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Abstract:

• Sometimes it is not feasible to obtain disease status verification for all study subjects.
Analysis of only those with disease ascertainment can result in biased estimates of the
accuracy (sensitivity, specificity, ROC curve) of a diagnostic test, screening test, or
biomarker if the estimation method does not properly account for the missing disease
ascertainment. This paper discusses the impact of this bias, verification bias, when
estimating the accuracy of dichotomous and continuous diagnostic tests. In addition,
methods to correct for verification bias are described. Areas that require additional
attention are also highlighted.
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1. INTRODUCTION

Estimating accuracy of a diagnostic test, screening test, or biomarker is

ideally done by determining disease status using a gold standard test or reference

test for all study subjects. However, sometimes disease status verification via

the reference test is not obtained for all study subjects because the reference

test is too costly or invasive to be applied to all study subjects. When this is

the case, subjects who appear to be at high risk may be more likely to have

disease status assessed via the reference test than those who appear to be at

lower risk. Analysis of only those with disease ascertainment can result in biased

estimates of accuracy if the estimation methods do not properly account for

nonrandom disease ascertainment. This bias is known as work-up bias (Ransohoff

and Feinstein, 1978) and verification bias (Begg and Greenes, 1983). Verification

bias can yield investigators to incorrectly conclude that a diagnostic test is more

accurate than it is or the reverse that the test is less accurate than it actually

is. This can have significant implications if the diagnostic test is implemented in

practice based on incorrect conclusions.

Incomplete disease verification can occur by design or be unplanned. As

expected, designed partial verification is more likely to occur in prospective stud-

ies while retrospective studies more typically have unplanned partial verification.

In some studies it is not feasible to obtain the reference standard on subjects

thought to be at low risk so the study is designed with partial verification. For

example, the Prostate Cancer Prevention Study (Thompson et al., 2005) of the

effects of prostate specific antigen (PSA) the reference standard, prostate biopsy,

was recommended only if the PSA level was greater than 4.0 ng/ml or rectal

examination result was abnormal.

Methods for assessing accuracy of diagnostic tests differ depending on how

the test is measured. Diagnostic tests can yield dichotomous results indicat-

ing presence or absence of particular condition or disease. For example, stress

echocardiography to detect significant coronary artery stenosis. Diagnostic tests

can also yield results that are measured on a continuous scale, such as, prostate

specific antigen (PSA) for detecting prostate cancer. Typically, sensitivity, speci-

ficity, positive predictive value (PPV), and negative predictive value (NPV) are

used to assess the accuracy of dichotomous diagnostic tests. Conversely, receiver

operating characteristic (ROC) curves and corresponding summary measures,

such as area under the ROC curve (AUC), are used to assess the accuracy of

continuous tests.

Correcting for verification bias can be framed as a missing data problem

where true disease status is missing for a subset of study subjects. Each approach

for bias correction makes an assumption about the mechanism for the missing-
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ness of disease verification (Little and Rubin, 1987). Disease status is considered

missing completely at random (MCAR) if disease verification is independent of

observed and unobserved data. Disease status is considered missing at random

(MAR) when disease verification is only a function of observed data and is con-

sidered nonignorable (NI) when disease verification depends on unobserved data.

In Section 2 the notation for this paper is introduced. Sections 3 and 4

discuss the impact of verification bias when estimating the accuracy of a di-

chotomous diagnostic test and a continuous diagnostic test, respectively, and

summarize available bias correction methods. We end with a Discussion.

2. NOTATION

Consider a study with n subjects on which the diagnostic test T is measured.

Let D be disease status, as measured by a gold standard or reference test, where

D = 1 corresponds to presence of disease and D = 0 corresponds to absence of

disease. Further, let V be verification status where V = 1 if disease status is

verified and V = 0 otherwise. There are nV subjects with disease verification and

nV̄ = n − nV without disease verification.

3. DICHOTOMOUS TEST

Consider a dichotomous test T where T = 1 indicates a positive test and

T = 0 indicates a negative test. Table 1 summarizes the observed data from a

study of n = n1 + n0 subjects in which disease verification is not obtained in u1

test positives and u0 test negatives.

Table 1: Observed data for the verification bias problem
when T is dichotomous.

