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1. INTRODUCTION

The exponential distribution is the first and most popular model for fail-

ure times. In recent years, many authors have proposed generalizations of the

exponential distribution. The generalizations are based on a “failure of a system”

framework.

Suppose a series system is made up of Z unknown independent compo-

nents. (The variable Z could be determined by such factors as economy, man

power, and customer demand.) Let Y1, Y2, ..., YZ denote the failure times of the

Z components, assumed to be independent of Z. Then the system lifetime is

X = min(Y1, Y2, ..., YZ). It is reasonable to assume that Yjs are exponential ran-

dom variables, so the cumulative distribution function (cdf) and the probability

density function (pdf) of X are

FX(x) = 1 −
∞∑

n=0

exp(−nβx) Pr(Z = n)(1.1)

and

fX(x) = β
∞∑

n=0

n exp(−nβx) Pr(Z = n),(1.2)

respectively, for x > 0 and β > 0.

Several authors have constructed models for (1.1) and (1.2) by taking Z to

follow different distributions. Models with Z belonging to the Panjer class (Panjer

[15]) have widespread applications in risk theory. The Panjer class includes the

geometric, Poisson, negative binomial and other distributions. Panjer [15]’s paper

was a breakthrough on the iterative computation of the distribution of aggregate

claims, see, for example, Rolski et al. [18]. Extended versions of the Panjer class

have been introduced by Sundt and Jewell [19], Hess et al. [7] and Pestana and

Velosa [16]. Panjer class is also used in other contexts, see, for example, Katz [9].

Adamidis and Loukas [1] take Z to be a geometric random variable with

parameter p, so yielding

fX(x) =
β(1 − p) exp(−βx)

[1 − p exp(−βx)]2
(1.3)

for x > 0, 0 < p < 1 and β > 0. The case of Z being geometric has been considered

much earlier by Rényi [17] in the context of rarefection and by Gnedenko and

Korolev [5] and Kovalenko [10] with applications to reliability. We shall refer to

(1.3) as the EG distribution. Kus [11] and Hemmati et al. [6] take Z to be a

Poisson random variable with parameter λ, so yielding

f(x) =
λβ

1 − exp(−λ)
exp {−λ − βx + λ exp(−βx)}(1.4)
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for x > 0, λ > 0 and β > 0. We shall refer to this as the EP distribution. Tah-

masbi and Rezaei [20] take Z to be a logarithmic random variable with parameter

p, so yielding

f(x) = − 1

log p

β(1 − p) exp(−βx)

1 − (1 − p) exp(−βx)
(1.5)

for x > 0, 0 < p < 1 and β > 0. We shall refer to this as the EL distribution. We

are not aware of any other model for (1.1) and (1.2) considered in the literature.

In this paper, we propose a new model for (1.1) and (1.2). We take Z to

be a negative binomial random variable given by the probability mass function

(pmf)

fZ(z) =

(
z − 1

k − 1

)
(1 − p)kpz−k(1.6)

for z = k, k + 1, .... Geometric pmf is a particular case of (1.6). Poisson pmf is a

limiting case of (1.6). Then (1.1) and (1.2) reduce to

FX(x) = 1 − (1 − p)k exp(−kβx)

[1 − p exp(−βx)]k
(1.7)

and

fX(x) =
kβ(1 − p)k exp(−kβx)

[1 − p exp(−βx)]k+1
,(1.8)

respectively, for x > 0, k > 0, 0 < p < 1 and β > 0. The corresponding hazard

rate function (hrf) is

hX(x) =
kβ

1 − p exp(−βx)
(1.9)

for x > 0, k > 0, 0 < p < 1 and β > 0. The corresponding quantile function is

F−1(u) =
1

β
log

[
p +

1 − p

(1 − u)1/k

]
(1.10)

for 0 < u < 1. We shall refer to the distribution given by (1.7) and (1.8) as the

exponential negative binomial (ENB) distribution. The exponential distribution

arises as the particular case for k = 1 and p = 0. The EG distribution of Adamidis

and Loukas [1] arises as the particular case for k = 1.

