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Abstract:

• In this paper it is proposed a spatio-temporal area level linear mixed model involving
spatially correlated and temporally autocorrelated random effects. An empirical best
linear unbiased predictor (EBLUP) for small area parameters has been obtained under
the proposed model. Using previous research in this area, analytical and bootstrap
estimators of the mean squared prediction error (MSPE) of the EBLUP have also
been worked out. An extensive simulation study using time-series and cross-sectional
data was undertaken to compare the efficiency of the proposed EBLUP estimator
over other well-known EBLUP estimators and to study the properties of the proposed
estimators of MSPE.
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1. INTRODUCTION

Large scale repeated sample surveys are usually designed to produce reliable

estimates of several characteristics of interest for large subgroups of a population,

from which samples are drawn. A subgroup may be a geographical region or

a group obtained by cross-classification of demographic factors such as age or

gender. However, for effective planning in a wide variety of fields, there is a

growing demand to produce similar estimates for smaller subgroups for which

adequate sample sizes are not available. In fact, sample sizes are frequently

very small or even zero in many subgroups of interest (small areas), resulting in

unreliable direct design-based small area estimates. This creates a need to employ

indirect estimators that “borrow information” from related small areas and time

periods through linking models using recent census or current administrative data,

in order to increase the effective sample size and thus precision. Such indirect

estimators are often based on explicit Linear Mixed Models (LMM) that provide a

link to a related small area through the use of supplementary data. The empirical

best linear unbiased prediction (EBLUP) approach is one of the most popular

methods for the estimation of small area parameters of interest. This approach

uses an appropriate LMM which captures several salient features of the areas and

combines information from censuses or administrative records conjointly with the

survey data. When time-series and cross-sectional data are available, longitudinal

LMM might be useful to take simultaneously advantage of both the possible

spatial similarities among small areas and the expected time-series relationships of

the data in order to improve the efficiency of the small area estimators. Although

there is some research on temporal (e.g. Rao & Yu, 1994; Datta et al., 2002; Saei

& Chambers, 2003; Pereira & Coelho, 2010) and on spatial small area estimation

using LMM (e.g. Salvati, 2004; Petrucci et al., 2005; Petrucci & Salvati, 2006;

Chandra et al., 2007; Pratesi & Salvati, 2008), there is a need of research in the

field of small area estimation using LMM with spatio-temporal information. Such

kind of estimation might account simultaneously for the spatial dependence and

the chronological autocorrelation in order to strengthen the small area estimates.

This can be achieved by incorporating in the model both area specific random

effects and area-by-time specific random effects. The area specific random effects

could then be linked by a spatial process, while the area-by-time random effects

could be linked by a temporal process. This approach is definitely more complex

than a simple regression method and its success depends on the ability to define a

suitable spatial neighbourhood, to specify properly spatial and temporal processes

and to estimate additional parameters.

Thus, the main goal of this paper is to propose a simple and intuitive spatio-

temporal LMM involving spatially correlated and temporally autocorrelated ran-

dom area effects, using both time-series and cross-sectional data. The proposed

model is an extension of three well-known small area models in the literature.
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Under the proposed model, two research questions are addressed. Firstly, we

analyse the extent to which the spatial and the temporal relationships in the

data justify the introduction of a spatial and a temporal autoregressive parame-

ters in the model. This is carried out via a simulation study which compares the

efficiency of the proposed EBLUP estimator against other well-known EBLUP

estimators, by taking into account the joint effects of the following components:

the sampling variances of the direct estimators of the small area parameters; the

variance components of the random effects; and the spatial and temporal auto-

correlation parameters. Secondly, we discuss how to measure the uncertainty of

the proposed EBLUP. This is carried out via a simulation study which compares

the accuracy of the analytical and the bootstrap estimators of the mean squared

prediction error (MSPE) introduced in this paper.

Singh et al. (2005) proposed the only existing work on small area estimation

using spatial-temporal approaches. They proposed a spatio-temporal state space

model via Kalman filtering estimation which, like our model, borrows strength

from past surveys, neighbour small areas and a set of covariates. However, our

model, unlike the model due to Singh et al. (2005), makes use of a different

estimation method and incorporates independent specific random effects. Note

that the model due to Singh et al. (2005) considers an interaction between the

spatial dependence and the temporal autocorrelation, since the spatial process is

stated in the design matrix of random effects.

This paper is organized as follows. In Section 2 it is proposed a spatio-

temporal area level LMM. The BLUP and EBLUP of the mixed effects are also

provided in this section. Section 3 discusses the measure of uncertainty of the

proposed EBLUP. In this section it is proposed both an analytical and a para-

metric bootstrap method to estimate the MSPE of the EBLUP. The design of the

simulation study, as well as its empirical results on the efficiency of the proposed

EBLUP and on the properties of the proposed estimators of MSPE, is reported

in Section 4. Finally, the paper ends with a conclusion in Section 5, which sum-

marizes the main advantages of the proposed methodology and identifies further

issues of research.

2. THE SPATIO-TEMPORAL MODEL

2.1. Proposed model

Let θ = col1≤i≤m(θi) be a mT×1 vector of the parameters of inferential

interest and assume that y = col1≤i≤m(yi) is its design-unbiased direct survey

estimator. Here θi = col1≤t≤T (θit), yi = col1≤t≤T (yit) and yit is the direct survey
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estimator of the parameter of interest for small area i at time t, θit(i = 1, ..., m;

t = 1, ..., T ). Thus the sampling error model is given by:

(2.1) y = θ + ǫ

where ǫ = col1≤i≤m;1≤t≤T (εit) is a mT×1 vector of sampling errors. We assume

that ǫ
iid
∼ N(0;R), where R = diag1≤i≤m;1≤t≤T (σ2

it) is a mT ×mT matrix with

known sampling variances of the direct estimators. We propose the following

linking model in which the parameters of inferential interest are related to area-

by-time specific auxiliary data through a linear model with random effects:

(2.2) θ = Xβ + Z1v + u2

where X = col1≤i≤m;1≤t≤T (x′
it) is a mT×p design matrix of area-by-time specific

auxiliary variables with rows given by x′
it =(xit1, ..., xitp) (1×p), β= (β1, ..., βp)

′

(p×1) is a column vector of regression parameters, v = col1≤i≤m(νi) is a m×1

vector of random area specific effects and u2 = col1≤i≤m;1≤t≤T (u2,it) is a mT×1

vector of random area-by-time specific effects. Further, Z1 = Im⊗1T (mT×m)

where Im is an identity matrix of order m and 1T (T×1) is a column vector of

ones. We assume that X has full column rank p and v is the vector of the second

order variation.

