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Abstract:

• We consider the problem of estimating a density and its derivatives for a sample of
multiplicatively censored random variables. The purpose of this paper is to present
an approach to this problem based on wavelets methods. Two different estimators
are developed: a linear based on projections and a nonlinear using a term-by-term
selection of the estimated wavelet coefficients. We explore their performances under
the Lp-risk with p ≥ 1 and over a wide class of functions: the Besov balls. Fast rates
of convergence are obtained. Finite sample properties of the estimation procedure are
studied on a simulated data example.
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1. INTRODUCTION

The multiplicative censoring density model can be described as follows.

We observe n i.i.d. random variables Y1, ..., Yn where, for any i ∈ {1, ..., n},

Yi = UiXi ,(1.1)

U1, ..., Un are n unobserved i.i.d. random variables having the common uniform

distribution on [0, 1] and X1, ..., Xn are n unobserved i.i.d. random variables with

common unknown density f : [0, 1] → [0,∞]. For any i ∈ {1, ..., n}, we suppose

that Ui andXi are independent. Our aim is to estimate f (or a transformation of f)

from Y1, ..., Yn. Details, applications and results of this model can be found in,

e.g., [37], [38], [2] and [1]. For recent applications in the field of signal processing,

we refer to [7] and references therein for further readings.

In this paper, we investigate the estimation of f (m) (including f for m = 0).

This is particularly of interest to detect possible bumps, concavity or convexity

properties of f . The estimation of the derivatives of a density have been investi-

gated by several authors. The pioneers are [4], [35] and [36]. Recent studies can

be found in [31], [9, 10], [32] and [8].

In recent years, wavelet methods in nonparametric function estimation

have become a powerful technique. The major advantages of these methods are

their spatial adaptivity and asymptotic optimality properties over large function

spaces. We refer to, e.g., [3], [23] and [39]. These facts motivate the estimation

of f (m) via wavelet methods. To the best of our knowledge, this has never been

investigated before for (1.1). Combning the approaches of [1] and [31], we con-

struct two different wavelet estimators: a linear one and a nonlinear adaptive one

based on a hard thresholding rule introduced by [18]. The latter method has the

advantage to be adaptive; it does not depend on the knowledge of the smoothness

of f (m) in its construction. We explore their performances via the Lp-risk with

p ≥ 1 (including the Mean Integrated Squared Error (MISE) which corresponds

to p = 2) over a “standard” wide class of unknown functions: the Besov balls

Bs
r,q(M). Our main result proves that the considered adaptive wavelet estimator

achieves a fast rate of convergence. Then we show the finite sample properties of

the considered estimators by a simulated data.

The rest of the paper is organized as follows. Section 2 briefly describes the

wavelet basis and the Besov balls. Assumptions on the model and the wavelet es-

timators are presented in Section 3. The theoretical results are given in Section 4.

A simulation study is done in Section 5. The proofs are gathered in Section 6.
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2. WAVELETS AND BESOV BALLS

This section is devoted to bascics on wavelets and Besov balls.

2.1. Wavelets

Let N be a positive integer such that N > 10(m+ 1) (where m refers to

the estimation of f (m)).

Throughout the paper, we work within an orthonormal multiresolution

analysis of L2([0, 1]) =
{

h : [0, 1] → R;
∫ 1
0 h(x)

2dx <∞
}

, associated with the ini-

tial wavelet functions φ and ψ of the Daubechies wavelets db2N . The features of

these functions are to be compactly supported and Cm+1.

Set

φj,k(x) = 2j/2φ(2jx− k) , ψj,k(x) = 2j/2ψ(2jx− k) .

Then, with an appropriate treatment at the boundaries, there exists an integer τ

satisfying 2τ ≥ 2N such that, for any ℓ ≥ τ , the system

S =
{

φℓ,k; k ∈ {0, ..., 2ℓ−1}; ψj,k; j ∈N−{0, ..., ℓ−1}, k ∈ {0, ..., 2j −1}
}

is an orthonormal basis of L2([0, 1]).

For any integer ℓ ≥ τ , any h ∈ L2([0, 1]) can be expanded on S as

h(x) =
2ℓ−1
∑

k=0

cℓ,k φℓ,k(x) +
∞
∑

j=ℓ

2j−1
∑

k=0

dj,k ψj,k(x) , x ∈ [0, 1] ,(2.1)

where

cj,k =

∫ 1

0
h(x)φj,k(x) dx , dj,k =

∫ 1

0
h(x)ψj,k(x) dx .(2.2)

See, e.g., [14] and [27].

As usual in nonparametric statistics via wavelets, we will suppose that the

unknown function f (m) belongs to Besov balls defined below.