Note that d log f(x)/dx < 0 for all x > 0, so f(x) is a monotonically de-

creasing function all the time. Note also that f(0) = kβ/(1 − p), f(∞) = 0 and

f(x) ∼ kβ(1− p)k exp(−kβx) as x → ∞. So, the pdf takes a finite value at x = 0

and has an exponentially decaying upper tail. Clearly, the hrf given by (1.9) is

also a monotonically decreasing function with h(0) = kβ/(1− p) and h(∞) = kβ.
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Figure 1 illustrates possible shapes of (1.8) for selected parameter values.

Figure 2 illustrates possible shapes of (1.9) for selected parameter values. The

upper tails of (1.8) become lighter with increasing p and with increasing k. The

upper tails of (1.9) become heavier with increasing p and become lighter with

increasing k.
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Figure 1: Plots (1.8) versus x for β = 1, k = 0.1, 0.5, 2, 5, p = 0.2 (solid curve),
p = 0.4 (curve of dashes), p = 0.6 (curve of dots) and p = 0.8 (curve
of dots and dashes).
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Figure 2: Plots (1.9) versus x for β = 1, k = 0.1, 0.5, 2, 5, p = 0.2 (solid curve),
p = 0.4 (curve of dashes), p = 0.6 (curve of dots) and p = 0.8 (curve
of dots and dashes).
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The new distribution given by (1.7) and (1.8) can be motivated in several

different ways. Firstly, the negative binomial distribution is a generalization of

the geometric and Poisson distributions (Poisson is a limiting particular case).

The negative binomial distribution with support over the set of all non-negative

integers is also a generalization of the Poisson distribution in the sense that it

can deduced as a hierarchical model if X ∼ Poisson (Λ) with Λ being a gamma

random variable, see, for example, Casella and Berger [3].

So, (1.8) can be considered a generalization of (1.3) and (1.4). The loga-

rithmic distribution is used to construct (1.5). The logarithmic distribution is

widely used in population studies, iteration, fractality and chaos. But it is not

a well known model for counts as the geometric, Poisson and negative binomial

distributions are.

Secondly, using the series expansion

(1 − a)−k−1 =
∞∑

i=0

(−k − 1

i

)
(−a)i,

we can rewrite (1.8) as

fX(x) = kβ(1 − p)k
∞∑

i=0

(−k − 1

i

)
(−p)i exp {−(k + i)βx} .(1.11)

Integrating (1.11), we can rewrite (1.7) as

FX(x) = 1 − k(1 − p)k
∞∑

i=0

(−k − 1

i

)
(−p)i

k + i
exp {−(k + i)βx} .(1.12)

It follows from (1.11) and (1.12) that the ENB distribution is a mixture of the

exponential distribution, the earliest and the best known model for failure times.

Our third motivation is simulation based. We shall see later (see Section 6)

that the ENB distribution provides significantly better fits than the EG, EP and

EL distributions, the only known competing distributions under the framework of

(1.1) and (1.2), for more than tens of thousands of simulated samples. This is the

case even when the samples are simulated from the EG, EP and EL distributions.

Our fourth and final motivation is real data based. We shall see later (see

Section 7) that the proposed distribution outperforms the EP and EL distribu-

tions as well as the two-parameter Weibull distribution and the three-parameter

Weibull Poisson distribution (Hemmati et al. [6]) with respect to at least two

real data sets.

The contents of this paper are organized as follows. An account of math-

ematical properties of the new distribution is provided in Sections 2 to 4. The

properties studied include: raw moments, order statistics and their moments,
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and asymptotic distribution of the extreme values. Estimation by the methods

of moments and maximum likelihood is presented in Section 5. A simulation

study to compare the performance of the proposed distribution versus the EG,

EP and EL distributions is presented in Section 6. Finally, Section 7 illustrates

an application by using two real data sets.

2. MOMENTS

Let X denote a random variable with the pdf (1.8). It follows from Lemma

A.1 in the Appendix that

E (Xn) =
n!(1 − p)k

βnkn n+2Fn+1 (1 + k, k, ..., k; k + 1, ..., k + 1; p)