In order to take into account for the spatial dependence among small areas

we propose the use of a simple spatial model in the random area specific effects. In

particular, we propose the use of the simultaneous autoregressive (SAR) process

(Anselin, 1992), where the vector v satisfies:

(2.3) v = φWv + u1 ⇒ v = (Im − φW)−1u1 ,

where φ is a spatial autoregressive coefficient which defines the strength of the

spatial relationship among the random effects associated with neighboring ar-

eas and W = {wij} (m×m) is a known spatial proximity matrix which indicates

whether the small areas are neighbors or not (i, j = 1, ..., m). A simple common

way to specify W is to define wij = 1 if the area i is physically contiguous to area j

and wij = 0 otherwise. In this case W is a contiguity matrix. The most common

way to define W is in the row standardized form, that is, restricting rows to

satisfy
∑m

j=1 wij = 1, for i = 1, ..., m. It is yet possible to create more elaborate

weights as functions of the length of common boundary between the small areas

(Wall, 2004). Further, u1 = col1≤i≤m(u1i) is a m×1 vector of independent error

terms satisfying u1
iid
∼ N(0; σ2

uIm).

In order to borrow strength across time we propose the use of autocorrelated

random effects. In particular, we propose that u2,it’s follow a common first-order

autoregressive [AR(1)] process for each small area:

(2.4) u2,it = ρ u2,i,t−1 + ξit , |ρ| < 1 ,
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where ξit’s are the error terms satisfying ξit
iid
∼ N(0; σ2) and ρ is a temporal au-

toregressive coefficient which measures the level of chronological autocorrelation.

Combining models (2.1)–(2.4), the proposed model involving spatially cor-

related and temporally autocorrelated random area effects may be written in

matrix form as:

(2.5) y = Xβ + Zυ + ǫ ,

where Z = [Z1 ImT ], Z1 = Im⊗1T and υ = [v′ u′
2]
′. Further, we assume that error

terms v = (Im − φW)−1u1, u2 and ǫ are mutually independent distributed with

u1
iid
∼ N(0; σ2

uIm), u2
iid
∼ N(0; σ2Im ⊗ Γ) and ǫ

iid
∼ N(0;R), where Γ(T×T ) is a

matrix with elements ρ|r−s|/(1−ρ2), r, s = 1, ..., T and R = diag1≤i≤m;1≤t≤T (σ2
it).

We can now see that model (2.5) is a special case of the general LMM with a

block diagonal covariance matrix of υ, given by G = diag1≤k≤2(Gk), where G1

and G2 are the covariance matrices of v and u2, respectively. As showed by

Salvati (2004) and by Rao & Yu (1994), these covariance structures are given by

G1 = E(vv′) = σ2
u

[
(Im − φW)′ (Im − φW)

]−1
and G2 = E(u2u

′
2) = σ2Im ⊗ Γ,

respectively. It follows that the covariance matrix of y is:

(2.6) V = diag1≤i≤m;1≤t≤T (σ2
it) + Z1σ

2
uB

−1Z′
1 + σ2Im ⊗ Γ ,

where B = (Im − φW)′ (Im − φW). Note that V is not a block diagonal covari-

ance structure, like in the context of the well known Fay–Herriot and Rao–Yu

models. Finally, note that the temporal model due to Rao & Yu (1994) can be

obtained from model (2.5) setting φ = 0, as well as the spatial model due to Sal-

vati (2004) can be obtained from model (2.5) setting T = 1, ρ = 0 and σ2 = 0.

The model proposed by Fay & Herriot (1979) is also a particular case of model

(2.5) since it can be obtained setting T = 1, φ = 0, ρ = 0 and σ2 = 0. However,

if the spatial and temporal autocorrelation parameters are not equal to zero then

the model proposed by Singh et al. (2005) cannot be obtained from model (2.5)

because it is assumed in this model that the error terms are mutually independent.

2.2. The BLUP

The current small area parameter, θit = x′
itβ+ νi +u2,it, is a special case of

the linear combination τ = k′
itβ + m′

itυ, where k′
it = x′

it and m′
it = [m′

1i m′
2it] in

which m′
1i = (0, ..., 0, 1, 0, ..., 0) is a 1×m vector with value 1 in the ith position

and 0 elsewhere, and m′
2it = (0, ..., 0, 1, 0, ..., 0) is a 1×mT vector with value 1 in

the (it)th position and 0 elsewhere. Noting that model (2.5) is a special case of

the general LMM, thus the BLUP estimator of τ = θit can be obtained from Hen-

derson’s general results (Henderson, 1975). Assuming first that ψ = (σ2, σ2
u, φ, ρ)′
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is fully known, the BLUP of θit is given by:

(2.7) θ̃it = θ̃H
it (ψ) = x′

itβ̃ + h′
itV

−1 (y − Xβ̃) ,

where β̃ = β̃(ψ) = (X′V−1X)−1X′V−1y is the best linear unbiased estimator of

β and h′
it is a 1×mT vector which captures the potential spatial and temporal

autocorrelation present in the ith small area. Further, h′
it = σ2

uς
′
i ⊗ 1′

T + σ2ζ′it
where ς ′i = {ςii′} is the tth row of the B−1 matrix and ζ′it is a 1×mT vector with

m T -dimensional blocks, with the tth row of the Γ matrix, γt, in the ith block

and null vectors, 01×T , elsewhere, i, i′ = 1, ..., m; t = 1, ..., T . This estimator can

be classified as a combined estimator, since it can be decomposed into two com-

ponents: a synthetic estimator, x′
itβ̃, and a correction factor, h′

itV
−1(y − Xβ̃).

We can say that the weights in h′
itV

−1 allow a correction of the synthetic part of

the estimator (2.7) through the regression residuals from the small area that is the

target of inference at tth time point and from this area at previous time periods,

but also from the regression residuals from other small areas at the tth time point

which are spatially correlated with the target small area. From expression (2.7)

it is also possible to observe that when a particular small area is not represented

in the sample of period t, it is still possible to estimate the correction factor

through the spatial and/or temporal autocorrelation, if there are data collected

for small area i in at least one of the previous samples and/or for one related

small area at time period t. This is certainly a very appealing characteristic of

the estimator (2.7): it is possible to avoid the reduction of the proposed estimator

to a pure synthetic estimator, even when the sample size of period t in the ith

small area is null.

2.3. The two-stage estimator

The BLUP estimator depends on the parameters of the vector ψ = (σ2, σ2
u,

φ, ρ)′, but in practice they are unknown and have to be estimated from the

data. As far as the estimation of ψ is concerned, a number of methods have

been proposed in the literature, such as the maximum likelihood method (Fisher,

1922; Hartley & Rao, 1967), the restricted maximum likelihood method (Thomp-

son, 1962; Patterson & Thompson, 1971) and the analysis of variance (ANOVA)

method (Henderson, 1953), among others. While the likelihood-based methods

assume the normality of the error terms, the ANOVA method is free of this kind

of assumptions. So, in the present work we have decided to estimate the variance

components through an extension of Henderson method 3 (Henderson, 1953) to

the model (2.5) with spatial correlated errors through a SAR process, νi, temporal

autocorrelated errors through an AR(1) process, u2,it, and independent sampling

errors, εit. Furthermore, we have assumed that the autoregressive coefficients are

known, due to difficulties on getting efficient and admissible estimators for ρ, as
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was reported by Fuller (1987) and by Rao & Yu (1994). Thus, from this point

forward we define the vector of variance components as ψ = (σ2, σ2
u)′.

