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Abstract:

• Statistical methods are nowadays increasingly useful in industrial engineering. From
plant design reliability to equipment analysis, there is much to cover with statistical
models in order to improve the efficiency of systems. At Sines refinery we found it
useful to apply a Cox model to a particular critical equipment trying to find process
variables that cause its vibration as well as to apply well known distributions to
baseline hazard rate.
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1. INTRODUCTION

As industries became more competitive, their methods to improve results

are intimately related to efficiency. Although efficiency can be achieved with

technology, it only can be reliable based on the fact that the system is prepared

for failures, managing them the best way. Failures can be classified as follows:

avoided, predictable or inevitable. In each case, knowing equipment behaviour

helps companies to manage spare parts, man-hours and maintenance issues that

will improve reliability and save money [12]. Reliability studies are then a priority

and this work has been written to support decisions based on reliability models

and according to standards [8].

Sines refinery has been concerned with the shut-downs made by the Turbo-

Expander equipment in the FCC unit (Fluid Catalytic Cracking). As it was

having problems due to a vibration failure mode causing FCC unit shut-down

since year 2000, it was decided to investigate the origin of the vibration. Ex-

pander manufacturers and other entities that have this kind of equipment have

investigated this problem as it is a big economical issue for the companies as we

can see in [4] and [6]. They highly recommend investigating efficiency in order to

detect scaling deposition in expander rotor blades. It is believed that the com-

position of some particles resulting from process reaction are the key for scaling,

not just erosion. On 2011 turnaround, the procedure of changing the expander’s

rotor and shroud was not complete. Only the rotor was changed. This has caused

a slight gap between the shroud and the rotor blades due to shroud erosion. This

gap is believed to cause less resistance and then, less particles deposition. How-

ever, results of Cox Proportional Hazards [2] [3] demonstrate components in these

particles to be linked with high values of expander vibration and with times to

failure. In Section 3 we have a brief description of the equipment and contextu-

alization of the subject. In Section 4 we will refer to the goal of this work and

variables definition. Then we will present some parametric and non-parametric

approaches using Kaplan–Meier estimator and Cox Proportional Hazards in Sec-

tion 5, and a parametric adjustment to the null model with parametric models.

Finally, Section 6 is dedicated to some general considerations of this work.

2. MODELS

Several approaches were tried and reviews for different models were stud-

ied, although not all of them could fit on the data and conditions of our study.

Cox Proportional Hazards had a strong focus because of its flexibility, but some

approaches using Competing Risks Theory as we can see in Fine and Gray [5]

or Lunn and McNeil [11] were not possible due the complexity of the system.
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As we have both time-dependent and independent events it was very difficult to

articulate a model and find covariates that could meet the assumptions needed.

Additive interaction used by Li and Chambless [10] was proposed but due to

the nature of the data and the way that some covariates are monitored make it

impossible to use. We will then use the best possible models to fit our data that

meet the required conditions for the assumptions needed.

3. FRAMING AND DEFINITIONS

3.1. Configuration of the FCC Power Recover Unit at Sines refinery

A PRU (Power Recover Unit) is composed of an expander, a main air

blower, a turbine, a gear box and a motor/generator which recovers the flue gas

from the process to generate energy and steam. At Sines refinery we can find a

particular configuration of the PRU as we can see in Figure 1. This configuration

Figure 1: FCC and PRU train.
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brings an additional problem to the system. The fact that the expander is cou-

pled with the other equipment leads to unwanted shut-downs of all FCC units

whenever the expander has a shut-down. As a shut-down implies high costs, the

main goal is to avoid it. Pareto analysis was done on all PRU failure modes so the

main failure mode can be easily identified. It was clear that the vibration failure

mode was the principal reason for the problems in the expander. Actually, this

equipment is supposed to have a reliability of 99%, and its only intrinsic failure

is vibration.