=
n!(1 − p)k

βnkn n+1Fn (k, ..., k; k + 1, ..., k + 1; p) ,

where pFq(a1, a2, ..., ap; b1, b2, ..., bq; x) denotes the generalized hypergeometric

function defined by

pFq (a1, a2, ..., ap; b1, b2, ..., bq; x) =
∞∑

k=0

(a1)k (a2)k ··· (ap)k

(b1)k (b2)k ··· (bq)k

xk

k!
,

where (e)k = e(e + 1)···(e + k − 1) denotes the ascending factorial. In particular,

the first four moments of X are

E (X) =
(1 − p)k

βk
2F1 (k, k; k + 1; p) ,

E
(
X2

)
=

2(1 − p)k

β2k2 3F2 (k, k, k; k + 1, k + 1; p) ,

E
(
X3

)
=

6(1 − p)k

β3k3 4F3 (k, k, k, k; k + 1, k + 1, k + 1; p)

and

E
(
X4

)
=

24(1 − p)k

β4k4 5F4 (k, k, k, k, k; k + 1, k + 1, k + 1, k + 1; p) .

The variance, skewness and kurtosis of X can be obtained using the relationships

V ar(X) = E(X2)− (E(X))2, Skewness(X) = E(X −E(X))3/(V ar(X))3/2 and

Kurtosis(X) = E(X − E(X))4/(V ar(X))2. The variations of E (X), Var (X),

Skewness (X) and Kurtosis (X) versus k and p for β =1 are illustrated in Figure 3.

It appears that E(X) and V ar(X) are decreasing functions with respect to both

k and p. Skewness (X) and Kurtosis (X) appear to increase with respect to a.

With respect to p, they initially increase before decreasing.



198 M. Hajebi, S. Rezaei and S. Nadarajah

0 1 2 3 4 5

0
1

2
3

4

k

E
(X

)

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

k

V
a

r 
(X

)

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

2
.0

3
.0

4
.0

5
.0

k

S
k
e
w

n
e

s
s
 (

X
)

0 1 2 3 4 5

2
.0

3
.0

4
.0

5
.0

0 1 2 3 4 5

2
.0

3
.0

4
.0

5
.0

0 1 2 3 4 5

2
.0

3
.0

4
.0

5
.0

0 1 2 3 4 5

1
0

1
5

2
0

2
5

3
0

3
5

k

K
u

rt
o

s
is

 (
X

)

0 1 2 3 4 5

1
0

1
5

2
0

2
5

3
0

3
5

0 1 2 3 4 5

1
0

1
5

2
0

2
5

3
0

3
5

0 1 2 3 4 5

1
0

1
5

2
0

2
5

3
0

3
5

Figure 3: Mean, variance, skewness and kurtosis for (1.8) versus k for p = 0.2
(solid curve), p = 0.4 (curve of dashes), p = 0.6 (curve of dots) and
p = 0.8 (curve of dots and dashes).

3. ORDER STATISTICS

Suppose X1, X2, ..., Xn is a random sample from (1.8). Let X1:n < X2:n <

··· < Xn:n denote the corresponding order statistics. It is well known that the

pdf and the cdf of the rth order statistic, say Y = Xr:n, are given by

fY (y) =
n!

(r − 1)!(n − r)!
F r−1

X (y) {1 − FX(y)}n−r fX(y)

=
n!

(r − 1)!(n − r)!

n−r∑

ℓ=0

(
n − r

ℓ

)
(−1)ℓF r−1+ℓ

X (y)fX(y)

and

FY (y) =

n∑

j=r

(
n

j

)
F j

X(y) {1 − FX(y)}n−j =

n∑

j=r

n−j∑

ℓ=0

(
n

j

)(
n − j

ℓ

)
(−1)ℓF j+ℓ

X (y),

respectively, for r = 1, 2, ..., n. It follows from (1.8) and (1.7) that

fY (y) =
kβn!

(r − 1)!(n − r)!

n−r∑

ℓ=0

(
n − r

ℓ

)
(−1)ℓ (1 − p)(r+ℓ)k exp [−(r + ℓ)kβy]

[1 − p exp(−βy)](r+ℓ)k+1
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and

FY (y) =
n∑

j=r

n−j∑

ℓ=0

(
n

j

)(
n − j

ℓ

)
(−1)ℓ (1 − p)(j+ℓ)k exp [−(j + ℓ)kβy]

[1 − p exp(−βy)](j+ℓ)k
.

Using Lemma A.1 in the Appendix, the qth moment of Y can be expressed as

E (Y q) =
q!n!

