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Abstract:

• In many applications of lifetime data analysis, it is important to perform inferences
about the change-point of the hazard function. The change-point could be a maximum
for unimodal hazard functions or a minimum for bathtub forms of hazard functions
and is usually of great interest in medical or industrial applications. For lifetime distri-
butions where this change-point of the hazard function can be analytically calculated,
its maximum likelihood estimator is easily obtained from the invariance properties of
the maximum likelihood estimators. From the asymptotical normality of the max-
imum likelihood estimators, confidence intervals can also be obtained. Considering
the exponentiated Weibull distribution for the lifetime data, we have different forms
for the hazard function: constant, increasing, unimodal, decreasing or bathtub forms.
This model gives great flexibility of fit, but we do not have analytic expressions for
the change-point of the hazard function. In this way, we consider the use of Markov
Chain Monte Carlo methods to get posterior summaries for the change-point of the
hazard function considering the exponentiated Weibull distribution.
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1. INTRODUCTION

Hazard function plays an important role in reliability and survival analysis

and usually it can increase(decrease) up to a maximum(minimum) and then de-

crease(increase) after this change-point, also known as turning or critical point,

[1, 12]. This is common in medical studies as in heart or kidney transplantation,

where the patients have an increasing hazard during an adaptation period and a

decreasing hazard after this adaptation period, [4]. In a study of recovery from

breast cancer, it has been observed by [18] that the maximum mortality occurs

after about three years and then it decreases slowly over a fixed period of time.

In other situation, we have a bathtub shape for the hazard function where we

have a decreasing hazard down to a minimum and then an increase after this

change-point. In reliability, the turning point of a hazard function is useful in

assessing the hazard in the useful life phase and this helps to determine and plan

appropriate strategies for burn-in, maintenance and repair policies, [1].

Some common lifetime distributions like the exponential or Weibull are

not appropriate to model non-monotonic hazard rate. Many existing probability

distributions used to analyze lifetime data have unimodal hazard functions: the

log-logistic distribution, [2]; the log-normal distribution, [17]; the inverse-Weibull

distribution, [16]; the exponentiated Weibull distribution [20, 21] among many

others. The exponentiated Weibull distribution is very flexible to be fitted by

the data since it has constant, increasing, decreasing, unimodal and bathtub

hazard functions. For situations where the hazard function is unimodal (bathtub)

shaped, usually, we have interest in the estimation of the lifetime change-point

that is, the point at which the hazard function reaches its maximum (minimum).

In applications, the exponentiated Weibull distribution gives great flexibility of

fit, but we do not have analytic expressions for the change-point of the hazard

function.

In this paper, under the Bayesian point of view, we consider the use of

Markov Chain Monte Carlo methods to get posterior summaries for the change-

point of the hazard function. The maximum likelihood estimation procedure is

also considered. It is important to point out that we do not have analytical ex-

pressions for this hazard change-point so we can not obtain classical asymptotic

confidence intervals for the hazard change-point. The paper is organized as fol-

lows: in Section 2 we introduce some characteristics of the exponentiated Weibull

distribution; in Section 3 we introduce the likelihood function in the presence of

censored observations; in Section 4 we introduce some illustrative examples and

finally, in Section 5 we present some conclusions.
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2. THE EXPONENTIATED WEIBULL DISTRIBUTION

Let T be a non-negative random variable with an exponentiated Weibull

distribution with hazard function given by:

(2.1) h(t) = θ
h1(t)S1(t)F1(t)

θ−1

1 −
[

F1(t)
]θ

where h1(t), S1(t) and F1(t) are, respectively, the hazard function, the survival

function and the accumulated distribution function of the Weibull distribution,

[19]. For the Weibull distribution with scale parameter µ > 0 and shape param-

eter β > 0, we have:

(2.2)

h1(t) =
β

µβ
tβ−1 , S1(t) = exp

[

−

(

t

µ

)β
]

and F1(t) = 1− exp

[

−

(

t

µ

)β]

.