3.2. Expander — What is it and how does it work?

The Turbo-Expander (Figure 2) is composed of the nose cone, the rotor

blades, the stator ring, the shaft and the casings. Process flue gas reaches the

expander rotor blades at a pressure of about 2.1 barg and a temperature of 700◦

Celsius degrees. The flow at this pressure and temperature is here transformed

Figure 2: Turbo-Expander.

into mechanical energy, making the rotor blades rotate as well as the shaft at

approximately 5700 rpm, held by the steam turbine. This mechanical energy

is thus transformed in electrical energy through the generator that is coupled

with the expander in the same shaft. In Figure 3 we can see process flue gas

come inside the expander casing (grey arrows) that reaches the rotor blades be-

ing cooled (white arrow), and then, exhausting through the exhaust casing (black

arrows). During this process some particles can set down on the rotor blades.
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As deposition may not be uniformly distributed by the blades, it will cause im-

balance at high rotation, and thus, cause vibration. The trip value is set to v µm

(microns) — where v is a predefined target — and when this value is reached,

either the trip (shut-down due to go beyond the threshold values) can occur or

operational staff can choose to try to make a controlled shut-down once it is

unavoidable.

Figure 3: Turbo-Expander flue gas flow.

4. TIMES TO EXPANDER VIBRATION FAILURE MODE

In order to investigate the root cause of the problem, all shut-down events

were recorded and variables that were suspected to be related with the expander

vibration were recorded through the on-line monitoring system of all instrumented

variables, since year 2000. There were also concerns with the fact that vibration

due to imbalance in the rotor blades caused by deposition can be due to me-

chanical reasons, chemical reasons, or a combination of both. As flue gas is the

product of combustion of coke, compounds that are produced in this reaction

can be carried out with flue gas and reach the expander. Tiny particles as well

as some chemical combinations that can produce a kind of glue effect can cause

deposition. This is a theory supported by the industrial community [4] and the

present work has demonstrated some compounds and their characteristics to be

important reasons. However, in the past, some internal mechanical damage either

in the regenerator and 3rd stage separator have been shown to be a good reason

for particles to easily reach the turbo expander and cause vibration. To explain

the reasons that lead to scaling is not the subject of this work, but the fact that

it may exist. However, it is important to refer that we have several hypotheses

for scaling and none must be rejected.
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Reasons for scaling:

a) Erosion combined with more tiny particles can cause deposition;

b) Some chemical compounds combined with each other can act as glue

and cause deposition;

c) Vapour is not at the correct temperature/pressure and will cause scal-

ing combined with flue gas particles;

Reasons for high concentrations of tiny particles to reach the expander:

a) Internal damage in the regenerator, or internal damage in the 3rd stage

separator.

Internal damage is not easily detected which makes this a major challenge. Scaling

can be due a combination of factors that we actually don’t know if they are

happening or not at the same time. Another problem is that the point of collection

of particles for analysis is not immediately before the expander so, in practice, we

can only infer what’s reaching expander from particles that are being regenerated.

From all possible variables that can influence the system, we have:

Table 1: Variables description.

variable description variable description

vnd Vanadium (ppm) c Carbon (%)

ni Nickel (ppm) re RE2O3 – Rare-earth oxides (%)

fe Iron (%) abd Apparent Bulk Density (g/cc)

cu Copper (ppm) alo Al2O3 Alumina Oxide (%)

pb Lead (%) aps Average Particle Size (microns)

na Sodium (%) pv Particules’ Pore Volume (cc/g)

po P2O5 – Phosphorus Pentoxide (%) mat Micro activity Test

mgo MgO – Magnesium Oxide (ppm) sa Particles’ Surface Area (m2/g)

cf Coke Factor vpb Vapour pressure (barg)

gf Gas factor vib Vibration Values (microns)

pin Inlet Pressure (barg) car Main Air Blower Flow (%)

pout Exhaust Pressure (barg) cr Reactor Feedstock (t/h)

tpin Inlet Temperature (◦C) bp Bypass Valve (%)

tpout Exhaust Temperature (◦C) pt Particles Size (%)
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5. SURVIVAL MODELS

Several approaches were tried to correlate some particles’ compounds and

attributes as well as with process variables such as temperature, pressure, among

others, with times to vibration failures using survival models.

1. First approach — Use the times to expander failure and correlate them

with particles’ compounds and attributes and with process physical

variables. For this, we have recorded all shut-down events since year

2000, censoring those that were not by vibration. Whenever there is a

shut-down, a “as good as new condition” is reached for turbo-expander

due to the thermal shock produced by equipment cooling.

2. Second approach — Use times to high vibration and correlate them

with particles’ compounds and attributes and with process physical

variables, as high vibration values can end in a shut-down or not. High

vibration values are harmful for the equipment, and they may not cause

a shut-down but they must be avoided, and are here treated as an event.