2.2. Besov balls

LetM>0, s>0, r≥1, q≥1 andLr([0,1]) =
{

h : [0,1]→R;
∫ 1
0 |h(x)|rdx<∞

}

.

Set, for every measurable function h on [0,1] and ǫ≥ 0, ∆ǫ(h)(x) = h(x+ǫ)−h(x),
∆2

ǫ (h)(x) = ∆ǫ(∆ǫ(h))(x) and, identically, ∆N
ǫ (h)(x) = ∆N−1

ǫ (∆ǫ(h))(x).
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Let

ρN (t, h, r) = sup
|ǫ|≤t

(∫ 1

0
|∆N

ǫ (h)(x)|r dx
)1/r

.

Then, for s ∈ [0, N), we define the Besov ball Bs
r,q(M) by

Bs
r,q(M) =

{

h ∈ Lr([0, 1]);

(∫ 1

0

(

ρN (t, h, r)

ts

)q
dt

t

)1/q

≤M

}

,

with the usual modifications if r = ∞ or q = ∞.

We have the equivalence: h ∈ Bs
r,q(M) if and only if there exists a constant

M∗ > 0 (depending on M) such that (2.2) satisfy

(

2τ−1
∑

k=0

|cτ,k|r
)1/r

+







∞
∑

j=τ






2j(s+1/2−1/r)





2j−1
∑

k=0

|dj,k|r




1/r






q 





1/q

≤ M∗ ,

with the usual modifications if r = ∞ or q = ∞.

In this expression, s is a smoothness parameter and r and q are norm

parameters. Details on Besov balls can be found in [28] and [23, Chapter 9].

3. ESTIMATORS

This section describes our wavelet estimation approach.

3.1. Wavelet methodology

Suppose that, for any v ∈ {0, ...,m}, f (v) ∈ L2([0, 1]). Then we have the

wavelet series expansion:

f (m)(x) =
2ℓ−1
∑

k=0

c
(m)
ℓ,k φℓ,k(x) +

∞
∑

j=ℓ

2j−1
∑

k=0

d
(m)
j,k ψj,k(x) , x ∈ [0, 1] ,

where c
(m)
j,k =

∫ 1
0 f

(m)(x)φj,k(x) dx and d
(m)
j,k =

∫ 1
0 f

(m)(x)ψj,k(x) dx and m is the

order of the density derivative to be estimated.

We now aim to construct natural estimators for these unknown wavelet

coefficients. Combining the approaches of [1] and [31], let us investigate a more

arranging expression for c
(m)
j,k (the same development holds for d

(m)
j,k ).
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Suppose that, for any v ∈ {0, ...,m}, f (v)(0) = f (v)(1) = 0. It follows from

m-fold integration by parts that

c
(m)
j,k = (−1)m

∫ 1

0
f(x)(φj,k)

(m)(x) dx .

Note that, since U1 ∼ U([0, 1]) and U1 and X1 are independent, the density of Y1

is

g(x) =

∫ 1

x

f(y)

y
dy , x ∈ [0, 1] .(3.1)

Hence f(x) = −xg′(x), x ∈ [0, 1].

One integration by parts yields

c
(m)
j,k = (−1)m

(

−
∫ 1

0
g′(x)x(φj,k)

(m)(x) dx

)

= (−1)m

∫ 1

0

(

(φj,k)
(m)(x) + x(φj,k)

(m+1)(x)
)

g(x) dx

= E

(

(−1)m
(

(φj,k)
(m)(Y1) + Y1(φj,k)

(m+1)(Y1)
)

)

.

The method of moments gives the following unbiased estimator for c
(m)
j,k :

ĉ
(m)
j,k =

(−1)m

n

n
∑

i=1

(

(φj,k)
(m)(Yi) + Yi(φj,k)

(m+1)(Yi)
)

(3.2)

and, similarly, an unbiased estimator for d
(m)
j,k is

d̂
(m)
j,k =

(−1)m

n

n
∑

i=1

(

(ψj,k)
(m)(Yi) + Yi(ψj,k)

(m+1)(Yi)
)

.(3.3)

Further properties of these wavelet coefficients estimators are explored in Propo-

sitions 6.1 and 6.2 below. We are now in the position to present the considered

estimators for f (m).

3.2. Main estimators

We define the linear estimator f̂
(m)
lin by

f̂
(m)
lin (x) =

2j0−1
∑

k=0

ĉ
(m)
j0,kφj0,k(x) , x ∈ [0, 1] ,(3.4)

where ĉ
(m)
j,k is defined by (3.2) and j0 is an integer which will be properly chosen

later.
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Recent developments on the linear wavelet estimators for various density

estimation problems can be found in [11].