V D T = 1 T = 0

1 1 s1 s0

1 0 r1 r0

0 Missing u1 u0

Total: n1 n0
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3.1. Impact of bias

Consider a study of 1000 subjects to assess the sensitivity and specificity

of a dichotomous screening test with a true sensitivity of 80%, true specificity

of 90%, and disease prevalence, P (D = 1), of 10%. Data from this hypothetical

study are summarized on the left-hand side of Table 2. If the study design is such

that disease verification is obtained for all subjects who test positive and only

10% of subjects who test negative, this can result in observing the data on the

right-hand side of Table 2.

Table 2: Left side: results when disease verification is obtained for everyone.
Right side: observed data when disease verification is obtained for all
subjects who test positive and only 10% of subjects who test negative.

V D T = 1 T = 0 V D T = 1 T = 0

1 1 80 20 1 1 80 2

1 0 90 810 1 0 90 81

0 Missing 0 0 0 Missing 0 747

Total: 170 830 Total: 170 830

If we only consider test results for those with disease verification, referred

to as complete case estimators, the observed sensitivity is s1/(s1 + s0) = 80/82

or 98% and the observed specificity is r0/(r0 + r1) = 81/171 or 47%. This illus-

trates that if test positives are more likely to receive disease verification than test

negatives, observed sensitivity overestimates true sensitivity (98% vs. 80%) and

observed specificity underestimates true specificity (47% vs. 90%). This verifi-

cation bias can cause investigators to make incorrect conclusions regarding the

accuracy of a test under evaluation.

It can be shown that PPV, P (D = 1 | T = 1), is 47% using the full data

and 47% using only those who received disease verification. Similarly, NPV,

P (D = 0 | T = 0) is 98% using the full data and also when only those who received

disease verification are used. There is no bias in the complete case estimators of

PPV and NPV because disease verification is only a function of the test results T ,

and PPV and NPV are, by definition, calculated conditional on T . See Zhou

(1994) for a detailed discussion of the effect of verification bias on positive and

negative predictive values. Next, we discuss methods to correct for the biased

sampling when estimating sensitivity and specificity.
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3.2. Bias correction methods

3.2.1. MAR approaches

Begg and Greenes (1983) developed a bias correction method for sensitivity

and specificity by using Bayes’ Rule and assuming disease status is MAR. First,

consider estimating the sensitivity of a test. Bayes’ Rule can be used to re-write

sensitivity as

P (T = 1 | D = 1) =
P (T = 1, D = 1)

P (D = 1)

=
P (D = 1 | T = 1)P (T = 1)

P (D = 1 | T = 1)P (T = 1) + P (D = 1 | T = 0)P (T = 0)
.(3.1)

Each quantity on the right-hand-side of (3.1) can be directly estimated from

the observed data using empirical estimates. In particular, P (T ) can be estimated

using data from all subjects, and P (D | T ) can be estimated using the verification

group since by the MAR assumption P (D | T ) = P (D | T, V = 1). Substituting

empirical estimates of the probabilities in (3.1) results in the following unbiased

estimate of sensitivity

(3.2) P̂ (T = 1 | D = 1) =
s1n1

s1+r1

s1n1

s1+r1
+ s0n0

s0+r0

.

A bias-corrected estimate of specificity can be calculated in a similar fashion.

(3.3) P̂ (T = 0 | D = 0) =
r0n0

s0+r0

r0n0

s0+r0
+ r1n1

s1+r1

.

It can be shown that these estimators of sensitivity and specificity are

maximum likelihood estimators. Furthermore, this approach can be considered

single imputation as compared with multiple imputation which is discussed later.

The delta method can be used to develop variance estimators for sensitivity and

specificity.

Iglesias-Garriz et al. (2005) performed a study to estimate the sensitivity

and specificity of stress echocardiography to detect significant coronary artery

disease (CAD). The study involved 487 consecutive patients presenting at a hos-

pital emergency room with nontraumatic chest pain, and who were administered

stress echocardiography. Table 3 presents a tabulation of the study data, where

using our notation T represents stress echocardiography, D is CAD, and V is

an indicator of whether CAD status was determined. Of the 487 patients with

stress echocardiography results, only 78 (16%) received disease verification via
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coronary angiography to determine presence or absence of CAD. Furthermore,

a higher percentage of those who tested positive with stress echocardiography

received disease verification than those who tested negative with stress echocar-

diography (62.5% vs. 6.9%).

Table 3: Tabulation of Stress Echocardiography (T), CAD status (D), and
disease verification status (V) in the study by Iglesias-Garriz et al.

