
+ − + + 0 1
+ + + + 29 57

Total: 59 179

IgG1: ELISA Wienner total extract from the subclass IgG1;

E-BIO: ELISA BioMérieux;

E-WIE: ELISA Winner recombinant;

TB: Imunoblotting TESA-blot;

Control: negative and positive serology;

Inc.: inconclusive in screening serology;

‘−’: negative result;

‘+’: positive result.

In Table 4 we report the aic, bic, and dic, for model i and model ii; sim-

ilarly to the simulation study in §3, we observe here that our model overperforms

the Hui–Walter model.
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Table 4: aic, bic, and dic for model i (Hui–Walter stratification) and
model ii (Hui–Walter extended stratification); for purposes of
presentation each of the entries was multiplied by ×10−4.

model i model ii

p dic bic aic p dic bic aic

10 67.4 52.0 52.0 18 36.9 31.4 31.4

In Table 5 we present the estimates obtained from the application of our

model by using the group serology strata defined above.

Table 5: Estimates obtained from the application of our model by using
group serology strata (Stratum I and Stratum II).

Control Inc.
Test

Mean 2.5 Pc 97.5 Pc Mean 2.5 Pc 97.5 Pc

Sensitivity

IgG1 96.94 89.52 99.91 98.39 94.02 99.97
E-BIO 96.88 88.52 99.90 96.64 90.97 99.71
E-WIE 96.73 88.14 99.92 98.30 93.31 99.95

TB 96.66 88.47 99.94 98.14 93.07 99.95

Specificity

IgG1 96.92 89.93 99.93 79.21 73.03 85.35
E-BIO 96.92 88.84 99.90 99.34 97.53 99.98
E-WIE 96.92 89.16 99.91 79.19 72.47 85.35

TB 96.95 90.05 99.91 98.63 96.40 99.83

Prevalence 49.30 36.22 61.74 28.19 22.64 34.09

Pc: percentile;

IgG1: ELISA Wienner total extract from the subclass IgG1;

E-BIO: ELISA BioMérieux;

E-WIE: ELISA Winner recombinant;

TB: Imunoblotting TESA-blot;

Control: negative and positive serology;

Inc.: inconclusive in screening serology.
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