For this, we have recorded all shut-down events and high vibration val-

ues (higher than v/3 µm) since year 2000, censoring shut-downs that

were not by vibration. Whenever there is a shut-down or a high vibra-

tion value and the value drops again after some short time, a good as

new condition is considered.

5.1. Kaplan–Meier estimators

First, we have made a non-parametric approach using the Kaplan–Meier

estimator [9] (using software R) to obtain the survival curves for times to expander

vibration failure mode. As we have right censored data and the intervals between

events are typically non uniform, Kaplan–Meier is a good approach.

Let R(t) be the probability that a member from a given population will

have a lifetime exceeding t. For a sample of size N from the list of observations,

let the observed times until the shut-down of the N sample observations be t1 ≤

t2 ≤ t3 ≤ ··· ≤ tn. Corresponding to each ti is ni, the number “at risk” just prior

to time ti, and di, the number of shut-downs at time ti. The Kaplan–Meier

estimator is the non-parametric maximum likelihood estimate of R(t). It is a

product of the form:

(5.1) R̂(t) =
∏

ti<t

ni − di

ni

.
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5.1.1. First Approach — Only shut-downs are considered

In these Kaplan–Meier curves for times to expander vibration failure mode,

we know that reliability keeps high for values under v/2 µm. Therefore, one of the

goals here is to predict when vibration values become dangerous and a potential

spark for the fast increase in its values. Although reliability never drops below

50% (Figure 4), it is important to find the reasons for the shut-downs as they are

an important economical factor.
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Figure 4: Kaplan–Meier for the null model — Approach 1.

5.1.2. Second Approach — High vibration values are considered

The curve in Figure 5 shows us that high vibration values are recurrent

although shut-downs are not. The reliability values quickly decrease and when

t1 is reached, we have less than 50% of reliability for high vibration values.
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Figure 5: Kaplan–Meier for the null model — Approach 2.
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The question here, is that high vibration values can lead to one of two situations:

— particles deposited in rotor blades can drop due to imbalance caused by high

vibration, or — imbalance can increase as a result of high vibration and get out

of control leading to trip vibration values and cause a shut-down. Here is just a

matter of “mechanical free will”. That’s why it is important to check causes for

high vibration values.

5.2. Cox Proportional Hazards Model

Survival models were studied, first with a non-parametric approach with

Kaplan–Meier, and then, a semi-parametric approach was tried using Cox pro-

portional hazards. Cox model allows analysis of life times in which the outcome

variable is the time until the latest event, being censoring or failure, and is char-

acterised by the coefficients (β’s) which measure the effects of covariates on the

hazard rate:

(5.2) h(t) = h0(t) exp
{

β1x1 + ··· + βpxp

}

,

with:

• h0: baseline hazard rate function;

• β1, ..., βp: model parameters;

• x1, ..., xp: explanatory covariates.

Let Yi denote the observed time (either censoring time or event time) for obser-

vation i, and let Ci be the indicator that the time corresponds to an event (i.e.

if Ci = 1 the event occurred and if Ci = 0 the time is a censoring time, which is,

a general shut-down). We used the partial likelihood method for the parameters

using Breslow’s [1] estimate:

(5.3) L(β) =
∏

i:Ci=1

θi
∑

j:Yj≤Yi
θj

,

with

(5.4) θj = exp
{

β̂j

}

As it is a multivariate regression, correlation between covariates must be carefully

studied. Once vibration can be consequence of the other covariates, it was not

included for now in our models. Models were developed in order to avoid joining

correlated covariates, which had a Pearson’s correlation value above 0.75 or be-

cause experts show us that chemically speaking, when some covariate increases,

another one will also increase (or vice-versa). All variables here presented are con-

tinuous, and whenever a covariate is as significant as when categorized as when
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continuous, it will be used in its categorized form, in order to simplify model

interpretation. Models adjustments were made according Hosmer and Lemeshow

[7] modelling stages.

5.2.1. First Approach — Only shut-downs are considered

Univariate analysis was made to the covariates and those with significance

below 25% were considered in the multivariate model. Both forward and back-

ward methods were tested using R software, and the best fit was achieved for each.

Because this is a dynamic system, each time there is a shut-down, the event is

uploaded to the database and the model is tested again. Some variables were

added to the initial tested model because they were shown to be relevant, and

have, individually, good explanatory values. However, sometimes when together,

they have poor explanatory values. Variable vib corresponds to the vibration and

shall not be accompanying other variables in the same model due to collinearity.