βqkq(r − 1)!(n − r)!

n−r∑

ℓ=0

(
n − r

ℓ

)
(−1)ℓ(1 − p)(r+ℓ)k

(r + ℓ)q+1 G(ℓ)

for q ≥ 1, where G(ℓ) = q+1Fq(ℓk + rk, ..., ℓk + rk; 1 + ℓk + rk, ..., 1 + ℓk + rk; p).

4. EXTREME VALUES

If X = (X1 + ··· + Xn)/n denotes the sample mean then by the usual cen-

tral limit theorem
√

n(X − E(X))/
√

V ar(X) approaches the standard normal

distribution as n → ∞. Sometimes one would be interested in the asymptotics of

the extreme values Mn = max(X1, ..., Xn) and mn = min(X1, ..., Xn).

Let g(t) = 1/(kβ). Take the cdf and the pdf as specified by (1.7) and (1.8),

respectively. Since f(x) ∼ kβ(1 − p)k exp(−kβx) as x → ∞,

lim
t→∞

1 − F (t + xg(t))

1 − F (t)
= lim

t→∞

f(t + x/(kβ))

f(t)
= exp(−x).

Since f(0) = kβ/(1 − p),

lim
t→0

F (tx)

F (t)
= lim

t→∞

xf(tx)

f(t)
= x.

Hence, it follows from Theorem 1.6.2 in Leadbetter et al. [12] that there must be

norming constants an > 0, bn, cn > 0 and dn such that

Pr {an (Mn − bn) ≤ x} → exp {− exp(−x)}

and

Pr {cn (mn − dn) ≤ x} → 1 − exp (−x)

as n → ∞. The form of the norming constants can also be determined. For

instance, using Corollary 1.6.3 in Leadbetter et al. [12], one can see that bn =

F−1(1 − 1/n) and an = kβ, where F−1(·) is given by (1.10).
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5. ESTIMATION

Here, we consider estimation by the methods of moments and maximum

likelihood and provide expressions for the associated Fisher information matrix.

Suppose x1, ..., xn is a random sample from (1.8). For moments estima-

tion, let m1 = (1/n)
∑n

j=1 xj , m2 = (1/n)
∑n

j=1 x2
j and m3 = (1/n)

∑n
j=1 x3

j . By

equating the theoretical moments of (1.8) with the sample moments, we obtain

the equations:

(1 − p)k

βk
2F1 (k, k; k + 1; p) = m1,

2(1 − p)k

β2k2 3F2 (k, k, k; k + 1, k + 1; p) = m2,

and

6(1 − p)k

β3k3 4F3 (k, k, k, k; k + 1, k + 1, k + 1; p) = m3.

The method of moments estimators (mmes), say p̃, k̃ and β̃, are the simultaneous

solutions of these three equations.

Now consider estimation by the method of maximum likelihood. The log

likelihood function of the three parameters is:

log L(p, k, β) = n log(kβ) + nk log(1 − p) − kβ
n∑

i=1

xi

−(k + 1)
n∑

i=1

log [1 − p exp (−βxi)] .(5.1)

It follows that the maximum likelihood estimators (mles), say p̂, k̂ and β̂, are the

simultaneous solutions of the equations:

n

k
+ n log(1 − p) = β

n∑

i=1

xi +
n∑

i=1

log [1 − p exp (−βxi)] ,

n

β
= k

n∑

i=1

xi + p(k + 1)
n∑

i=1

xi exp (−βxi)

1 − p exp (−βxi)
,

and

nk

1 − p
= (k + 1)

n∑

i=1

exp (−βxi)

1 − p exp (−βxi)
.
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For interval estimation of (p, k, β) and tests of hypothesis, one requires the

Fisher information matrix:

I =




E

(
−∂2 log L

∂p2

)
E

(
−∂2 log L

∂p∂k

)
E

(
−∂2 log L

∂p∂β

)

E

(
−∂2 log L

∂k∂p

)
E

(
−∂2 log L

∂k2

)
E

(
−∂2 log L

∂k∂β

)

E

(
−∂2 log L

∂β∂p

)
E

(
−∂2 log L

∂β∂k

)
E

(
−∂2 log L

∂β2

)




.