We first obtain an unbiased estimator of σ2. For this purpose, model (2.5)

is transformed in order to eliminate the vector of random area specific effects v.

First transform yi to zi = Pyi such that the covariance matrix V (Pu2i) = σ2IT .

In this Prais–Winsten transformation we use the decomposition Γ = P−1(P−1)′,

where P(T×T ) has the following form: p1,1 = (1 − ρ2)1/2, pt,t′ = 1,∀ t = t′ for

t, t′ = 2, ..., T , pt+1,t =−ρ for t = 1, ..., T −1 and remaining pt,t′ = 0 (Judge et al.,

1985). Pre-multiplying model (2.5) by diag1≤i≤m(P), the transformed model is

given by:

(2.8) z∗ = H∗β + diag1≤i≤m(f)v + col1≤i≤m(Pu2i) + col1≤i≤m(Pǫi) ,

where z∗ = col1≤i≤m(zi), H∗ = col1≤i≤m(Hi), zi = Pyi, Hi = PXi and f =

P1T = col1≤i≤m(ft), with f1 = (1 − ρ2)1/2 and ft = 1 − ρ for 2 ≤ t ≤ T .

Next we transform zi to z
(1)
i = (IT − D) zi, where D = (ff ′)/c is a T×T ma-

trix with c = f ′f = (1 − ρ)
[
T − (T − 2)ρ

]
. Pre-multiplying now model (2.8) by

D∗ = diag1≤i≤m(IT −D) and noting that (IT −D)f = 0T×1, then the transformed

model reduces to:

(2.9) z(1) = H(1)β + e(1) ,

where z(1) = col1≤i≤m

(
z
(1)
i

)
, H(1) = col1≤i≤m

(
H

(1)
i

)
, H

(1)
i = (IT − D)PXi and

e(1) = col1≤i≤m

[
(IT − D)P(u2i + ǫi)

]
. Further, we can see at this moment that

E
(
e(1)

)
= 0mT×1 and V

(
e(1)

)
= diag1≤i≤m

[
(IT −D) (σ2IT + PRiP

′) (IT −D)′
]

do not involve σ2
u, thus we can estimate σ2 through the reduced model (2.9) using

the residual sum of squares. Let ê(1)′ ê(1) be the residual sum of squares obtained

by regressing z(1) on H(1) using ordinary least squares (OLS). An unbiased esti-

mator of σ2 is given by:

(2.10)

σ̃2 =

(
ê(1)′ ê(1)− tr

{[
D∗−H(1)

(
H(1)′H(1)

)−
H(1)′

]
R(1)

})[
m(T−1)− r(H(1))

]−1
,

where R(1) = diag1≤i≤m(PRiP) and A− is the Moore–Penrose generalized in-

verse of A. Although this estimator has been deducted in the context of the

spatio-temporal proposed model, it is equal to the estimator proposed by Rao

& Yu (1994) in the context of their temporal model. This happens due to the

fact that we have transformed model (2.5) in order to eliminate the vector of

random area specific effects v, which accounts for the spatial dependence among

small areas. Rao & Yu (1994) showed that estimator (2.10) is unbiased and

asymptotically consistent.

Turning to the estimation of σ2
u, we transform zi to z

(2)
i = c−1/2 f ′zi such

that u
(2)
2i = c−1/2 f ′Pu2i has mean 0 and variance σ2. Pre-multiplying model (2.8)

by diag1≤i≤m(c−1/2 f ′) and noting that c−1/2 f ′f = c1/2, we obtain the following
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transformed model:

(2.11) z(2) = H(2)β + e(2) ,

where z(2) = col1≤i≤m(c−1/2 f ′zi), H
(2) = col1≤i≤m(c−1/2 f ′Hi) and e(2) = c1/2v+

u
(2)
2 +ǫ(2), in which u

(2)
2 = col1≤i≤m(c−1/2 f ′Pu2i) and ǫ(2) = col1≤i≤m(c−1/2 f ′Pǫi).

The error term of model (2.11) has E(e(2)) = 0m×1 and V (e(2)) = cσ2
uB−1 +

σ2Im + R(2), where R(2) = diag1≤i≤m(c−1f ′PRiP
′f). Let ê(2)′ ê(2) be the resid-

ual sum of squares obtained by regressing z(2) on H(2) using OLS. An unbiased

estimator of σ2
u is given by:

(2.12) σ̃2
u =

{
ê(2)′ ê(2)−tr

(
PH(2)R

(2)
)
− σ̃2

[
m−r

(
H(2)

)]}/[
c×tr

(
PH(2)B

−1
)]

,

where PH(2) = Im − H(2)
(
H(2)′H(2)

)−
H(2)′ and σ̃2 is given by (2.10). The unbi-

asedness of σ̃2
u follows by noting that E(ê(2)′ê(2)) = cσ2

u tr(PH(2)B−1) + σ2
[
m −

r(H(2))
]
+ tr(PH(2)R(2)). Since σ̃2 and σ̃2

u can take negative values, we trun-

cate them at zero and use σ̂2 = max{0, σ̃2} and σ̂2
u = max{0, σ̃2

u}. The truncated

estimators are no longer unbiased but they are still asymptotically consistent.

A two-stage estimator of θit can now be obtained from (2.7) by replacing

ψ = (σ2, σ2
u)′ for ψ̂ = (σ̂2, σ̂2

u)′:

(2.13) θ̂it = θ̂H
it (ψ̂) = x′

itβ̂ +
(
σ̂2

uς
′
i ⊗ 1′

T + σ̂2ζ′it
)
V̂−1

(
y − Xβ̂

)
.

This estimator is not a genuine EBLUP because we have assumed known au-

toregressive coefficients. An adequate name for estimator (2.13) would be partial

EBLUP, because just the variance components were replaced by their estimators.

However, for simplicity it is called EBLUP along this manuscript. Following

Kackar & Harville (1984) and Rao & Yu (1994), we may note that estimator

(2.13) is unbiased as estimators of variance components, (2.10) and (2.12), are

even functions of y and translation-invariant.