We define the hard thresholding estimator f̂
(m)
hard by

f̂
(m)
hard(x) =

2τ−1
∑

k=0

ĉ
(m)
τ,k φτ,k(x) +

j1
∑

j=τ

2j−1
∑

k=0

d̂
(m)
j,k 1n

|d̂
(m)
j,k

|≥κδ
(m)
j

oψj,k(x) ,(3.5)

x ∈ [0, 1] ,

where ĉ
(m)
j,k and d̂

(m)
j,k are defined by (3.2) and (3.3), 1 is the indicator function, j1

is the integer satisfying

( n

lnn

)1/(2m+3)
< 2j1+1 ≤ 2

( n

lnn

)1/(2m+3)
,

δ
(m)
j is the threshold:

δ
(m)
j = 2j(m+1)

√

lnn

n

and κ is a large enough constant (see Remark 4.2 and Proposition 6.2).

The major difference between f̂
(m)
lin and f̂

(m)
hard is the term-by-term selection

of the wavelet coefficients estimators which makes f̂
(m)
hard adaptive. Discussions on

hard thresholding estimators in nonparametric function estimation can be found

in, e.g., [18], [23], [16] and [39].

Remark 3.1. A preliminary idea is to rewrite the model (1.1) as: − lnYi =

− lnXi− lnUi. In this form, it becomes the standard density deconvolution model

where − lnU1, ...,− lnUn are n unobserved i.i.d. random variables having the

common exponential distribution with parameter 1 and − lnX1, ...,− lnXn are n

unobserved i.i.d. random variables with unknown density

q(x) = e−xf(e−x) , x ∈ (0,∞) .

Then there exist a wide variety of methods to estimate q. See, e.g., [19], [22],

[29], [5], [15] and [26]. Results on the estimation of q(m) via kernel methods can

be found in [19]. However, due to the definition of q, it seems difficult to deduce

results on the estimation of f (m) from q(m) under the Lp-risk.

Remark 3.2. Another possible approach to estimate f (m) is described

below. Since f(x) = −xg′(x), x ∈ [0, 1], we have

f (m)(x) = −
(

mg(m)(x) + xg(m+1)(x)
)

, x ∈ [0, 1] .(3.6)

Then a plug-in approach to estimate f (m) consists in estimating g(m) by ĝ(m) and

g(m+1) by ĝ(m+1), and to inject them in (3.6). This yields the estimator

f̂
(m)
∗ (x) = −

(

mĝ(m)(x) + xĝ(m+1)(x)
)

, x ∈ [0, 1] .
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However, there are at least two disadvantages to this approach.

• Firstly, since two different estimators are required, more errors are in-

jected in f̂
(m)
∗ in comparison to (3.5).

• Secondly, the choices of ĝ(m) and ĝ(m+1) are not so clear. If we focus

our attention on wavelet estimators, one can chose hard thresholding

versions as in [31]. However, the presence of x in front of ĝ(m+1)(x)

implies that we work with the nonorthonormal basis S∗ = {xφℓ,k(x), k ∈
{0, ..., 2ℓ − 1}; xψj,k(x); j ∈ N− {0, ..., ℓ− 1}, k ∈ {0, ..., 2j − 1}}. And

it is not immediately clear how we can manipulate it in the context of

the Lp-risk.

4. RESULTS

Before presenting the main results, let us formulate the following assump-

tions:

(A1) for any v ∈ {0, ...,m}, f (v)(0) = f (v)(1) = 0,

(A2) there exists a known constant C > 0 such that, for any v ∈ {0, ...,m},
∫ 1

0

(

f (v)(x)
)2
dx ≤ C ,

(A3) there exists a known constant C > 0 such that

sup
x∈[0,1]

g(x) ≤ C ,

where g is as in (3.1).

Theorems 4.1 and 4.2 below explore the performance of our estimators

under the Lp-risk over Besov balls.

Theorem 4.1 (Lp-risk for f̂
(m)
lin ). Consider (1.1) under (A1), (A2) and

(A3). Let p ≥ 1. Suppose that f (m) ∈ Bs
r,q(M) with s > 0, r ≥ 1 and q ≥ 1. Set

s∗ = min(s, s− 1/r + 1/p) and let f̂
(m)
lin be as in (3.4) with j0 being the integer

such that

n1/(2s∗+2m+3) < 2j0+1 ≤ 2n1/(2s∗+2m+3) .

Then there exists a constant C > 0 such that

E

(∫ 1

0

(

f̂
(m)
lin (x) − f (m)(x)

)p
dx

)

≤ C n−s∗p/(2s∗+2m+3) .