Using Lemma A.1 in the Appendix, the elements of this matrix for (5.1) can be

worked out as:

I11 =
n

k2 ,

I12 = I21 =
n(1 − p)k

βk
2F1 (k, k; k + 1; p)

+
npk(1 − p)k

β(k + 1)2
3F2 (k + 3, k + 1, k + 1; k + 2, k + 2; p) ,

I13 = I31 =
n

1 − p
− nk

(k + 1)(1 − p)
,

I22 =
n

β2 − npk(1 − p)k

β2(k + 1)2
3F2 (k + 3, k + 1, k + 1; k + 2, k + 2; p) ,

I23 = I32 =
nk(1 − p)k

β(k + 1)
3F2 (k + 3, k + 1, k + 1; k + 2, k + 2; p)

+
npk(k + 1)(1 − p)k

β(k + 2)2
2F1 (k + 2, k + 2; k + 3; p) ,

and

I33 =
nk

(1 − p)2
− nk(k + 1)

(k + 2)(1 − p)2
.

Under regularity conditions, the asymptotic distribution of (p̂, k̂, β̂) as n → ∞
is trivariate normal with zero means and variance co-variance matrix I−1. So,

Var (p̂) = (I33I22 − I32I23)/∆, Cov (p̂, k̂) = −(I33I12 − I32I13)/∆, Cov (p̂, β̂) =

(I23I12−I22I13)/∆, Var(k̂) = (I33I11−I31I13)/∆, Cov(k̂, β̂) =−(I23I11−I21I13)/∆

and Var (β̂) = (I22I11 − I21I12)/∆, where ∆ = I11(I33I22 − I32I23)− I21(I33I12 −
I32I13) + I31(I23I12 − I22I13).
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6. A SIMULATION STUDY

Here, we perform a simulation study to compare the performance of the

proposed distribution versus those given by (1.3), (1.4) and (1.5); that is, the

EG, EP and EL distributions, the only known competing distributions under the

framework of (1.1) and (1.2). We use the following scheme:

1. Generate ten thousand samples of size n from (1.8);

2. For each sample, fit the models given by (1.8), (1.3), (1.4) and (1.5);

3. Let ℓ1i, ℓ2i, ℓ3i and ℓ4i, i = 1, 2, ..., 10000 denote the maximized log-

likelihoods for (1.8), (1.3), (1.4) and (1.5) for the ten thousand samples;

4. Draw the box plots of 2(ℓ1i − ℓ2i), 2(ℓ1i − ℓ3i) and 2(ℓ1i − ℓ4i), i =

1, 2, ..., 10000.

This scheme compares the fits of the four distributions when simulated sam-

ples are from the proposed distribution. For completeness, we repeated the above

scheme with simulated samples coming from the EG, EP and EL distributions.

The resulting box plots are shown in Figure 4 for n = 25 and (β, λ, k, p) =

(1, 1, 2, 0.5). The figure shows that proposed distribution provides the best fit

wherever the sample comes from. The relative performances of the EG, EP

and EL distributions with respect to the proposed one appear similar. The four

distributions are not nested, so the likelihood ratio test may not be used to

discriminate between them. But the differences in the log-likelihood are so large

that they are significant even with respect to the AIC and BIC criteria.

For reasons of space, we have presented results for only one value for n and

the parameters. But the conclusions of Figure 4 hold also for larger sample sizes

and other parameter values.

The results are not surprising because, as explained in Section 1, the pro-

posed distribution is flexible enough to contain the EG and EP distributions as

particular cases. The logarithmic distribution used to construct the EL distribu-

tion is not flexible and is certainly not widely used.
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Figure 4: Box plots of 2(ℓ1i − ℓ2i), 2(ℓ1i − ℓ3i) and 2(ℓ1i − ℓ4i) when the sim-
ulated samples are from the proposed distribution (top left), the
EG distribution (top right), the EP distribution (bottom left) and
the EL distribution (bottom right).
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7. APPLICATIONS

Here, we illustrate applicability of the ENB distribution using two real data

sets. The first data set contains intervals in days between successive failures of a

piece of software. See Jelinski and Moranda [8] and Linda [13]. The second data

set consists of lifetimes of pressure vessels. See Pal et al. [14].