3. ESTIMATION OF THE MSPE OF THE TWO-STAGE ESTI-

MATOR

Under the normality of the random effects and random errors, following

the Kackar & Harville (1984) identity and using the Henderson’s general result

(Henderson, 1975), the MSE of an EBLUP can be decomposed as:

(3.1) MSE
[
θ̂it(ψ̂)

]
= g1it(ψ) + g2it(ψ) + E

[
θ̂it(ψ̂) − θ̃it(ψ)

]2
,

where E means the expectation with respect to model (2.5), g1it(ψ) represents

the uncertainty of the EBLUP due to the estimation of the random effects and
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is of order o(1), g2it(ψ) is due to the estimation of the fixed effects and is of

order o(m−1), and the last term measures the uncertainty due to the estimation

of the variance components. The first two terms can be analytically evaluated,

due to the linearity of the EBLUP in the data vector y, from the following closed

formulas,

(3.2) g1it(ψ) = σ2
uςii +

σ2

1− ρ2
−

(
σ2

uςi ⊗ 1T + σ2ζit

)′
V−1

(
σ2

uςi ⊗ 1T + σ2ζit

)

and

g2it(ψ) =
[
xit − X′V−1

(
σ2

uςi ⊗ 1T + σ2ζit

)]′
(X′V−1X)−1

×
[
xit − X′V−1

(
σ2

uςi ⊗ 1T + σ2ζit

)]
.

(3.3)

However, the third term on the right of equation (3.1) does not have a closed-

form expression, due to the non-linearity of the EBLUP in the data vector y, and

therefore an approximation is needed.

3.1. Analytical approximation of the MSPE estimator

Following Kackar & Harville (1984) Taylor series approximation and then

the lines of Prasad & Rao (1990), we propose the following analytical approxi-

mation of the third term of (3.1):

(3.4) E
[
θ̂it(ψ̂) − θ̃it(ψ)

]2
≈ tr

[
Lit(ψ)V(ψ)L′

it(ψ)V(ψ̂)
]

= g3it(ψ) ,

where Lit(ψ) =
∂b

′

it
(ψ)

∂ψ , V(ψ) is given by (2.6) and V(ψ̂) denotes the asymptotic

covariance matrix of ψ̂. Using b′
it(ψ) =

(
σ2

uς
′
i ⊗ 1′

T + σ2ζ′it
)
V−1 it follows that

Lit(ψ) =
(

∂bit

∂σ2 , ∂bit

∂σ2
u

)′
is a 2×mT matrix with two blocks given by:

(3.5)
∂b′

it

∂σ2
=

[
ζ′it −

(
σ2

uς
′
i ⊗ 1′

T + σ2ζ′it
)
V−1

(
Im ⊗ Γ

)]
V−1

and

(3.6)
∂b′

it

∂σ2
u

=
[
ς ′i ⊗ 1′

T −
(
σ2

uς
′
i ⊗ 1′

T + σ2ζ′it
)
V−1

(
Z1B

−1Z′
1

)]
V−1 .

Let Ait(ψ) = Lit(ψ)V(ψ)L′
it(ψ) = {akl}, thus it follows from previous results

that it is a 2×2 symmetric matrix with elements:

a11 =
[
ζit − (Im ⊗ Γ)V−1

(
σ2

uςi ⊗ 1T + σ2ζit

)]′
V−1

×
[
ζit − (Im ⊗ Γ)V−1

(
σ2

uςi ⊗ 1T + σ2ζit

)]
,

(3.7)

a22 =
[
ςi ⊗ 1T − (Z1B

−1Z′
1)V

−1
(
σ2

uςi ⊗ 1T + σ2ζit

)]′
V−1

×
[
ςi ⊗ 1T − (Z1B

−1Z′
1)V

−1
(
σ2

uςi ⊗ 1T + σ2ζit

)](3.8)
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and

a12 = a21 =
[
ζit − (Im ⊗ Γ)V−1

(
σ2

uςi ⊗ 1T + σ2ζit

)]′
V−1

×
[
ςi ⊗ 1T − (Z1B

−1Z′
1)V

−1
(
σ2

uςi ⊗ 1T + σ2ζit

)]
.

(3.9)

It remains to obtain the elements of V(ψ̂) in expression (3.4). Following

the lines of Rao & Yu (1994), we propose the evaluation of those elements using a

lemma on the covariance of two quadratic forms of normally distributed variables

(Jiang, 2007, p. 238). For this purpose we have to write σ̃2 and σ̃2
u as quadratic

forms of normally distributed variables. These estimators can be written as:

σ̃2 = k1a
′C1a + k2(3.10)

and

σ̃2
u = k3 a′C2a + k4 a′C1a + k5 ,(3.11)

where k1 =
[
m(T−1)−r(H(1))

]−1
, k2 =− tr

{[
D∗−H(1)(H(1)′H(1))− H(1)′

]
R(1)

}
[
m(T − 1) − r(H(1))

]−1
, k3 =

[
c × tr(PH(2)B−1)

]−1
, k4 = −k1

[
m − r(H(2))

][
c ×

tr(PH(2)B−1)
]−1

and k5 =
{
−k2

[
m−r(H(2))

]
−tr(PH(2)R(2))

} [
c×tr(PH(2)B−1)

]−1

are constants. Furthermore a = Z1v + u2 + ǫ ∼ N(0;V), C1 = C(1)′
[
ImT −

C(1)X(X′C(1)′C(1)X)−X′C(1)′
]
C(1) and C2 = C(2)′

[
Im−C(2)X(X′C(2)′C(2)X)−

X′C(2)′
]
C(2) are symmetric matrices with C(1) = diag1≤i≤m

[
(IT − D)P

]
and

C(2) = diag1≤i≤m(c−1/2f ′P), respectively. Let V(ψ̂) ≡ D = {dkl}, thus it follows

from previous results that it is a 2×2 symmetric matrix with elements:

(3.12) d11 = V (σ̃2) = 2 k2
1 tr(C1VC1V) ,

(3.13)

d22 = V (σ̃2
u) = 2 k2

3 tr(C2VC2V) + 4k3k4 tr(C1VC2V) + 2 k2
4 tr(C1VC1V)

and

(3.14) d12 = d21 = Cov(σ̃2; σ̃2
u) = 2 k1k3 tr(C1VC2V) + 2 k1k4 tr(C1VC1V) .

Following Prasad & Rao (1990), it can be assumed that E
[
g1it(ψ̂) + g2it(ψ̂)

]
=

g1it(ψ) + g2it(ψ) − g3it(ψ). Thus it follows that a bias corrected analytical esti-

mator of MSPE of two-stage estimator is given by:

(3.15) mspeA
[
θ̂it(ψ̂)

]
= g1it(ψ̂) + g2it(ψ̂) + 2 g3it(ψ̂) .

3.2. Bootstrap approximation of the MSPE estimator

In this section we introduce an alternative way of approximating the MSPE

of the EBLUP by a simple bootstrap procedure using similar ideas to Butar &



296 L.N. Pereira and P.S. Coelho

Lahiri (2003). Hereafter we describe a bootstrap procedure designed for esti-

mating the MSPE under the spatio-temporal small area model (2.5), and using

ANOVA estimates of variance components introduced in Section 2.3. In general,

the parametric bootstrap method consists of generating parametrically a large

number of area bootstrap samples from the model fitted to the original data, re-

estimating the model parameters for each bootstrap sample and then estimating

the separate components of the MSPE. Assuming that ρ and φ are known, the

parametric bootstrap procedure follows the next steps:

1. Calculate estimates of the variance components, σ̂2 and σ̂2
u, from the

initial data, y, using the method of moments. Then fit model (2.5) in

order to estimate the fixed effects, β̂ = β̂(y; ψ̂) with ψ̂ = (σ̂2, σ̂2
u)′.