Multiplicative Censoring: Estimation of a Density and its Derivatives... 263

Remark 4.1. As usual in linear wavelet estimation, we distinguish in The-

orem 4.1 two different zones: the homogeneous zone corresponding to r ≥ p,

and the inhomogeneous zone corresponding to p > r (following the classifica-

tion of [23, Remark 10.4]). For the homogeneous zone, we obtain the rate of

convergence um,n = n−sp/(2s+2m+3) whereas for the inhomogeneous zone, um,n =

n−(s−1/r+1/p)p/(2(s−1/r+1/p)+2m+3) which is slower than the previous one. Observe

that these rates of convergence are similar to those attained by wavelet estima-

tors for some inverse problems (see, e.g., [29], [24] and [12] for deconvolution

problems).

Theorem 4.2 (Lp-risk for f̂
(m)
hard). Consider (1.1) under (A1), (A2) and

(A3). Let f̂
(m)
hard be (3.5). Suppose that f (m) ∈ Bs

r,q(M) with s > 0, r ≥ 1 and

q ≥ 1. Then there exists a constant C > 0 such that

E

(∫ 1

0

(

f̂
(m)
hard(x) − f (m)(x)

)p
dx

)

≤ C ϕn,m ,

where

ϕn,m =







































(

lnn

n

)sp/(2s+2m+3)

, for rs > (m+3/2)(p−r) ,
(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2m+3)

, for rs < (m+3/2)(p−r) ,
(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2m+3)

(lnn)(p−r/q)+ , for rs= (m+3/2)(p−r) .

We see in Theorems 4.1 and 4.2 that

• over the homogeneous zone (i.e., r ≥ p), f̂
(m)
hard attains a rate of conver-

gence close to the one of f̂
(m)
lin , i.e., n−sp/(2s+2m+3) (the only difference

is a logarithmic term).

• over the inhomogeneous zone (i.e., p > r), f̂
(m)
hard attains a better rate of

convergence than the one of f̂
(m)
lin . From an asymptotic point of view,

the difference is really significant.

Naturally, taking into account that f̂
(m)
hard is adaptive, it is preferable to f̂

(m)
lin in

the estimation of f (m).

Remark 4.2. The optimal choice of the threshold κ is difficult to explicit

because it depends on numerous constants including those in (A2) and (A3), some

norms of the elements of the wavelet basis and the universal constants appearing

in Bernstein inequality (see Proposition 6.2). The knowledge of these constants

is however determinant for the knowledge of κ and, a fortiori, for the adaptivity

of f̂
(m)
hard.
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Remark 4.3. Note that Theorem 4.2 taken with p = 2 and m = 0 coin-

cides with [1, Theorem 4.2] taken with w(x) = 1.

Perspectives. A possible extension of this work will be to consider more

complex thresholding technique as the block thresholding one (see, e.g., [6] and

[13]). Moreover, to ensure that n−sp/(2s+2m+3) is the optimal in the minimax

sense, lower bounds must be proved. However, important technical difficulties

related to the estimation of f (m) (not only f) appear. All these aspects need

further investigations that we leave for a future work.

5. SIMULATION STUDY

We investigate the performances of three wavelets estimators: the linear

wavelet estimator (3.4) defined with j0 = 7 (which is an arbitrary choice since

s is unknown), the hard thresholding wavelet estimator 3.5 defined with the

“universal threshold constant”κ = σ̂
√

2, where σ̂ is the standard deviation of the

estimated wavelet coefficients (see [17]) and a linear wavelet estimator after local

linear smoothing.

Remark 5.1. As noticed in [33], the smooth linear wavelet estimator is

motivated by the fact that, when f (m) is smoother than the decomposing wavelet

(or the sample size is small), the wavelet shrinkage estimators may contain abusive

peaks and artifacts. A possible solution is to consider another smoothing method

such as the local linear regression smoother introduced by [20, 21] which enjoys

good sampling properties and high minimax efficiency. The construction of the

considered estimator is based on [21, eq (2.1)-(2.4)], where Yj is the wavelet

linear estimator (3.4) with j0 = j, Xj = j/n, K denotes the Gaussian kernel and

h = 0.08. Note that we do not claim any theoretical properties of this estimator

in this study.

The quality of the estimated density is measured by ANorm which are

obtained by following formula

ANorm =
1

N

N
∑

l=1

(

n
∑

i=1

(

f̂
(m)
l (i/n) − f

(m)
l (i/n)

)2
)1/2

,

where N is the number of replications and f̂
(m)
l is estimator of f

(m)
l in three state

linear, hard threshold and smoothing methods. We selectN = 100 andm ∈ {0, 1}
at (ANorm) formula. The codes were written in MATLAB software and use

Daubechies-Lagarias algorithm for calculating various orthonormal wavelets.