We compare the fit of the ENB distribution with those of the EP and EL

distributions as well as those of the Weibull distribution given by the pdf

f(x) = βλβxβ−1 exp
{
−(λx)β

}

(for x > 0, λ > 0 and β > 0) and, the Weibull Poisson distribution (Hemmati et

al. [6]) given by the pdf

f(x) =
θαβα

exp(θ) − 1
exp {−(βx)α} exp {−θ exp [−(βx)α]}

for x > 0, θ > 0, α > 0 and β > 0. The parameters of the ENB distribution are

estimated by the method of maximum likelihood, see Section 5. The parameters

of other distributions are also estimated by the method of maximum likelihood.

The mles and the corresponding log-likelihood value, the Kolmogorov Smir-

nov statistic, its p value, the AIC value and the BIC value are shown in Tables

1 and 2. We can see that the largest log-likelihood value, the largest p value,

the smallest AIC value and the smallest BIC value are obtained for the ENB

distribution.

Table 1: Fitted estimates for data set 1.

Model Parameter estimates Log likelihood K-S statistic p-value AIC BIC

Weibull (16.7835, 0.6460) -131.6366 0.2046 0.1092 267.2732 270.2662
EL (0.0300, 0.0162) -129.6636 0.2147 0.0818 263.3273 266.3203
EP (0.0191, 3.9168) -131.2939 0.1967 0.1358 266.5878 269.5808
WP (0.0182, 0.8072, 3.3587) -129.5968 0.1634 0.3070 265.1936 269.6831
ENB (0.0076, 0.9491, 0.9462) -127.7312 0.1372 0.5189 261.4624 265.9519

Table 2: Fitted estimates for data set 2.

Model Parameter estimates Log likelihood K-S statistic p-value AIC BIC

Weibull (488.1066, 0.7162) -145.3353 0.1519 0.6904 294.6705 296.6620
EL (0.1239, 0.0011) -146.5781 0.1700 0.5531 297.1562 299.1477
EP (0.0015, 0.6978) -146.9594 0.1534 0.6787 297.9189 299.9104
WP (0.0020, 0.7162, 0.0001) -145.3353 0.1519 0.6904 296.6705 299.6577
ENB (0.0342, 0.0434, 0.9748) -143.4332 0.1309 0.8400 292.8665 295.8537
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Figure 5: Quantile-quantile plots for the fitted models for the first data set.
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Figure 6: Quantile-quantile plots for the fitted models for the second data set.
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The conclusion based on Tables 1 and 2 can be verified by means of quantile-

quantile plots and density plots. A quantile-quantile plot consists of plots of the

observed quantiles against quantiles predicted by the fitted model. For example,

for the model based on the ENB distribution, x(j) was plotted versus F−1((j −
0.375)/(n + 0.25)), j = 1, 2, ..., n, as recommended by Blom [2] and Chambers et

al. [4], where F−1(·) is given by (1.10), x(j) are the sorted values of the observed

data in the ascending order and n is the number of observations. The quantile-

quantile plots for the five fitted models and for each data set are shown in Figures

5 and 6. We can see that the model based on the ENB distribution has the points

closer to the diagonal line for each data set.

A density plot compares the fitted pdfs of the models with the empirical

histogram of the observed data. The density plots for the two data sets are

shown in Figures 7 and 8. Again the fitted pdfs for the ENB distribution appear

to capture the general pattern of the empirical histograms better.
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APPENDIX

We need the following lemma.

Lemma A.1. Let

I(a, b, c) = kβ(1 − p)k

∫
∞

0

xa exp [−(k + b)βx]

[1 − p exp(−βx)]k+1+c
dx.

Then

I(a, b, c) =
a!k(1−p)k

a+2Fa+1 (1+k+ c, k+ b, ..., k+ b; k+ b+1, ..., k+ b+1; p)

βa(k + b)a+1 .

Proof: Using the series expansion

(1 − a)−k−1−c =

∞∑

i=0

(−k − 1 − c

i

)
(−a)i,

we can write

I(a, b, c) = kβ(1 − p)k
∞∑

i=0

(−k − 1 − c

i

)
(−p)i

∫
∞

0
xa exp [−(k + b + i)βx)] dx

= a!kβ−a(1 − p)k
∞∑

i=0

(−k − 1 − c

i

)
(−p)i

(k + b + i)a+1

= a!kβ−a(1 − p)k(k + b)−a−1
∞∑

i=0

(k + 1 + c)i(k + b)i···(k + b)i

(k + b + 1)i···(k + b + 1)i

pi

i!
.

The result now follows from the definition of hypergeometric functions.
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