2. Compute the EBLUP estimates of θit, θ̂it(ψ̂), and the first two terms

of MSPE, g1it(ψ̂) and g2it(ψ̂).

3. Generate m independent copies of a variable u∗
1, with u∗

1 ∼ N(0; σ̂2
uIm).

From this values, construct the random vector v∗ = (Im − φW)−1u∗
1,

assuming that φ is known.

4. Generate mT independent copies of a variable ξ∗, with ξ∗∼N(0; σ̂2ImT),

independently of the generation of u∗
1. From this values, construct the

random vector u∗
2, assuming that ρ is known.

5. Generate mT independent copies of a variable ǫ∗, with ǫ∗ ∼ N(0;R),

independently of the generation of u∗
1 and ξ∗.

6. Construct the bootstrap data y∗=Xβ̂+Zυ∗+ǫ∗ where υ∗=[v∗′u∗′
2 ]′.

7. Calculate bootstrap estimates of the variance components, σ̂2∗ and

σ̂2∗
u , from the bootstrap data, y∗, and then fit model (2.5) in order

to obtain bootstrap estimates of the fixed effects, β̂
∗
= β̂(y; ψ̂

∗
) with

ψ̂
∗
= (σ̂2∗, σ̂2∗

u )′.

8. Calculate bootstrap estimates of the EBLUP, as well as estimates of

the two components of the MSPE of BLUP, using bootstrap estimates

of the variance components, ψ̂
∗
:

θ̂∗it = θ̂∗it(y; β̂
∗
; ψ̂

∗
) = x′

itβ̂
∗
+

(
σ̂2∗

u ς
′
i ⊗ 1′

T + σ̂2∗ζ′it
) [

V̂(ψ̂
∗
)
]−1(

y − Xβ̂
∗)

,

g∗1it = g∗1it(y; β̂
∗
; ψ̂

∗
) = σ̂2∗

u ςii +
σ̂2∗

1− ρ2

−
(
σ̂2∗

u ςi ⊗ 1T + σ̂2∗ζit

)′ (
V̂∗

)−1(
σ̂2∗

u ςi ⊗ 1T + σ̂2∗ζit

)
,

g∗2it = g∗2it(y; β̂
∗
; ψ̂

∗
) =

[
xit − X′(V̂∗)−1

(
σ̂2∗

u ςi ⊗ 1T + σ̂2∗ζit

)]′

×
[
X′(V̂∗)−1X

]−1
[
xit−X′(V̂∗)−1

(
σ̂2∗

u ςi ⊗1T + σ̂2∗ζit

)]
.
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9. Repeat steps 3–8 B times. Let σ̂2∗(b) and σ̂
2∗(b)
u be the bootstrap

estimates of variance components, ψ̂
∗(b)

= (σ̂2∗(b), σ̂
2∗(b)
u )′; and β̂

∗(b)
,

θ̂
∗(b)
it , g

∗(b)
1it and g

∗(b)
2it the bootstrap estimates of β, θit, g1it and g2it,

respectively, all of them obtained in the bth bootstrap replication,

b = 1, ..., B.

10. Calculate a bootstrap estimate of g3it using the following Monte Carlo

approximation:

g∗3it = B−1
B∑

b=1

(
θ̂
∗(b)
it − θ̂it

)2
.

Since it is known that the quantity g1it(ψ̂) + g2it(ψ̂) is a biased estimator of

g1it(ψ)+ g2it(ψ) (Prasad & Rao, 1990), thus following the lines of Butar & Lahiri

(2003), a bias corrected bootstrap estimator of MSPE of the two-stage estimator

can be defined as:

(3.16) mspeB
[
θ̂it(ψ̂)

]
= 2

[
g1it(ψ̂) + g2it(ψ̂)

]
− B−1

B∑

b=1

[
g
∗(b)
1it + g

∗(b)
2it

]
+ g∗3it .

4. A MONTE CARLO SIMULATION STUDY

In order to assess the merits of our spatio-temporal estimator, in this sec-

tion we present a simulation study designed for comparing the efficiency of the

proposed EBLUP estimator (ST) against other well-known EBLUP estimators,

such as the Fay–Herriot (FH), the Salvati (NS) and the Rao–Yu (RY) estimators.

The first is one of the paradigms in small area estimation exploring neither spatial

nor chronological similarities; the Salvati estimator is a well-known small-area es-

timator that explores spatial similarities in data; and the last one is a reference for

small area estimation with chronological correlation. This simulation study also

aims to study the accuracy of the proposed estimators of MSPE of the EBLUP.

In the simulated experiments we assume that the proposed EBLUP esti-

mator performs better than the others when the spatio-temporal model provides

a good fit. Thus we have decided to generate an artificial population of y-values

using model (2.5). We have considered model (2.5) with p = 2, that is, a constant

and one explanatory variable, xit = (1, xit)
′. The mT values of xit were gener-

ated from a uniform distribution in the interval [0,1]. The true model coefficients

were β = (1, 2)′, the random area specific effects variance were σ2
u ∈ {0.5; 1.0},

the random area-by-time specific effects variance were σ2 ∈ {0.25; 0.50; 1.00}, the

temporal autoregressive coefficients were ρ ∈ {0.2; 0.4; 0.8} and the spatial autore-

gressive coefficients were φ ∈ {0.25; 0.50; 0.75}. The row standardized W matrix

was kept fixed in all simulations and it corresponded to contiguous NUTSIII in
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one European country (NUTSIII is a geocode standard for referencing the sub-

divisions of European countries for statistical purposes). We have selected T = 7

and m = 28 divided into four uniform groups. Further, we have considered three

different σ2
it patterns (see Table 1). Note that sampling variances are more dis-

persed in pattern (C ) than in pattern (A).

Table 1: Values of the sampling variances for the simulation study.

i 1–7 8–14 15–21 22–28

Pattern (A) 1.0 1.0 1.0 1.0
Pattern (B) 0.6 0.8 1.1 1.5
Pattern (C ) 0.3 0.6 1.0 2.0

In addition, we have assumed known ρ and φ, although the bootstrap

method can also accommodate the situation of unknown coefficients. The ran-

dom effects and errors were generated independently from a Normal distribution

with zero mean. Finally, the vector of mT values of the interest variable, y, was

generated from the cross-sectional and time-series stationary small area model

(2.5).