In two examples, we consider samples from a Beta distribution and from a

mixture of two Beta distributions.
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In both of these examples, the smooth linear wavelet estimators is better

than others. On the other hand, hard thresholding estimator (see (3.5)) works

better than the linear estimator (see (3.4)).

Example 1. We generate samples X1, ..., Xn from a Beta distribution

Beta(α, β) with parameters α = 3 and β = 3 with size n = 1000. Also we generate

n = 1000 samples from uniform distribution on [0, 1] that are independent of the

Xi’s to produce multiplicative censoring. Then we estimate original density using

various wavelet methods for derivatives of order m ∈ {0, 1}. Fig. 1 shows the

original density and Fig. 2 its derivative.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3
Linear,hard threshold,smoothing estimators of derivative pdf for m=0

Figure 1: The original density with black line, linear estimator with dot-
ted line, hard threshold estimator with blue line and smoothing
estimator is red line. (Density estimation for Beta distribution).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

10
Linear,hard threshold,smoothing estimators of derivative pdf for m=1

Figure 2: The original density with black line, linear estimator with dot-
ted line, hard threshold estimator with blue line and smoothing
estimator is red line. (Derivative estimation for Beta distribution).
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The original density with black line, linear estimator with dotted line, hard

threshold estimator with blue line and smoothing estimator is red line.

With obvious ANorm and standard deviation in Tables 1 and 2, we conclude

when sample size increases, ANorm is smaller and we have better performance.

Table 1: Computed values for ANorm and (Standard deviation)
with Beta distribution for m = 0.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 12.7357 (0.9611) 9.2113 (0.7728) 6.8497 (0.5323) 5.2332 (0.4201)

Hard Thresholding 6.7080 (1.6041) 5.0373 (1.1540) 3.8189 (0.9575) 3.2546 (0.6949)

Smoothing 3.0102 (1.0213) 2.5472 (0.7237) 2.4273 (0.4855) 2.3779 (0.4057)

Table 2: Computed values for ANorm and (Standard deviation)
with Beta distribution for m = 1.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 40.4498 (3.3822) 31.5682 (2.5285) 25.8549 (1.6848) 22.2075 (1.0914)

Hard Thresholding 23.1572 (4.4096) 20.8959 (3.2689) 19.3508 (1.7315) 18.6700 (1.2586)

Smoothing 19.0204 (3.1333) 18.6047 (1.9025) 18.3701 (1.5284) 18.1202 (1.0132)

Example 2. In this example, we consider mixture Beta distribution.

We generate n = 1000 samples X1, ..., Xn such that f ∼ (1/3)Beta(4, 6) +

(2/3)Beta(3, 4) and proceed as the previous example. Fig. 3 and Fig. 4 show

plot from defined estimators.

We calculated ANorm and standard deviation in Tables 3 and 4 for different

values of n.

Table 3: Computed values for ANorm and (Standard deviation)
with Beta mixture distribution for m = 0.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 13.0786 (1.1155) 9.2829 (0.9413) 6.8973 (0.6469) 5.1470 (0.4214)

Hard Thresholding 9.0021 (1.8353) 6.0055 (1.4657) 4.5009 (0.9155) 3.7527 (0.5689)

Smoothing 3.0145 (1.0037) 2.7518 (0.8104) 2.7084 (0.6871) 2.5294 (0.3554)
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Table 4: Computed values for ANorm and (Standard deviation)
with Beta distribution for m = 1.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 64.1098 (7.1914) 48.2251 (4.7379) 36.6836 (2.8821) 29.3822 (2.0521)

Hard Thresholding 32.9540 (10.2685) 26.2743 (7.7777) 25.0095 (4.1568) 21.9653 (2.2657)

Smoothing 20.5346 (4.5341) 20.2737 (4.0706) 19.6435 (2.3666) 19.3836 (1.9703)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Linear,hard threshold,smoothing estimators of derivative pdf for m=0

Figure 3: The original density with black line, linear estimator with dotted line,
hard threshold estimator with blue line and smoothing estimator is
red line. (Density estimation for Beta mixture distribution).
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Figure 4: The original density with black line, linear estimator with dotted line,
hard threshold estimator with blue line and smoothing estimator is
red line. (Derivative estimation for Beta mixture distribution).
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6. PROOFS

In this section, C denotes any constant that does not depend on j, k and

n. Its value may change from one term to another and may depend on φ or ψ.

This section is organized as follows. Firstly, we introduce two auxiliary

results on some properties of (3.2) and (3.3) at the heart of the proofs of our

main theorems.