V D T = 1 T = 0

1 1 43 15

1 0 7 13

0 Missing 30 379

Total: 80 407

Using only those with CAD status obtained, the complete case estimate

of sensitivity is 74.1% (43/58) and the complete case estimate of specificity is

65.0% (13/20). Applying Equations 3.2 and 3.3, the Begg and Greenes estimate

of sensitivity is 24.0% and corrected estimate of specificity is 94.4%. In this study,

the uncorrected estimate of sensitivity clearly overestimates the corrected esti-

mate while the uncorrected specificity substantially underestimates the corrected

estimate.

Harel and Zhou (2006) discuss the use of multiple imputation to estimate

sensitivity and specificity of a binary diagnostic test in the presence of verification

bias. Each missing disease status is replaced by M imputed values and then each

of the M complete data sets is analyzed using complete data methods. The M

point estimates of sensitivity and specificity and their corresponding variances are

combined to provide final estimates. The predictive distribution of the missing

data is derived given the observed data and sampling iteratively from multinomial

distribution and posterior distribution. Harel and Zhou conclude that the pro-

posed estimators are better than the estimators of Begg and Greenes (Equations

3.2 and 3.3). However, there has been debate about the validity of this conclu-

sion (Hanley et al., 2007; Harel and Zhou, 2007). Subsequently, De Groot and

colleagues identified computational errors in the work of Harel and Zhou (2006)

which make it difficult to accurately draw conclusions from their work. There-

fore, a separate comparison of the multiple imputation estimator and Begg and

Greenes estimator was performed (De Groot et al., 2011). The conclusion of this

comparison is that both estimation methods yield similar results when the miss-

ing data mechanism is straightforward, but multiple imputation is recommended

when the missing data mechanism is less straightforward or unknown.
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3.2.2. NI approaches

If the decision to obtain disease verification depends on unrecorded factors

related to disease, then the MAR assumption is not satisfied and the estima-

tors discussed above could be biased. Zhou (1993) extended Begg and Greenes’

method to allow a more general model for the verification process and derived

the maximum likelihood estimators for the sensitivity and specificity of a diag-

nostic test and their corresponding variances. This approach does not assume D

is MAR, but assumes that

λ1 =
P

(
V = 1 | D = 1, T = 1

)

P
(
V = 1 | D = 0, T = 1

) , λ0 =
P

(
V = 0 | D = 1, T = 1

)

P
(
V = 0 | D = 0, T = 1

) ,

are known. In other words, the ratio of the probability of selecting for verification

a diseased patient with a given test result to that of selecting for verification a

non-diseased patient with the same test result is known. In practice, however, λ1

and λ0 are not usually known and may be difficult to estimate. If λ1 = λ0, then

Zhou’s estimators reduce to those of Begg and Greenes.

Kosinski and Barnhart (2003) derive a region of all sensitivity and speci-

ficity values consistent with the observed data. This region is referred to as the

test ignorance region. Recall that disease verification is not determined for u1

test positives and u0 test negatives. Of the u1 test positives, let u1D correspond

to those truly diseased so there are u1 − u1D test positives that are truly non-

diseased. Similarly, let u0D correspond to the truly diseased test negatives so

there are u0 −u0D test negatives that are truly non-diseased. If these values were

known, then sensitivity (sens) and specificity (spec) can be estimated as

sens =
s1 + u1D

s1 + u1D + s0 + u0D

, spec =
r0 + u0 − u0D

r0 + u0 − u0D + r1 + u1 − u1D

.

The test ignorance region is a plot of all sensitivity and specificity values resulting

by considering all possible values of u1D and u0D in these equations.

An interactive web-based tool has been developed (Richardson and Petscav-

age (2010)) to implement the global sensitivity analysis of Kosinski and Barnhart.

This tool is available at http://uwmsk.org/gsa. We illustrate this tool by using

the coronary artery disease data summarized in Table 3. The region between

the two curves in Figure 1 corresponds to the test ignorance region of all sen-

sitivity and specificity values consistent with the observed data. The Begg and

Greenes estimates (labeled MAR) fall in this region while the complete case or

unadjusted estimates (labeled MCAR) fall outside the region and are therefore

not compatible with the data.
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Figure 1: Global sensitivity analysis of the coronary artery disease data.
MAR corresponds to Begg and Greenes estimates.
MCAR corresponds to complete case estimates.