4.1. The efficiency of the EBLUP

The simulation study designed for comparing the efficiency of the proposed

EBLUP estimator over other well-known EBLUP estimators has followed the

algorithm described below:

1. Generate L=1,000 samples of initial data, y(l) =(y
(l)
11, ..., y

(l)
it , ..., y

(l)
mT),

as described above, l = 1, ..., L.

2. Fit the Fay–Herriot (FH), the Salvati (NS) and the Rao–Yu (RY) mod-

els, as well as the spatio-temporal (ST) model, to the initial data, y(l),

using method of moments estimates of those variance components, for

each l = 1, ..., L.

3. Compute the EBLUP estimates under each of those models, θ̂a
it, a ∈

{FH,NS, RY,ST}.

4. Calculate the Monte Carlo approximation of the relative efficiency (RE)

of the proposed EBLUP over the other three EBLUP estimators as fol-

lows: RE it =
MSE(bθa

it
)

MSE(bθST
it

)
×100, where MSE (θ̂a

it)=L−1
∑L

l=1

(
θ̂

a(l)
it − y

a(l)
it

)2

is the empirical MSE of each EBLUP, a ∈ {FH,NS,RY,ST}. That mea-

sure of efficiency is calculated at area-by-time level. To summarize re-

sults, we have computed an average global measure over the mT small

areas: ARE = 1
mT

∑m
i=1

∑T
t=1 REit.
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These results are shown in Tables 2 to 4 for the sampling variance patterns

(A), (B) and (C ), respectively.

Table 2: Average relative efficiency of the proposed EBLUP
over other EBLUP estimators — σ2

it
pattern (A).

φ = 0.25 φ = 0.50 φ = 0.75
σ2 σ2

u

ρ=0.2 ρ=0.4 ρ=0.8 ρ=0.2 ρ=0.4 ρ=0.8 ρ=0.2 ρ=0.4 ρ=0.8

FH estimator

0.25
0.50 130 133 151 136 138 156 156 159 177
1.00 161 165 185 172 176 196 213 217 237

0.50
0.50 126 132 168 130 136 173 149 155 192
1.00 153 160 199 162 169 209 197 205 246

1.00
0.50 120 129 186 124 133 190 138 147 206
1.00 140 151 211 148 158 219 175 186 249

NS estimator

0.25
0.5 130 133 150 135 138 156 153 156 176
1.0 161 165 185 171 175 195 209 213 235

0.50
0.5 126 132 168 130 136 172 146 152 191
1.0 153 160 199 161 169 209 194 202 245

1.00
0.5 120 129 186 123 132 190 135 145 206
1.0 140 150 211 147 157 219 172 183 249

RY estimator

0.25
0.5 101 101 101 105 105 104 122 121 119
1.0 102 102 102 109 109 108 136 135 132

0.50
0.5 101 101 101 105 104 104 119 118 117
1.0 102 102 102 108 108 108 132 131 129

1.00
0.5 101 101 101 104 104 105 116 116 117
1.0 101 101 102 107 107 108 128 128 127

To begin with, it is interesting to note from Tables 2 to 4 that there is

not much difference in efficiency among the three sampling variance patterns,

which agrees with the results obtained by Pratesi & Salvati (2009) under a model

with spatially correlated random effects. In addition, it should be emphasized

that the gain in efficiency of the proposed EBLUP over other estimators slightly

increases with the dispersion of the sampling variances. Note that the efficiency of

the proposed estimator over the Fay–Herriot and the Salvati estimators increases

mainly for higher values of the temporal autocorrelation coefficient, while the

efficiency of that estimator over the Rao–Yu estimator tends to increase for higher

values of the spatial and temporal autocorrelation coefficients.

Comparing the ARE, among the three sampling variance patterns (see

Tables 2 to 4), we observe that substantial gains in efficiency are achieved when

it is used the proposed EBLUP over other EBLUP estimators, especially over the
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Table 3: Average relative efficiency of the proposed EBLUP
over other EBLUP estimators — σ2

it
pattern (B).

φ = 0.25 φ = 0.50 φ = 0.75
σ2 σ2

u

ρ=0.2 ρ=0.4 ρ=0.8 ρ=0.2 ρ=0.4 ρ=0.8 ρ=0.2 ρ=0.4 ρ=0.8

FH estimator

0.25
0.5 130 133 151 135 138 157 157 161 180
1.0 163 167 189 175 179 201 219 224 247

0.50
0.5 124 131 171 130 136 177 149 156 199
1.0 154 162 206 164 172 217 201 210 258

1.00
0.5 119 129 191 123 132 195 137 147 211
1.0 140 151 217 148 159 226 176 188 258

NS estimator

0.25
0.5 129 133 151 134 138 157 154 158 179
1.0 163 167 189 174 178 201 216 221 245

0.50
0.5 124 131 171 129 136 177 146 154 198
1.0 153 161 206 163 171 217 198 207 257

1.00
0.5 119 128 191 122 132 195 135 146 211
1.0 140 151 217 147 158 226 173 186 257

RY estimator

0.25
0.5 101 101 101 106 106 105 124 124 121
1.0 102 102 102 111 110 110 140 139 136

0.50
0.5 101 101 101 106 106 105 122 121 119
1.0 102 102 102 110 109 109 135 135 132

1.00
0.5 101 101 101 105 105 106 118 118 118
1.0 102 102 102 108 108 109 130 130 129

Fay–Herriot estimator and over the Salvati estimator. On average the gains in

efficiency over these estimators are about 69% for pattern (A), 71% for pattern

(B) and 78% for pattern (C ). There are also some gains in efficiency of the pro-

posed EBLUP over the Rao–Yu estimator, although they are smaller than the

ones observed against the other two estimators (overall average gain in efficiency

is equal to 11%, 12% and 13%, respectively, for patterns (A), (B) and (C ). Note

that the ARE values of the proposed EBLUP over the Rao–Yu estimator are neg-

ligible for φ = 0.25 and φ = 0.50. However, for φ = 0.75 the proposed EBLUP

performs clearly better than the Rao–Yu estimator in terms of efficiency. Let

us also observe from Tables 2 to 4 that gains in efficiency tend to increase with

σ2
u, ρ and φ, i.e., the higher values of these three parameters the stronger gains

in efficiency of the proposed estimator over the others. Nevertheless, there is a

slight decrease on ARE values with the increase of σ2. It is also worth noting

that the proposed EBLUP shows significant gains in efficiency over the NS esti-

mator even for small ρ and that these gains increase with the increase of φ. This

means that the introduction of the chronological autocorrelation in small area

estimation models has a better effect in the efficiency of the estimators than the
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Table 4: Average relative efficiency of the proposed EBLUP
over other EBLUP estimators — σ2

it
pattern (C ).