From the standard relations, [19], S(t) = exp
[

−
∫ t

0
h(u) du

]

and f(t) =

− d
dt

S(t) and using the hazard function given in (2.1), we have the survival and

density functions written as:

(2.3) S(t) = 1 −
[

F1(t)
]θ

and f(t) = θ h1(t)S1(t)F1(t)
θ−1

respectively.

Explicitly we have that:

(2.4) S(t) = 1 −

{

1 − exp

[

−

(

t

µ

)β
]}θ

and

(2.5) f(t) = θ
β

µβ
tβ−1 exp

[

−

(

t

µ

)β
] {

1 − exp

[

−

(

t

µ

)β
]}θ−1

where µ > 0 is the scale parameter and θ > 0 and β > 0 are the shape parameters.

For θ = 1 in (2.4) and (2.5) we have the survival and density function for the two

parameter Weibull distribution. While, taking β = 1 we have the exponentiated

exponential distribution, introduced by [11].

The great advantage of the exponentiated Weibull distribution in compari-

son to Weibull distribution is related to the behavior of the hazard function which

depends on the values of θ and β. In Figure 1, we have the different shapes of

the hazard function given by (2.1).
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Figure 1: The exponentiated Weibull hazard function behavior.

3. HAZARD CHANGE POINT ESTIMATION — CLASSICAL

APPROACH

Let us assume that (t1, δ1), ..., (tn, δn) is a random sample of size n of life-

times generated by an exponentiated Weibull distribution with parameters µ, β

and θ and that (δi = 1) if ti is completely observed or (δi = 0) if ti is a right

censored observation (i = 1, ..., n). Assuming a non-informative censoring mech-

anism, [19], the likelihood and log-likelihood functions are given, respectively,

by:

(3.1) L
(

µ, β, θ | t, δ) =
n

∏

i=1

(

θ
h1(ti)S1(ti)F1(ti)

θ−1

1 − F1(ti)θ

)δi
(

1 − F1(ti)
θ
)

and:

l
(

µ, β, θ | t, δ
)

= R log θ +
n

∑

i=1

δi log
[

f1(ti)
]

+ (θ−1)
n

∑

i=1

δi log
[

F1(ti)
]

+
n

∑

i=1

(1− δi) log
[

1 − F1(ti)
θ
]

(3.2)

where R =
∑n

i=1
δi, h1(ti), S1(ti) and F1(ti) are defined in (2.2) and f1(ti) =

h1(ti)S1(ti).

Given a vector of observed lifetimes (t1, t2, ..., tn) and defining l =

l
(

µ, β, θ | t, δ
)

, the maximum likelihood estimates for µ, β and θ, denoted by

µ̂, β̂ and θ̂, are obtained solving, for example by Newton–Raphson, the following
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likelihood equations:

∂

∂µ
l = −βR +

n
∑

i=1

δi tih1(ti) − (θ−1)
n

∑

i=1

δi ti
f1(ti)

F1(ti)
+

n
∑

i=1

(1− δi) tih(ti) = 0 ,

∂

∂β
l =

n
∑

i=1

(1− δi) tih(ti) log

(

ti

µ

)

+ (θ−1)

n
∑

i=1

δi ti
f1(ti)

F1(ti)
log

(

ti

µ

)

−
n

∑

i=1

ti δi h1(ti) log

(

ti

µ

)

+ R
[

(1− β) log(µ)
]

+ β

n
∑

i=1

δi log(ti) = 0 ,

∂

∂θ
l = R + θ

n
∑

i=1

δi log F1(ti) + θ

n
∑

i=1

(δi−1)

S(t)
F1(ti)

θ log F1(ti) = 0 .

The 100 × (1 − α)% confidence intervals for µ, β and θ can be obtained

from the usual asymptotic normality of the maximum likelihood estimators with

Var(µ̂), Var(β̂) and Var(θ̂) estimated from the inverse of the observed Fisher

information matrix, that is, the inverse of the matrix of second derivatives of the

log-likelihood function locally at µ̂, β̂ and θ̂. From the invariance property of

maximum likelihood estimators, we can obtain confidence intervals for functions

of µ, β and θ. For φ = g(µ,β, θ), a differentiable function of µ, β and θ, we have

φ̂ = g(µ̂,β̂, θ̂) and the variance of φ̂ is obtained using the delta method, [23].