From the possible 28 covariates, only 22, according the criterion of correlation,

can be used. Only 10 from these variables are significant at 10%. Choosing only

those variables with p-values below 25% of significance and after using backward

and forward techniques, only 8 of them were used, and Model 1 was reached as

shown in Table 2. Previously, in an initial approach we have used two differ-

ent models, one for chemical and another one for physical variables, but with

the introduction of new variables, this has shown not to be the best solution.

Table 2: Cox model 1.

variable β se(β) p-value

nix −3.12 0.88 0.0004

fe −11.18 5.68 0.0492

sa 0.11 0.03 0.0003

na −24.01 6.63 0.0003

vpb 0.86 0.36 0.0179

mgo 43.53 20.26 0.0316

cfx −328.5 97.29 0.0007

tpin −0.24 0.06 0.0000

cfx:tpin 0.46 0.14 0.0007

62.8% of the variation can be explained by this model, with a concordance value

of 0.899 and a likelihood ratio test with a p-value effectively zero. Variable sa is

the surface area of the particles and seems to be an important variable to take

into consideration. This variable explains about 18.4% of data variation in its
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univariate analysis. An increase in the surface area of the particles means that

they are more able to break and produce fine particles, and the increase of one

unit of sa increases the risk by about 5.5%. Coke factor (cf) and vanadium vnd

are important variables as well as they explain 15% and 11.5% of data variation

respectively in the univariate analysis. In Model 1 sa has an associated risk of

11.6%. Except for sa, mgo and vpb covariates, all the other covariates that are not

in an interaction (ni, fe, na), are indicating that if they are trending downward,

the risk will largely increase. We know also that for the increase in one unit of

vpb the associated risk increases almost 2.5 times keeping the other covariates

constant. Magnesium can be a contaminant metal when combined with other

components, and makes sense that the increase of one unit will exponentially

increase the covariate effect. Variable cfx is the categorized variable (0 and 1) for

coke factor and the cut-off point used for it was its mean because of its better

interpretation, and if it is trending downward it may indicate a higher risk. Inlet

temperature tpin can be a good monitoring variable for the same reason as cf.

Coke factor is related with temperature in the regenerator and thus, also with the

quantity of contaminant metals, so this interaction makes all sense. Statistically

speaking, we can say that for the cfx value of 0, the risk will decrease regardless

of the value of the inlet temperature (tpin), but if the cfx value is 1, the risk

will increase, with a higher risk (287 times) for inlet temperature values under

the 1st quartile. Also this means that for inlet temperatures above its mean, and

when cfx goes from 0 to 1, the risk starts to increase as we can see in Figure 6.
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Figure 6: Interaction cfx:tpin, tpin fixed.

In Figure 7a we have the survival estimates for the quartiles and in Figure 7b we

have the Kaplan–Meier estimate of model 1. Model 1 is quite satisfactory, with

good results in its residuals analysis, and linear correlation tests were made and

they suggest that none of the covariates violate the proportional hazards assump-

tions (see Appendix A). Realistic possible scenarios can be used and the survival

estimates are given for two examples in Figure 8a and Figure 8b. As we can see,

when the magnesium variable increases its concentration, reliability decreases.
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(b) Model 1 estimate via KM.

Figure 7: Estimate analysis for model 1.
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Figure 8: Reliability for different scenarios.

5.2.2. Second Approach — High vibration values are considered

Model 2 uses the second approach and supports the idea that our event is

“high vibration”. Times to high vibration values and shut-downs are here analysed

instead of only times to shut-down failures. Thus, using the same process vari-

ables, we achieve the Cox model 2 in Table 3. In this model, more than finding the

reasons for shut-downs, is to find the reasons for scaling. High vibrations can be a

spark for a shut-down and the line that bounds the two situations (shut-down or

not) is just a question of the way the scaling is being heterogeneously distributed

on the rotor blades, and how much imbalance it will cause. Comparing these

results with the previous model (model 1), we found some variables in common.
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Table 3: Cox model 2.