Baker (1995) and Kosinski and Barnhart (2003) propose likelihood-based

regression approaches to deal with NI missingness when estimating the accuracy

of a dichotomous test. These approaches require multiple diagnostic tests or

covariates X. The approaches differ in how they factor the joint probability

P (V, T, D) as the product of conditional probabilities. Baker considered

P (V, T, D |X) = P (T |X)P (D | T, X)P (V | T, D, X)

while Kosinski and Barnhart considered

P (V, T, D |X) = P (D |X)P (T |D, X)P (V | T, D, X) .

The latter formulation is a product of the disease component P (D |X), diag-

nostic test component P (T |D, X), and missing data mechanism component

P (V |D, T, X). This formulation has the nice feature that sensitivity and speci-

ficity can be obtained directly from the diagnostic test component. Logistic re-

gression models can be used to estimate parameters for each of the three com-

ponents. When D is not included as a covariate in the missing data mechanism

model, the missingness is MAR. Therefore, likelihood ratio, Wald, or Score tests

can be used to test whether the MAR assumption is valid by testing whether

the parameter is zero for D in the logistic regression model for P (V |D, T, X).

The expectation and maximization (EM) algorithm can be used to determine

maximum likelihood estimates.
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3.2.3. Bayesian approaches

Two Bayesian approaches have been developed to adjust for verification

bias when estimating sensitivity and specificity of a binary diagnostic test. Both

approaches allow for NI missingness. Martinez et al. (2006) describes an empiri-

cal Bayesian approach where Beta prior distributions are assumed for sensitivity,

specificity, prevalence of disease, and the ratio of the probability of selecting for

verification a diseased patient with a given test result to that of selecting for

verification a non-diseased patient with the same test result is known (λ1 and

λ0 considered by Zhou (1993)). Prior distributions for sensitivity and speci-

ficity are based on Begg and Greenes estimates of sensitivity and specificity and

non-informative priors are used for the other parameters. The Gibbs sampling

algorithm is used to estimate marginal posterior densities for all parameters.

Buzoianu and Kadane (2008) use the formulation P (V, T, D) is equal to

P (D)P (T |D)P (V | T, D) considered by Kosinski and Barnhart (2003) to ac-

commodate NI missingness. Similar to Kosinksi and Barnhart, logistic regression

models can be used for each component. Prior distributions are used for the

parameters in the logistic models.

4. CONTINUOUS TEST

Consider a continuous test T where higher values of T are more indicative of

disease. The accuracy of a continuous diagnostic test is typically assessed using an

ROC curve. An ROC curve is a plot of the true positive rate (TPR), sensitivity,

versus the false positive rate (FPR), one minus the specificity, associated with all

the dichotomous tests that can be formed by varying the cut point that defines

a positive dichotomous test. When all subjects are verified, TPR and FPR can

be estimated nonparametrically for a particular cutpoint c by using

T̂PR(c) =

∑
n

i=1
I(Ti ≥ c)Di∑

n

i=1
Di

, F̂PR(c) =

∑
n

i=1
I(Ti ≥ c) (1 − Di)∑

n

i=1
(1 − Di)

.

4.1. Impact of bias

Complete case estimators only use data from subjects who received disease

verification. That is,

T̂PR(c)CC =

∑
n

i=1
I(Ti ≥ c)ViDi∑

n

i=1
ViDi

, F̂PR(c)CC =

∑
n

i=1
I(Ti ≥ c)Vi(1 − Di)∑

n

i=1
Vi(1 − Di)

.
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The complete case estimator yields unbiased estimates of the ROC curve and cor-

responding AUC when disease verification is MCAR. If the missing data mech-

anism is not MCAR, the complete case estimator can yield biased estimates of

the ROC curve by overestimating TPR(c) and FPR(c) for each cutpoint c that

results in operating points on the ROC curve that are biased upwards relative to

the full data curve and thus underestimates the ROC curve and corresponding

AUC. However, the complete case approach can also overestimate the ROC curve

and AUC depending on the verification mechanism and accuracy of T (Alonzo

and Pepe, 2005).

4.2. Bias correction—ROC curve

4.2.1. MAR approaches

Alonzo and Pepe (2005) proposed several bias-corrected estimators of TPR

and FPR that assume disease status is MAR. Bias-corrected ROC curves are ob-

tained by plotting bias-corrected estimators of TPR and FPR for all cutpoints.