φ = 0.25 φ = 0.50 φ = 0.75
σ2 σ2

u

ρ=0.2 ρ=0.4 ρ=0.8 ρ=0.2 ρ=0.4 ρ=0.8 ρ=0.2 ρ=0.4 ρ=0.8

FH estimator

0.25
0.5 123 127 152 129 134 160 156 161 191
1.0 165 172 204 181 188 222 238 247 285

0.50
0.5 118 127 183 124 134 191 147 158 220
1.0 154 166 230 166 179 246 211 227 302

1.00
0.5 113 125 203 118 130 209 134 147 229
1.0 138 151 236 146 161 247 177 194 286

NS estimator

0.25
0.5 123 127 152 129 133 160 153 159 190
1.0 165 172 204 180 187 221 235 244 283

0.50
0.5 117 127 183 123 133 191 144 156 219
1.0 154 166 230 165 179 246 208 224 301

1.00
0.5 113 125 203 117 129 209 131 145 229
1.0 138 151 236 146 160 247 174 191 286

RY estimator

0.25
0.5 98 98 98 105 105 104 129 129 127
1.0 100 100 100 111 111 111 150 149 145

0.50
0.5 99 98 99 105 105 105 127 127 123
1.0 100 100 100 110 110 110 144 143 138

1.00
0.5 99 99 100 105 105 106 123 122 121
1.0 100 100 101 109 109 109 135 135 132

introduction of the spatial correlation. All these results confirm the superiority

of the proposed spatio-temporal model in comparison to other well-known small

area models when data exhibits both spatial and chronological correlations with

the considered structure. Finally, it is important to note that our findings are

consistent with the simulation results obtained by Singh et al. (2005) when it

is assumed φ = 0.75 and ρ = 0.50. Therefore, the spatial dependence and the

temporal autocorrelation should be exploited to strengthen the small area esti-

mates, no matter it is assumed or not an interaction between the autoregressive

coefficients.

4.2. The accuracy of the MSPE of the EBLUP

The simulation study designed for studying the accuracy of the proposed

estimators of the MSPE of the EBLUP has followed the algorithm described

below:
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1. Generate L=1,000 samples of initial data, y(l) =(y
(l)
11 , ..., y

(l)
it , ..., y

(l)
mT ),

as described above, l = 1, ..., L.

2. From the initial data, y(l), calculate estimates of the variance compo-

nents, σ2(l) and σ
2(l)
u , using the method of moments, and then fit model

(2.5) in order to estimate the fixed effects β̂
(l)

= β̂(y(l); ψ̂
(l)

), where

ψ̂
(l)

= (σ̂2(l), σ̂
2(l)
u , ρ, φ)′, for each l = 1, ..., L.

3. Compute the EBLUP estimates, θ̂
(l)
it (ψ̂

(l)
) and their analytic MSPE

estimates (A-MSPE), mspeA(l)(θ̂
(l)
it ), for each l = 1, ..., L.

4. Generate B bootstrap data sets as described in Section 3.2 from esti-

mates σ2(l) and σ
2(l)
u , and then compute the bootstrap MSPE estimates:

mspeB(l) (θ̂
(l)
it ) (B-MSPE), for each l = 1, ..., L.

5. Compute the empirical values of MSPE for each ith small-area at tth

time point, MSPE it, which are the benchmark values, with R = 5, 000

independent data sets in order to ensure high precision.

6. Calculate the Monte Carlo approximations of each MSPE estimative of

the EBLUP (mspe), their relative bias (RB) and relative MSE (RMSE) as

follows: mspeb
it =L−1

∑L
l=1mspe

b(l)
it , RBit =L−1

∑L
l=1

mspe
b(l)
it

−MSPE it

MSPE it
×100

and RMSE it = L−1
∑L

l=1
(mspe

b(l)
it

−MSPE it)
2

MSPE it
× 100, where b ∈ {A, B} de-

notes the different MSPE estimators. These measures are calculated

at area-by-time level. To summarize results, we have produced three

global measures over the mT small areas: the percentage of areas where

the relative bias is negative (RBN), the average of absolute relative bias

(AARB), AARB = 1
mT

∑m
i=1

∑T
t=1 |RBit| and the average relative MSE

(ARMSE), ARMSE = 1
mT

∑m
i=1

∑T
t=1 RMSEit.

Tables 5 to 7 report the percent RBN, percent AARB and percent ARMSE

of the analytical and the bootstrap MSPE estimators of the EBLUP, for ρ = 0.2,

ρ = 0.4 and ρ = 0.8, respectively. The variance components patterns have a sig-

nificant effect on the performance of both MSPE estimators, unlike the spatial

autoregressive coefficient. For that reason, we have decided to report results only

for φ = 0.25 and φ = 0.50. Note that Molina et al. (2009) showed, under a model

with spatially correlated random effects, that the level of spatial dependence does

not significantly affect the performance of the analytical and parametric bootstrap

MSPE estimators.

The results in Table 5 suggest that the bootstrap MSPE estimator can

compete with the analytical MSPE estimator in terms of bias and accuracy when

ρ = 0.2. From Table 5 we can see that the analytical estimator presents smaller

percent AARB and ARMSE (although of the same order of magnitude) than the

resampling-based estimator when σ2 = 0.25 and σ2 = 1.00. On the other hand,

the results for those measures reveal that the bootstrap estimator is somewhat
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better than the analytical estimator when σ2 = 0.50. In Table 5 we can also see

that both MSPE estimators tend to underestimate the true MSPE of the EBLUP

for the majority of small areas, but this underestimation decreases as long as the

variance, σ2, increases. Furthermore, note that the analytical estimator has slight

more negative bias than the other estimator.

Table 5: RBN, ARB and ARMSE of MSPE estimators, ρ = 0.2.

A-MSPE B-MSPE A-MSPE B-MSPE
σ2 σ2

u

φ = 0.25 φ = 0.50

RBN (%)

0.25
0.5 100.000 100.000 100.000 100.000
1.0 100.000 100.000 100.000 100.000

0.50
0.5 99.908 99.867 99.908 99.878
1.0 99.755 99.571 99.755 99.582

1.00
0.5 13.520 12.133 13.959 12.480
1.0 9.153 8.051 9.296 8.245

AARB (%)

0.25
0.5 58.674 59.872 58.753 59.995
1.0 57.213 58.409 56.528 57.788

0.50
0.5 34.770 34.063 34.856 34.169
1.0 31.991 31.246 32.121 31.421

1.00
0.5 17.287 18.090 17.294 18.124
1.0 20.449 21.504 20.303 21.313

ARMSE (%)

0.25
0.5 26.138 27.592 26.261 27.757
1.0 24.899 26.317 23.984 25.434

0.50
0.5 8.637 8.501 8.696 8.568
1.0 7.374 7.250 7.442 7.332

1.00
0.5 1.925 2.087 1.933 2.103
1.0 2.537 2.775 2.516 2.741

Table 6 shows that the analytical MSPE estimator is slightly better than the

bootstrap MSPE estimator when ρ = 0.4. In fact, the results reported in this table

indicate again that there is not much difference on bias and accuracy between

these MSPE estimators. Although the analytical estimator is always the best in

terms on precision (it has the lowest percent ARMSE), the bootstrap estimator

is somewhat better than the analytic estimator in terms of bias (according to

AARB measure) when σ2 = 0.50. The systematic underestimation of the true

MSPE of the EBLUP is also revealed by Table 6.