Proposition 6.1. Let p ≥ 1. For any integer j ≥ τ such that 2j ≤ n and

any k ∈ {0, ..., 2j − 1}, let ĉ
(m)
j,k be (3.2), d̂

(m)
j,k be (3.3), c

(m)
j,k =

∫ 1
0 f

(m)(x)φj,k(x)dx

and d
(m)
j,k =

∫ 1
0 f

(m)(x)ψj,k(x)dx . Then, under (A1), (A2) and (A3), there exists

a constant C > 0 such that

E

(

(

ĉ
(m)
j,k − c

(m)
j,k

)2p
)

≤ C 2j(2m+2)p 1

np

and

E

(

(

d̂
(m)
j,k − d

(m)
j,k

)2p
)

≤ C 2j(2m+2)p 1

np
.

Proposition 6.2. Let p ≥ 1. For any integer j ≥ τ such that 2j ≤ n/ lnn

and any k ∈ {0, ..., 2j − 1}, let d̂
(m)
j,k be (3.3) and d

(m)
j,k =

∫ 1
0 f

(m)(x)ψj,k(x)dx.

Then, under (A1), (A2) and (A3), there exists a constant κ > 0 such that

P

(

∣

∣d̂
(m)
j,k − d

(m)
j,k

∣

∣ ≥ κ

2
2j(m+1)

√

lnn

n

)

≤ 2

(

lnn

n

)p

.

Proof of Proposition 6.1: For convenience, let us prove the second in-

equality, the proof of the first one is identical.

For the sake of simplicity, for any i ∈ {1, ..., n}, set

Q
(m)
i,j,k = (−1)m

(

(ψj,k)
(m)(Yi) + Yi(ψj,k)

(m+1)(Yi)
)

and

Ui = Q
(m)
i,j,k − d

(m)
j,k .

Then we can write

E

(

(d̂
(m)
j,k − d

(m)
j,k )2p

)

=
1

n2p
E





(

n
∑

i=1

Ui

)2p


 .(6.1)

Let us now investigate the bound of this expectation via the Rosenthal

inequality presented below (see [34]).
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Lemma 6.1 (Rosenthal’s inequality). Let n be a positive integer, γ ≥ 2

and U1, ..., Un be n zero mean i.i.d. random variables such that E(|U1|γ) <∞.

Then there exists a constant C > 0 such that

E

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

γ)

≤ Cmax
(

nE
(

|U1|γ
)

, nγ/2
(

E(U2
1 )
)γ/2

)

.

Observe that U1, ..., Un are i.i.d. and, since E(Q
(m)
i,j,k) = d

(m)
j,k , E(U1) = 0.

Since Y1(Ω) = [0, 1], we have

∣

∣Q
(m)
i,j,k

∣

∣ ≤
∣

∣(ψj,k)
(m)(Yi)

∣

∣+
∣

∣Yi(ψj,k)
(m+1)(Yi)

∣

∣

≤
∣

∣(ψj,k)
(m)(Yi)

∣

∣+
∣

∣(ψj,k)
(m+1)(Yi)

∣

∣ .(6.2)

Let υ ≥ 1. It follows from E(Q
(m)
i,j,k) = d

(m)
j,k , the Hölder inequality and (6.2) that

E
(

|U1|υ
)

≤ C E
(

|Q(m)
1,j,k|υ

)

≤ C
(

E
(∣

∣(ψj,k)
(m)(Y1)

∣

∣

υ)
+ E

(∣

∣(ψj,k)
(m+1)(Y1)

∣

∣

υ)
)

.(6.3)

Using (A3), (ψj,k)
(m)(x) = 2j(2m+1)/2ψ(m)(2jx− k) and doing the change

of variables y = 2jx− k, we have

E
(∣

∣(ψj,k)
(m)(Y1)

∣

∣

υ)
=

∫ 1

0

∣

∣(ψj,k)
(m)(x)

∣

∣

υ
g(x) dx ≤ C

∫ 1

0

∣

∣(ψj,k)
(m)(x)

∣

∣

υ
dx

= C 2jυ(2m+1)/2

∫ 1

0

∣

∣ψ(m)(2jx− k)
∣

∣

υ
dx(6.4)

= C 2j(υ(2m+1)/2−1)

∫ 2j−k

−k

∣

∣ψ(m)(y)
∣

∣

υ
dy ≤ C 2j(υ(2m+1)/2−1) .