One approach for bias correction is to use full imputation (FI) over the distri-

bution P (D | T, X). That is, FI imputes ρ = P (D | T, X) for all subjects in the

study which results in the following estimators

T̂PRFI(c) =

∑
n

i=1
I(Ti ≥ c) ρ̂i∑

n

i=1
ρ̂i

, F̂PRFI(c) =

∑
n

i=1
I(Ti ≥ c) (1 − ρ̂i)∑

n

i=1
(1 − ρ̂i)

,

where ρ̂i is an estimate of P (Di = 1 | Ti, Xi) that can obtained using, for example,

logistic regression. By the MAR assumption, the disease model P (D = 1 | T, X)

can be estimated using the verification sample. When T and X are discrete

and a saturated model is used, these estimators of TPR and FPR reduce to the

Begg and Greenes (1983) bias-corrected estimators of sensitivity and specificity

presented in the previous section.

Another approach for bias correction is to use mean score imputation (MSI)

where the observed disease status is used for those in the verification sample and

disease status is imputed for subjects not in the verification sample. That is,

T̂PRMSI(c) =

∑
n

i=1
I(Ti ≥ c)

{
Vi Di + (1−Vi) ρ̂i

}
∑

n

i=1

{
Vi Di + (1−Vi) ρ̂i

} ,

F̂PRMSI(c) =

∑
n

i=1
I(Ti ≥ c)

{
Vi (1−Di) + (1−Vi) (1− ρ̂i)

}
∑

n

i=1

{
Vi (1−Di) + (1−Vi) (1− ρ̂i)

} .

Again, the MAR assumption implies that data from the verification sample can

be used to obtain valid estimates of ρi.
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Alonzo and Pepe (2005) also propose the following inverse probability

weighting (IPW) estimators (Horvitz and Thompson, 1952) that weight each

observation in the verification sample by the inverse of the sampling fraction

(i.e. probability the subject was selected for verification)

T̂PRIPW(c) =

∑
n

i=1
I(Ti ≥ c) Vi Di / π̂i∑

n

i=1
Vi Di / π̂i

,

F̂PRIPW(c) =

∑
n

i=1
I(Ti ≥ c) Vi(1−Di) / π̂i∑

n

i=1
Vi(1−Di) / π̂i

,

where π̂i = P (Vi = 1 | Ti, Xi) may be known or may need to be estimated de-

pending on the design of the study. The IPW estimators are similar to the CC

estimators in that they use the observed disease status for the verification sample.

Unlike the CC, however, they correct for the biased sampling by weighting the

observed value by the probability the subject was verified.

The following doubly robust (DR) estimators have also been proposed:

T̂PRDR(c) =

∑
n

i=1
I(Ti ≥ c)

{
ViDi/π̂i − (Vi− π̂i) ρ̂i/π̂i

}
∑

n

i=1

{
ViDi/π̂i − (Vi− π̂i) ρ̂i/π̂i

} ,

F̂PRDR(c) =

∑
n

i=1
I(Ti ≥ c)

{
Vi(1−Di)/π̂i − (Vi− π̂i) (1− ρ̂i)/π̂i

}
∑

n

i=1

{
Vi(1−Di)/π̂i − (Vi− π̂i) (1− ρ̂i)/π̂i

} .

These estimators are referred to as doubly robust because they are consistent if

either πi or ρi is estimated consistently. That is, the verification model or disease

model can be incorrectly specified and consistency is still guaranteed. These

estimators have also been referred to as semiparametric because they require

parametric conditional mean models to be specified for the disease model P (D |

T, X) and for the verification model P (V | T, X) but are non-parametric with

respect to the joint distribution of the data P (D, T, X).

Alonzo and Pepe (2005) illustrated that misspecifying the verification model

yields biased IPW estimates of the ROC curve and misspecifying the disease

model results in biased FI and MSI. Furthermore, they showed the DR estimator

of the ROC curve is unbiased if either the model for verification or the model for

disease is correctly specified. Thus, they recommend the DR approach is used in

practice.