The results reported in Table 7 suggest that the analytical MSPE estima-

tor is the winner when ρ = 0.8. From this table we can see that gains on bias

and accuracy are reached when it is used the analytical estimator instead of the
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Table 6: RBN, ARB and ARMSE of MSPE estimators, ρ = 0.4.

A-MSPE B-MSPE A-MSPE B-MSPE
σ2 σ2

u

φ = 0.25 φ = 0.50

RBN (%)

0.25
0.5 100.000 100.000 100.000 100.000
1.0 100.000 100.000 100.000 100.000

0.50
0.5 99.755 99.592 99.786 99.561
1.0 99.429 99.010 99.408 99.051

1.00
0.5 26.316 22.939 26.347 22.908
1.0 21.173 17.602 21.531 17.898

AARB (%)

0.25
0.5 58.363 60.733 58.417 60.808
1.0 56.305 58.634 56.385 58.757

0.50
0.5 36.561 36.026 36.595 36.037
1.0 34.199 33.548 34.293 33.679

1.00
0.5 15.019 15.818 15.107 15.959
1.0 16.875 18.092 16.853 18.052

ARMSE (%)

0.25
0.5 26.036 28.725 26.128 28.852
1.0 23.948 26.509 24.058 26.661

0.50
0.5 9.741 9.829 9.779 9.864
1.0 8.592 8.658 8.649 8.727

1.00
0.5 1.645 1.812 1.665 1.846
1.0 2.025 2.294 2.024 2.288

bootstrap estimator in measuring the uncertainty of the EBLUP, especially when

σ2 = 0.25. Furthermore, it should be noted that the underestimation of the true

MSPE of the EBLUP is more pronounced when σ2 = 1.00.

Comparing the results reported in Tables 5 to 7, among different levels of

spatial and temporal autocorrelation, we can observe that both estimators show

similar bias and accuracy in most cases, since they are very close on AARB and

ARMSE measures. We can also observe for both estimators that: (i) the spatial

autoregressive coefficient does not have a significant impact on the performance

of the MSPE estimators; (ii) the performance of both MSPE estimators, in what

concerns the AARB and the ARMSE, tends to improve for higher values of the

variance components (mainly σ2); (iii) the number of estimates with positive

bias tends to increase for higher values of the variance components; (iv) the an-

alytical estimator shows consistently negative bias in more small areas than the

bootstrap estimator; and (v) the gain of accuracy of the analytical estimator over

the bootstrap one tends to increase with the strength of chronological autocor-

relation. Finally, our results reported in Tables 5 to 7 suggest that both MSPE

estimators perform well, especially for higher values of the variance components
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Table 7: RBN, ARB and ARMSE of MSPE estimators, ρ = 0.8.

A-MSPE B-MSPE A-MSPE B-MSPE
σ2 σ2

u

φ = 0.25 φ = 0.50

RBN (%)

0.25
0.5 99.990 99.898 99.980 99.878
1.0 99.990 99.878 99.980 99.837

0.50
0.5 96.378 94.061 96.051 93.969
1.0 96.163 93.469 95.990 93.184

1.00
0.5 59.765 54.153 59.571 54.122
1.0 59.469 53.673 59.306 53.561

AARB (%)

0.25
0.5 50.048 60.057 49.776 60.065
1.0 49.143 58.869 49.062 58.844

0.50
0.5 36.395 38.984 36.257 38.966
1.0 35.730 38.231 35.662 38.218

1.00
0.5 21.665 21.954 21.789 21.964
1.0 21.666 22.110 21.773 22.173

ARMSE (%)

0.25
0.5 19.944 29.258 19.774 29.329
1.0 19.173 28.053 19.131 28.100

0.50
0.5 10.696 12.913 10.636 12.927
1.0 10.350 12.460 10.320 12.467

1.00
0.5 3.502 3.883 3.555 3.889
1.0 3.494 3.943 3.539 3.969

(for example, for σ2 = 1.00 and σ2
u = 0.5 or σ2

u = 1.0) and for lower values of the

temporal autoregressive coefficient, and can be in most cases used to adequately

access the accuracy of the proposed EBLUP estimator. Analogous findings were

reached by Pereira & Coelho (2010) when comparing the performance of MSPE

estimators under a cross-sectional and time-series stationary model.

5. CONCLUSIONS

In this work we have studied the problem of “borrowing information” from

related small areas and time periods in order to strengthen the estimators of

the small area parameters of interest. In particular, we have proposed a spatio-

temporal area level LMM involving spatially correlated and temporally autocorre-

lated random area effects, using both time-series and cross-sectional data. Under

this model, we first obtained a partial EBLUP estimator. We then proposed two

estimators of the MSPE of that EBLUP.
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In the simulation study we have studied the efficiency of the proposed

EBLUP estimator over other well-known EBLUP estimators and we have studied

the accuracy of the proposed estimators of MSPE. Our empirical results based

on simulated data have shown that the proposed EBLUP estimator can lead to

remarkable efficiency gains. This is especially true over both the sectional FH

and the spatial NS estimators and when the autocorrelation coefficients are high.

It should also be noted that our results have shown mild gains in efficiency from

the inclusion of a spatial structure into the Rao–Yu cross-sectional and time-series

model, i.e. there are gains in efficiency of the proposed EBLUP over the temporal

RY estimator.

Under several simulated scenarios for the variance components and auto-

correlation coefficients, our empirical results have revealed that both MSPE esti-

mators perform well. Furthermore, our results indicate that the analytical MSPE

estimator performs slightly better than the bootstrap one on bias and precision,

although its superiority is not uniform. In particular, it is to be noticed that this

gain tend to be more conspicuous when chronological correlation is strong.

We believe that the proposed methodology can provide a useful tool for

practitioners working with spatially correlated and temporally autocorrelated

data in the context of small area estimation problems. Nonetheless, some of

the issues mentioned in this paper require further theoretical work and/or more

extensive simulation studies. For example, we have assumed known and positive

autoregressive coefficients, but in practice these parameters are unknown and

could be negative. A further issue relates to on what happens when random area

effects do not follow approximately a SAR process or when random area-by-time

effects do not follow an AR(1) process? Our expectation is that whenever spa-

tial and chronological correlations exist, this can be a viable approach due to its

simplicity of implementation and the fact of allowing to incorporate all the avail-

able information in the estimation process. Nevertheless, additional work is still

needed to understand the properties of the partial EBLUP estimator and par-

ticularly of its MSPE approximations when spatial or chronological correlation

processes significantly departure from the considered ones.
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