In a similar way, we prove that

E
(∣

∣(ψj,k)
(m+1)(Y1)

∣

∣

υ) ≤ C 2j(υ(2m+3)/2−1) .(6.5)

Putting (6.3), (6.4) and (6.5) together, we obtain

E
(

|U1|υ
)

≤ C 2j(υ(2m+3)/2−1) .(6.6)

Using the Rosenthal inequality with U1, ..., Un, γ = 2p and 2j ≤ n, we have

E





(

n
∑

i=1

Ui

)2p


 ≤ C max
(

nE(U2p
1 ), np

(

E(U2
1 )
)p
)

≤ C max
(

n 2j((2m+3)p−1), np 2j(2m+2)p
)

(6.7)

≤ Cnp 2j(2m+2)p .
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By (6.1) and (6.7), we have

E

(

(

d̂
(m)
j,k − d

(m)
j,k

)2p
)

≤ C
1

n2p
np 2j(2m+2)p ≤ C 2j(2m+2)p 1

np
.

Similarly, we prove that

E

(

(

ĉ
(m)
j,k − c

(m)
j,k

)2p
)

≤ C 2j(2m+2)p 1

np
.

The proof of Proposition 6.1 is complete.

Proof of Proposition 6.2: For the sake of simplicity, for any i∈{1, ..., n},
set

Q
(m)
i,j,k = (−1)m

(

(ψj,k)
(m)(Yi) + Yi(ψj,k)

(m+1)(Yi)
)

and

Ui = Q
(m)
i,j,k − d

(m)
j,k .

Then, for any κ > 0, we can write

(6.8)

P

(

∣

∣d̂
(m)
j,k − d

(m)
j,k

∣

∣ ≥ κ

2
2j(m+1)

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ C
κ

2
2j(m+1)

√
n lnn

)

.

Let us now explore the bound of this probability via the Bernstein inequality

described below (see [30]).

Lemma 6.2 (Bernstein’s inequality). Let n be a positive integer and

U1, ..., Un be n i.i.d. zero mean independent random variables such that there

exists a constant M > 0 satisfying |U1| ≤M <∞. Then, for any υ > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ υ

)

≤ 2 exp

(

− υ2

2
(

nE(U2
1 ) + υM/3

)

)

.

Observe that U1, ..., Un are i.i.d. and, since E(Q
(m)
i,j,k) = d

(m)
j,k , E(U1) = 0.

Since Y1(Ω) = [0, 1], (ψj,k)
(m)(x) = 2j(2m+1)/2ψ(m)(2jx − k), supy∈[0,1]

|(ψj,k)
(m)(y)| ≤ C2j(2m+1)/2 and supy∈[0,1] |(ψj,k)

(m+1)(y)| ≤ C2j(2m+3)/2, we have

|Q(m)
1,j,k| ≤

∣

∣(ψj,k)
(m)(Y1)

∣

∣+
∣

∣Y1(ψj,k)
(m+1)(Y1)

∣

∣

≤ C

(

sup
y∈[0,1]

∣

∣(ψj,k)
(m)(y)

∣

∣+ sup
y∈[0,1]

∣

∣(ψj,k)
(m+1)(y)

∣

∣

)

≤ C 2j(2m+3)/2 .

Observe that, thanks to (A2) and the Cauchy–Schwarz inequality,

|d(m)
j,k | ≤

(∫ 1

0

(

f (m)(x)
)2
dx

)1/2(∫ 1

0

(

ψj,k(x)
)2
dx

)1/2

≤ C .
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Using 2j ≤ n/ lnn, we have

|U1| ≤ C
(∣

∣Q
(m)
1,j,k

∣

∣+
∣

∣d
(m)
j,k

∣

∣

)

≤ C
(

2j(2m+3)/2 + C
)

= C 2j(2m+3)/2 ≤ C 2j(m+1)

√

n

lnn
.

It follows from (6.6) that

E(U2
1 ) ≤ C 2j(2m+2) .

The Bernstein inequality applied with U1, ..., Un and υ = (κ/2) 2j(m+1)
√
n lnn

gives

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ υ

)

≤ 2 exp

(

− υ2

2
(

nE(U2
1 ) + υM/3

)

)

≤ 2 exp

(

− (κ/2)2 2j(2m+2)n lnn

Cn2j(2m+2) + C(κ/2)2j(m+1)
√
n lnn 2j(m+1)

√

n/ lnn

)

(6.9)

= 2n−C κ2

1+κ .

By (6.8) and (6.9), there exists a constant κ > 0 such that

P

(

∣

∣d̂
(m)
j,k − d

(m)
j,k

∣

∣ ≥ κ

2
2j(m+1)

√

lnn

n

)

≤ 2n−C κ2

1+κ ≤ 2

(

lnn

n

)p

.

Proposition 6.2 is proved.

Proof of Theorem 4.1: We expand the function f (m) on S as

f (m)(x) =
2j0−1
∑

k=0

c
(m)
j0,kφj0,k(x) +

∞
∑

j=j0

2j−1
∑

k=0

d
(m)
j,k ψj,k(x) ,

where c
(m)
j0,k =

∫ 1
0 f

(m)(x)φj0,k(x)dx and d
(m)
j,k =

∫ 1
0 f

(m)(x)ψj,k(x)dx.