Although the delta method is applied to estimate Var
[

g(µ̂,β̂, θ̂)
]

, in some

cases, it does not work, [5]. As a special situation, for β < 1 and θ > 1 let us

assume that we are interested in getting confidence intervals for the maximum

of the exponentiated Weibull hazard function. Taking ϕ = h(t), defined in (2.1),

the maximum of the exponentiated Weibull hazard function, Tmax, is obtained as

solution of the equation d
dt

log(ϕ) = 0 where, from (2.1):

(3.3) log(ϕ) ∝ (β −1) log(t) −
t

β
h1(t) + (θ−1) log

[

F1(t)
]

− log
[

1 − F1(t)
θ
]

and:

(3.4)
d

dt
log(ϕ) =

β−1

t
− h1(t) + (θ−1)

h1(t)S1(t)

F1(t)
+ θ

h1(t)S1(t)F1(t)
θ−1

[

1 − F1(t)θ
] .

By the invariance principle of maximum likelihood estimator, the maximum

likelihood estimator of the change point is the solution of (3.4) with µ, β and θ re-

placed by their maximum likelihood estimates. We observe that (3.4) is non-linear

in t, so the maximum of the hazard function estimate T̂max, should be obtained

using some one dimensional root finding technique like Newton–Raphson. Since

T̂max in not obtained from an analytical expression, it is not possible to estimate
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Var
[

T̂max

]

using the delta method. This fact shows the difficulty in applying the

maximum likelihood methodology when the change point does not have closed

form and this fact justify the application of the Bayesian methodology. Standard

resampling procedures like the Bootstrap and the Jackknife are other alternatives

but they will not be considered in this paper.

4. HAZARD CHANGE POINT ESTIMATION — BAYESIAN

APPROACH

Under the Bayesian approach, assuming a joint prior distribution for ν =

(µ,β, θ) in the form π(ν) = π(θ)π(β)π(θ), we get the joint posterior distribution

given by:

(4.1) π(ν | t, δ) ∝ π(ν)
n

∏

i=1

(

θ
h1(ti)S1(ti)F1(ti)

θ−1

1 − F1(ti)θ

)δi
(

1 − F1(ti)
θ
)

.

From (4.1) it is clear that is not possible to get explicit forms for the

marginal posterior distributions for each parameter. In this way, we should use

some approximation method to solve integrals as the Laplace method, [26], or

some other numerical method, [22]. When models become too difficult to be ana-

lyze analytically, we have to use simulation algorithms, such as the Markov Chain

Monte Carlo methods to obtain posterior estimates, [7, 14]. The Markov Chain

Monte Carlo methods is a general simulation method for sampling from posterior

distributions and computing posterior quantities of interest. To simulate sam-

ples of the joint posterior distribution of interest, we need to sample successively

from a target distribution. The Gibbs algorithm requires to decompose the joint

posterior distribution into full conditional distributions for each parameter in the

model and then sample from each one of these conditional distributions

For the exponentiated Weibull distribution, the conditional posterior den-

sities for µ, β and θ show that standard sampling schemes are not feasible since

the conditional distributions are not given in a known form. In this way, an al-

ternative target distribution to the full conditional distributions should be used.

The alternative proposal distribution should be a distribution from which it is

easy to sample from it; in this way, we use Metropolis–Hastings algorithms, [3, 14].

Tierney (1994) suggested, when possible, use of the Metropolis–Hastings algo-

rithm within Gibbs sampling to sample from full conditional distributions.