variable β se(β) p-value

fe −6.49 2.01 0.0013

tpin −0.05 0.01 0.0002

tpout −0.01 0.01 0.0278

re −0.95 0.28 0.0008

mgo −66.48 21.33 0.0018

na −202.8 58.24 0.0005

cf −3.22 1.77 0.0691

gf −2.81 0.69 0.0000

mgo:na 240.2 68.87 0.0005

cf:gf 1.65 0.49 0.0008

Nevertheless, some covariates that are not in common seem to have individually,

a high significance in both models, such as sa and vpb. However, when together in

the models they lose their significance. Approximately 35% of data variation are

explained by this model, with a concordance value of 0.74 and a likelihood ratio

test with a p-value effectively zero. We can see that the common covariates with

model 1 (fe, tpin, mgo, na and cf), are monitoring variables as well as exhaust

temperature (tpout). Magnesium oxide (mgo) is a very problematic component

when combined with sodium (na, which is a poison for the process and combined

with some metals can act as “glue”). For mgo and na interaction (Figure 9) we

(a) Interaction mgo:na, mgo fixed.

(b) Interaction mgo:na, na fixed.

Figure 9: Interaction mgo:na for model 2.
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have that for magnesium values fixed above the 3rd quartile, the risk can increase

from 22% to 4 times as much depending on sodium increase, but we have a clear

interaction when we set na at its maximum value and we see that the risk increases

18 times for values below mgo’s 1st quartile, although it always increases for all

mgo quartiles’ variations. Coke factor (cf) indicates the amount of produced coke

in the process and it can be a monitoring variable as it isn’t a protective factor.

Gas factor gf is concerned with the amount of produced gases and it can be read

as a monitoring variable as well. In Figure 10 we can see that for coke factor and

gas factor interaction, if we set cf value for its maximum, we will have a large

risk increase when we increase gf. At the same time, when we set the values for

gf and make cf increase, the hazard rates will increase for high values of gf.

(a) Interaction cf:gf, gf fixed.

(b) Interaction cf:gf, cf fixed.

Figure 10: Interaction cf:gf for model 2.

We can see in Figure 11a, that we have a better survival estimate than in

model 1, with a good fit to the quartiles. Linear correlation suggest that none

of the covariates violate the proportional hazards assumption as for model 1,

and the residual analysis didn’t show problematic points that may be interfering

in the model (see Appendix B). As with model 1, two different scenarios were

considered for model 2. We can see in Figure 12a the reliability curve for model 2

considering the mean for all variables. As we increase cf (Figure 12b) keeping all

other variables constant, we see that the reliability curve have a higher slope and

decreases faster.
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Figure 11: Estimate analysis for model 2.
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Figure 12: Reliability for different scenarios.

5.3. Parametric Models

In order to have a first parametric model, we have proceeded to parametric

approaches for the baseline hazard rate determination. As we can see, none of

the tested distributions are presenting a good fit, however, the log-normal has

the lowest AIC (Figure 13). In order to find a better parametric fit, only times

before t1 were considered. We can see a better approach is achieved with the

log-normal distribution in Figure 14, which has the lowest AIC. According to the

AIC value we also have the log-normal distribution as a good fit for the baseline

hazard as shown in Figure 15.
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Figure 13: Parametric models for the null model (model 1).
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6. CONCLUDING REMARKS

For the proposed problem in Section 4, the consistency of some covariates

in tested models make them a subject of investigation. Some covariates such

as surface area should be definitely monitored, as well as the inlet and exhaust

temperatures trend. It seems that sodium, magnesium and iron are influential

variables for the increase of the risk of high vibration values, and should be

monitored, although all these variables are very difficult to control as they depend

on the reactor feedstock and reactor temperatures. Investigation on this subject

will be ongoing as it can help to find the reasons for the so non-welcome shut-

downs. Future work will be done to mechanical equipment in order to optimize,

if possible, predictive maintenance scenarios.
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APPENDIX A

Here we have the residual analysis for model 1. We can see that proportion-

ality assumption is verified when we analyse Figure 16. Deviance residuals and

martingale residuals where analysed as well as score residuals and for all cases

possible outliers or influential observations where removed to check the availabil-

ity of the model. In all cases the coefficients never changed their values above

25%.
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Figure 16: Schoenfeld residuals for model 1.
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APPENDIX B

As for model 1 the proportionality assumption was checked via Schoenfeld

residuals.We can see that proportionality assumption is verified when we analyse

Figure 17. Just like model 1, model 2 has been checked for influential observations

with no significant change in its coefficients.
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Figure 17: Schoenfeld residuals for model 2.
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