We have

E

(∫ 1

0

(

f̂
(m)
lin (x) − f (m)(x)

)p
dx

)

≤ 2p−1(A+B) ,(6.10)

where

A = E





∫ 1

0





2j0−1
∑

k=0

(

ĉ
(m)
j0,k − c

(m)
j0,k

)

φj0,k(x)





p

dx





and

B =

∫ 1

0





∞
∑

j=j0

2j−1
∑

k=0

d
(m)
j,k ψj,k(x)





p

dx .

Let us now introduce a Lp-norm result for wavelets.
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Lemma 6.3. Let p ≥ 1. For any sequence of real number (θj,k)j,k, there

exists a constant C > 0 such that

∫ 1

0





2j−1
∑

k=0

θj,k φj,k(x)





p

dx ≤ C 2j(p/2−1)
2j−1
∑

k=0

|θj,k|p .

The proof can be found in, e.g., [23, Proposition 8.3].

Lemma 6.3, Proposition 6.1 and the Cauchy–Schwarz inequality yield

A ≤ C 2j0(p/2−1)
2j0−1
∑

k=0

E

(

(

ĉ
(m)
j0,k − c

(m)
j0,k

)p
)

≤ C 2j0(p/2−1)
2j0−1
∑

k=0

(

E

(

(

ĉ
(m)
j0,k − c

(m)
j0,k

)2p
))1/2

(6.11)

≤ C 2j0(p/2−1) 2j0 2j0(m+1)p 1

np/2
= C

(

2j0(2m+3)

n

)p/2

.

On the other hand, using f (m) ∈ Bs
r,q(M) and proceeding as in [18, eq (24)], we

have

B ≤ C 2−j0s∗p .(6.12)

It follows from (6.10), (6.11), (6.12) and the definition of j0 that

E

(∫ 1

0

(

f̂
(m)
lin (x) − f (m)(x)

)p
dx

)

≤ C





(

2j0(2m+3)

n

)p/2

+ 2−j0s∗p





≤ C n−s∗p/(2s∗+2m+3) .

This ends the proof of Theorem 4.1.

Proof of Theorem 4.2: Theorem 4.2 is a consequence of Theorem 6.1

below by taking with ν = m+ 1 and using Propositions 6.1 and 6.2 above.

Theorem 6.1. Let h ∈ L2([0, 1]) be an unknown function to be estimated

from n observations and (2.1) its wavelet decomposition. Let ĉj,k and d̂j,k be

estimators of cj,k and dj,k respectively such that there exist three constants ν > 0,

C > 0 and κ > 0 satisfying

Moments inequalities: for any j ≥ τ such that 2j ≤ n and k ∈ {0, ..., 2j − 1},

E
(

(ĉj,k − cj,k)
2p
)

≤ C 22νjp

(

lnn

n

)p
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and

E

(

(

d̂j,k − dj,k

)2p
)

≤ C 22νjp

(

lnn

n

)p

.

Concentration inequality: for any j≥ τ such that 2j ≤n/ lnn and k ∈{0, ..., 2j−1},

P

(

∣

∣d̂j,k − dj,k

∣

∣ ≥ κ

2
2νj

√

lnn

n

)

≤ C

(

lnn

n

)p

.

Let us define the hard thresholding wavelet estimator of h by

ĥ(x) =
2τ−1
∑

k=0

ĉτ,k φτ,k(x) +

j1
∑

j=τ

2j−1
∑

k=0

d̂j,k 1n
|d̂j,k|≥κ2νj

√
ln n/n

oψj,k(x) , x ∈ [0, 1] ,

where j1 is the integer satisfying (n/ lnn)1/(2ν+1) < 2j1+1 ≤ 2 (n/ lnn)1/(2ν+1).

Suppose that h ∈ Bs
r,q(M) with s > 0, r ≥ 1 and q ≥ 1. Then there exists

a constant C > 0 such that

E

(∫ 1

0

(

ĥ(x) − h(x)
)p
dx

)

≤ C Θn,ν ,

where

Θn,ν =







































(

lnn

n

)sp/(2s+2ν+1)

, for rs > (ν+1/2)(p−r) ,
(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2ν+1)

, for rs < (ν+1/2)(p−r) ,
(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2ν+1)

(lnn)(p−r/q)+ , for rs= (ν+1/2)(p−r) .

Theorem 6.1 does not appear in this form in the literature but can be

proved using similar arguments to [25, Theorem 5.1] for a bound of the Lp-risk

and [12, Theorem 4.2] for the determination of the rates of convergence.
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