In our applications, to sample from the full conditional distributions for µ,

β and θ, we have used the Adaptive Rejection Metropolis Sampling algorithm,

ARMS, introduced by Gilks et al. (1995) also discussed in [10]. This algorithm is a

generalization of the method of adaptive rejection sampling of Gilks (1992) which



316 J. Mazucheli, E. Coelho-Barros and J. Achcar

includes a Metropolis step to accommodate non-log-concavity in the density that

will be sampled. The C code, written by Gilks, and linked to the matrix language

Ox, [6], was used to compute the posterior summaries of interest. The ARMS

algorithm, to the best of our knowledge, also is available in the libraries dlm,

SamplerCompare and HI, under R, [15]. ARMS is also available in GENMOD,

LIFEREG, PHREG and MCMC procedures under SAS version 9.2. The MCMC

procedure provides a flexible environment for fitting a wide range of models.

It is important to point out that [24] employed Bayesian and frequentist

perspectives for estimating parameters for exponentiated Weibull distribution and

showed a comprehensive and updating list of references.

5. SOME ILLUSTRATIVE EXAMPLES

5.1. An Example with a Simulated Data Set

In this subsection we introduce an example considering a simulated data

set from an exponentiated Weibull distribution with parameters µ = 1, β = 0.8

and θ = 4.0. Since µ does not change the maximum of the hazard function,

without loss of generality, we consider it known and equal to 1. Under this

parameter configuration, the hazard function is of bathtub shape and we would

like to estimate the parameter Tmax (the “true value” of Tmax is 3.9114).

A total of n = 50 observations (see Table 1) were simulated using the inver-

sion method considering δi = 1 (i = 1, ..., 50). Replacing the values of β and θ

by their maximum likelihood or Bayesian estimates we can solve (3.4) for t to get

the maximum of the hazard function.

Table 1: Simulated data set from an exponentiated Weibull distribution
with µ = 1, β = 0.8 and θ = 4.0.

0.23 0.53 0.54 0.60 0.65 0.84 0.90 0.96 0.98 0.99
1.05 1.26 1.28 1.31 1.33 1.37 1.45 1.53 1.69 1.72
1.77 1.80 1.96 2.06 2.14 2.24 2.35 2.40 2.47 2.47
2.58 2.68 2.73 2.77 2.78 2.96 3.04 3.31 3.36 3.67
4.01 4.16 4.19 4.36 4.91 5.10 5.81 6.27 7.39 7.41

As observed in [1], the turning point of a hazard rate function is useful

in assessing the hazard in the useful life phase and helps to determine and plan

appropriate burn-in, maintenance, and repair policies and strategies. For many

bathtub-shaped distributions, the turning point is unique, and the hazard varies

little in the useful life phase.
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In Table 2 we have the maximum likelihood estimates (standard-errors) and

the posterior means of the parameters β, θ and Tmax assuming non-informative

gamma prior distribution for the parameters β and θ. The maximum likelihood

estimates were obtained by the Newton–Raphson method available in the software

SAS/NLP procedure, [13]. With the obtained maximum likelihood estimates

β̂ and θ̂ we estimate Tmax maximizing (3.3). Under the Bayesian approach,

the parameters β and θ were estimated using the ARMS algorithm in Ox. We

simulated five separate chains using different overdispersed starting values for

each run. The algorithm was run for 21000 iterations and the starting values

were based in previous runs of the ARMS algorithm for large intervals. This

strategy follows the ideas discussed in Gilks et al. (1995, 1997). We considered five

initial abscissae based on 5%, 40%, 50%, 60% and 95% of the envelope function

after previous runs. In order to diminish the effect of the starting parameter

values, we discarded the first 1000 elements of each chain. Convergence of the

five combined simulated chain was observed using diagnostic procedures available

in BOA library, [25], under R, [15]. For each parameter we considered every 5th

draw and stopped at a sample of size 20000. The hyperparameters were set so

that we had a proper but very non-informative prior. For all parameters we have

adopted a gamma prior distribution with shape and scale parameters equal to

0.001. From each β̂ and θ̂ the Tmax estimates were obtained by maximization

of (3.3). Again, the Newton–Raphson method under SAS/NLP procedure was

used. Figure 2 shows the estimated marginal posterior distribution for β, θ and

Tmax.