The AUC can be estimated empirically for each of the bias-corrected ROC

curves described above by using the Trapezoidal Rule (Bamber, 1975). Closed-

form expressions for the AUC corresponding to the IPW and DR ROC estimators

have been obtained as well as variance expressions (He et al., 2009).
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4.2.2. NI approaches

Rotnitzky et al. (2006) describe a DR estimator of the AUC. They note

that AUC is identified under the untestable assumption

(4.1) log

{
P (V = 0 | T, X, V )

P (V = 1 | T, X, V )

}
= h(T, V ) + q(T, V )X ,

where q(T, V ) is an arbitrary specified function and h(T, V ) is an arbitrary un-

known function. q(T, V )=0 for all T and V corresponds to the MAR assump-

tion while q(T, V ) 6= 0 corresponds to NI missingness. Fluss et al. (2009) extend

the approach of Rotnitzky et al. (2006) to obtain a DR estimate of TPR and

FPR and, thus, the empirical ROC curve that allows for NI missingness. They

recommend performing a sensitivity analysis by repeating the estimation of TPR

and FPR under a variety of reasonable choices for the selection bias function q.

Conversely, Liu and Zhou (2010) use the likelihood approach to estimate a non-

ignorable parameter and obtain DR estimates of the ROC curve and AUC. They

assume the disease verification model

P
(
Vi = 1 |Di, Ti, Xi

)
=

exp(x)

1 + exp(x)

{
h(Ti, Xi; β) + α Di

}
,

where α is the NI parameter and h(Ti, Xi; β) = β0 +β1Ti +β2Xi. Since the nonig-

norable parameter cannot be tested nonparametrically, Liu and Zhou recommend

that scientific knowledge is used to construct an appropriate disease verification

model.

4.3. Covariate-adjusted ROC curves

The accuracy of a diagnostic test can be affected by factors such as dis-

ease severity, age, and gender. ROC curves have been adjusted for age in the

assessment, for example, of the accuracy of fingerstick postprandial blood glu-

cose measurements to discriminate between healthy and diseased subjects in the

presence of verification bias (Fluss et al., 2012).

Page and Rotnitzky (2009) discuss a parametric model for estimating the

covariate-specific ROC curve in the presence of verification bias. They make the

assumption that the ROC curve has an underlying binormal distribution and

disease verification has NI missingness. Liu and Zhou (2011) discuss a likelihood

approach to estimate the covariate-specific ROC curve in the presence of verifica-

tion bias. Disease verification is assumed to be MAR and diagnostic test results

are modeled using a location-scale model. Weighted estimating equations are used

to estimate the parameters in the location-scale model. DR, IPW, and imputa-

tion approaches are compared for the estimation. Liu and Zhou conclude that
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the DR estimator performed best in their simulation studies and their method is

sensitive to the location-scale model assumption.

Fluss et al. (2012) develop a DR method for estimating the ROC curve

adjusted for covariates for a NI missing data mechanism. Using the approach of

Pepe (1998), they model the diagnostic test values distribution as a function of

disease status and covariate values using a semi-parametric location-scale model.

Since the proposed approach relies on the untestable specification of q(T, V ) (see

Equation 4.1), the authors recommend a sensitivity analysis is performed to ex-

amine the sensitivity of the estimated ROC curve to the specified form of q(T, V ).

5. DISCUSSION

This paper highlights methods available for estimating the accuracy of di-

chotomous and continuous diagnostic tests in the presence of verification bias.

More recently, this bias has also been referred to as partial verification bias so as

not to be confused with differential disease verification in which a subset of study

subjects have a different reference standard to determine disease status (Whiting,

2004).

As investigators design future studies of test accuracy, it is important to

record all factors that may affect the decision to offer and receive disease verifi-

cation. In cases where all factors are captured, then the MAR assumption will

likely be satisfied and bias-correction methods that rely on this assumption can

be used. When all factors that impact disease verification are not collected, it is

preferred to use bias-correction methods that allow for NI missingness.

The focus of this paper is on the estimation of the sensitivity and specificity

of a single dichotomous test and the ROC curve and AUC for a single continuous

test in the presence of verification bias. Bias correction methods are also available

for diagnostic tests measured on an ordinal scale (Gray et al., 1984; Hunink et al.,

1990; Baker, 1995; Toledano and Gatsonis, 1996; Rodenberg and Zhou, 2000),

such as a radiologist’s interpretations of images to quantify the suspicion of cancer.

In addition, methods have been developed to estimate the difference between two

diagnostic tests in regards to bias-corrected sensitivity and specificity. Assuming

disease verification is MAR, Zhou (1998) and Roldán Nofuentes and Luna del

Castillo (2008) provide estimators for the difference in bias-corrected sensitivity

and specificity.