Table 2: Maximum likelihood estimates (standard error), 95% confidence intervals,
posterior means (standard deviation) and 95% credible intervals.

Parameter MLE‡ 95% Confidence Interval

β
0.8152

(0.0610)
(0.6956; 0.9348)

θ
3.8845

(0.5570)
(2.7928; 4.9762)

Tmax 3.9329 —

‡maximum likelihood estimate.

Parameter Posterior Mean 95% Credible Interval

β
0.8102

(0.0617)
(0.6891; 0.9295)

θ
3.8714

(0.5475)
(2.8790; 4.9981)

Tmax

3.9768
(0.6800)

(2.5564; 5.2575)
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Figure 2: Estimated marginal posterior distribution for β, θ and Tmax.

5.2. An Example with a Real Data Set

As a second example, let us consider the failure data for a group of 60 electri-

cal appliances in a life test (1000s of cycles) extracted from Lawless (2003, p. 112).

Figure 3 shows the Kaplan–Meier survival curve with fit for the exponentiated

Weibull distribution. We observe close agreement between the Kaplan–Meier

survival curve with the exponentiated Weibull distribution. The maximum like-

lihood and posterior means estimates are showed in Table 3 and obtained in a

similar way as considered in the simulated example.

0 2 4 6 8 10

0.0
0.2

0.4
0.6

0.8
1.0

t

S^ (t)

Figure 3: Fit of exponentiated Weibull distribution. (—) Kaplan–Meier survival
curve and (···) exponentiated Weibull survival function.
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From the results of Table 3, we observe that β̂ > 1 and θ̂ < 1, that is, we

have a bathtub form for the hazard function (see Figure 1). In this situation we

have interest in getting inferences for the change-point of the hazard function.

This change-point is given by the minimum Tmin of the hazard function (2.1),

obtained from equation (3.4).

Table 3: Maximum likelihood estimates (standard error), 95% confidence intervals,
posterior means (standard deviation) and 95% credible intervals.

Parameter MLE‡ 95% Confidence Interval

µ
4.1595

(0.9794)
(2.2399; 6.0791)

β
1.9599

(0.6420)
(0.7017; 3.2181)

θ
0.3717
0.1657

(0.0470; 0.6964)

Tmin 0.8865 —

‡maximum likelihood estimate.

Parameter Posterior Mean 95% Credible Interval

µ
4.0491

(0.6690)
(2.8853; 5.4856)

β
1.7862

(0.3635)
(1.2142; 2.6146)

θ
0.4360

(0.1164)
(0.2470; 0.6904)

Tmin

1.0316
(0.5217)

(0.1804; 2.3321)

In Figure 4, we have the plots for the approximated marginal posterior

distributions for µ, β, θ and Tmin based on the 20000 simulated samples.



320 J. Mazucheli, E. Coelho-Barros and J. Achcar

µµ

ππ
(µµ

|t
,δδ

)

2 3 4 5 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

(a)

ββ

ππ
(ββ

|t
,δδ

)

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

θθ

ππ
(θθ

|t
,δδ

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

(c)

Tmin

ππ
(T

m
in

|t
,δδ

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

(d)

Figure 4: Marginal posterior distribution for µ, β, θ and Tmin.

6. CONCLUDING REMARKS

Inferences for the change-point of the hazard function are of great interest

in lifetime studies, especially in medical or industrial applications. Assuming the

exponentiated Weibull distribution we can have better fit for lifetime data since

we have different shapes for the hazard function. In this situation, we do not

have analytic expressions for the change-point of the hazard function (maximum

if we have unimodal hazard function or minimum if we have bathtub hazard

function) and we cannot use standard asymptotic classical inference methods

to obtain inferences for the change-point. Using standard Markov Chain Monte

Carlo simulation methods for a Bayesian analysis of the model, we get in a simple

way, the posterior summaries of interest, like credible intervals for the change-

points.
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