This paper considers the setting when there are only two disease states

(diseased and non-diseased). In some settings there can be more than two disease

states. For example, Alzheimer’s Disease dementia can be classified into more
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than two categories. Chi and Zhou (2008) propose a non-parametric likelihood-

based approach to construct the empirical ROC surface (extension of ROC curve

to more than two disease states) and estimate the volume under the ROC surface

in the presence of verification bias for ordinal diagnostic tests. Future work is

needed to develop bias correction methods for estimating the ROC surface and

volume under the ROC surface for continuous diagnostic tests.

The bias correction methods described in this paper, especially for contin-

uous tests, would benefit from the development and distribution of code to apply

the methods in practice. Increasing the availability of these methods in standard

statistical packages would likely increase the use of the methods.

REFERENCES

Alonzo, T.A. and Pepe, M. S. (2005). Assessing accuracy of a continuous

screening test in the presence of verification bias, Journal of the Royal Statis-

tical Society, Ser. C, 54, 173–190.

Bamber, D. (1975). The area above the ordinal dominance graph and the area

below the receiver operating characteristic graph, Journal of Mathematical Psy-

chology, 12, 387–415.

Baker, S.G. (1995). Evaluating multiple diagnostic tests with partial verifica-

tion, Biometrics, 51, 330–337.

Begg, C.B. and Greenes, R.A. (1983). Assessment of diagnostic tests when

disease is subject to selection bias, Biometrics, 39, 207–216.

Buzoianu, M. and Kadane, J. B. (2008). Adjusting for verification bias in

diagnostic test evaluation: a Bayesian approach, Statistics in Medicine, 27,

2453–2473.

Chi, Y.-Y. and Zhou, X.-H. (2008). Receiver operating characteristic surfaces

in the presence of verification bias, Journal of the Royal Statistical Society,

Ser. C, 57, 1–23.

De Groot, J.A.H.; Janssen, K.J.M.; Kristel, J.M.; Zwinderman, A.H.;

Bossuyt, P.M.M.; Reitsma, J. B. and Moons, K.G.M. (2011).

Correcting for partial verification bias: a comparison of methods, Annals of

Epidemiology, 21, 139–148.

De Groot, J.A.H.; Janssen, K.J.M.; Zwinderman, A.H.; Moons, K.G.M.

and Reitsma, J. B. (2008). Multiple imputation to correct for partial verifi-

cation bias revisited, Statistics in Medicine, 27, 5880–5889.

Fluss, R.; Reiser, B. and Faraggi, D. (2012). Adjusting ROC curves for

covariates in the presence of verification bias, Journal of Statistical Planning

and Inference, 142, 1–11.

Fluss, R.; Reiser, B.; Faraggi, D. and Rotnitzky, A. (2009). Estimation

of the ROC curve under verification bias, Biometrical Journal, 51, 475–490.



82 Todd A. Alonzo

Gray, R.; Begg, C. and Greenes, R. (1984). Construction of receiver oper-

ating characteristic curves when disease verification is subject to selection bias,

Medical Decision Making, 4, 151–164.

Hanley, J.A.; Dendukuri, N. and Begg, C.B. (2007). Multiple imputation

for correcting verification bias by Ofer Harel and Xiao-Hua Zhou, Statistics in

Medicine, 26, 3046–3047.

Harel O. and Zhou X.-H. (2006). Multiple imputation for correcting verifica-

tion bias, Statistics in Medicine, 25, 3769–3786.

Harel O. and Zhou X.-H. (2007). Rejoinder to multiple imputation for cor-

recting verification bias, Statistics in Medicine, 26, 3047–3050.

He, H.; Lyness, J.M. and McDermott, M.P. (2009). Direct estimation of

the area under the receiver operating characteristic curve in the presence of

verification bias, Statistics in Medicine, 28, 361–376.

Horvitz, D.G. and Thompson, D. J. (1952). A generalization of sampling

without replacement from a finite universe, Journal of the American Statistical

Association, 47, 663–685.

Hunink, M.G.M.; Richardson, D.K.; Doubilet, P.M. and Begg, C.B.

(1990). Testing for fetal pulmonary maturity ROC analysis involving covari-

ates, verification bias, and combination testing, Medical Decision Making, 10,

201–211.
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