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1. INTRODUCTION

Multivariate extreme-value analysis is concerned with the extremes in a

multivariate random sample, that is, points of which at least some components

have exceptionally large values. Isolating a single component brings us back to

univariate extreme-value theory. In this paper, the focus will rather be on the

dependence between extremes in different components. The issue of temporal

dependence will be ignored, so that the dependence will be understood as cross-

sectional only.

Mathematical theory suggests the use of max-stable models for univariate

and multivariate extremes. The univariate margins must be one of the clas-

sical extreme-value distributions, Fréchet, Gumbel, and extreme-value Weibull,

unified in the generalized extreme-value distributions. For the dependence struc-

ture, however, matters are more complicated. A complete characterization in the

multivariate case was given in de Haan & Resnick (1977), describing extremal

dependence in terms of spectral measures on a subset of the unit sphere. Statis-

tically, this formulation is not always the most practical one, and a large number

of other concepts have been proposed.

The aim of this paper is to provide a comprehensive account of the various

ways in which max-stable models are described (§2). Second, a construction

device is proposed for generating parametric families of max-stable distributions

(§3). The device is not new as it appears already for instance in the theory of

regularly varying multivariate time series in Basrak & Segers (2009) or in the

concept of a D-norm in Falk et al. (2010). Still, its role as a model generator

seems not yet to have been fully appreciated.

Inference on multivariate extremes via max-stable models for joint tails is an

exciting field that is still in development. Inference methods can be nonparametric

or parametric, and in the latter case, they can be likelihood-based, frequentist as

well as Bayesian, or based on other techniques such as the method of moments

or minimum distance estimation.

Max-stable models have the drawback that they are too coarse to describe

tails of multivariate distributions with asymptotic independence sufficiently accu-

rately. More refined models exist and they are the topic of an extensive literature,

originating from the seminal paper of Ledford & Tawn (1996).



64 J. Segers

2. FUNDAMENTALS

Max-stable distributions arise out of the study of the limit behaviour of

vectors of componentwise maxima. Their dependence structure can be described

via a number of dependence functions or via certain measures. All these objects

are related and they highlight different aspects of the distribution of multivariate

extremes.

2.1. Convergence of vectors of componentwise maxima

Let Xi = (Xi1, ..., Xid), for i = 1, ..., n, be independent and identically

distributed random vectors in dimension d. For each component j = 1, ..., d,

consider the sample maximum, and collect these maxima in a new random vector:

Mn = (Mn1, ..., Mnd) , Mnj = max(X1j , ..., Xnj) .

Observe that most of the time, the point Mn does not belong to the sample, as the

maxima in different components will typically occur at different time instances.

Still, the analysis of the large-sample distribution of Mn is a natural starting

point for multivariate extreme-value theory.

Weak convergence of a sequence of random vectors implies weak conver-

gence of each of the components. As in univariate extreme-value theory, it is

therefore reasonable to apply increasing affine transformations to each of the

margins and consider the sequence of random vectors

(2.1)

(

Mnj − bnj

anj
: j =1, ..., d

)

, n = 1, 2, ... ,

in terms of normalizing constants anj > 0 and bnj . For each component j =1, ..., d,

the weak limit of (Mnj − bnj)/anj as n → ∞ must be a univariate max-stable dis-

tribution, and necessary and sufficient conditions on the marginal distribution Fj

of the j th component Xij for such convergence to take place are well known, see

for instance the monograph by de Haan & Ferreira (2006).

However, weak convergence of each of the d components in (2.1) is strictly

weaker than joint convergence of the vector of normalized maxima. What is

needed in addition is a condition on the dependence structure of the common

joint distribution F of the random vectors Xi. A convenient way to describe this

dependence is via the copula C1 of F , that is,

(2.2) Pr
[

Xi≤x
]

= F (x) = C1

(

F1(x1), ..., Fd(xd)
)

.
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Assuming the margins F1, ..., Fd are continuous, as we will do henceforth, the

copula C1 of the distribution function F in (2.2) is unique and can be obtained

as the joint distribution function of the random vector
(

F1(Xi1), ..., Fd(Xid)
)

.

Weak convergence of a sequence of multivariate distribution functions to a

limit with continuous margins is equivalent to weak convergence of the sequences

of margins and of the sequence of copulas (Deheuvels, 1984; Galambos, 1987). The

copula of the vector of component-wise maxima Mn, and hence of any vector that

is obtained by applying increasing transformations to each of its components, is

given by

(2.3) Cn(u) =
{

C1

(

u
1/n
1 , ..., u

1/n
d

)

}n
.

This can be checked from the fact that the joint distribution function of Mn is

Fn while its margins are Fn
j for j =1, ..., d. Hence, in order for the normalized

maxima in (2.1) to converge in distribution to a nondegenerate limit, besides

marginal convergence, the sequence of copulas Cn must converge as well.

The copulas that can arise as weak limits of Cn as n → ∞ are called

extreme-value copulas, that is, a copula C is called an extreme-value copula if

there exists a copula C1 such that, as n → ∞,

(2.4) lim
n→∞

{

C1

(

u
1/n
1 , ..., u

1/n
d

)

}n
= C(u1, ..., ud) .

Extreme-value copulas arise as the class of possible limit copulas of vectors Mn

as n → ∞. The copula C1 is said to be in the domain of attraction of C.

An extensive survey of the literature on extreme-value copulas is given in Guden-

dorf & Segers (2010).

The class of extreme-value copulas coincides with that of max-stable cop-

ulas, defined as follows. A copula C is max-stable if, for all u ∈ [0, 1]d and

k = 1, 2, ...,

C(u) =
{

C
(

u
1/k
1 , ..., u

1/k
d

)

}k
.

In the setting of componentwise maxima of independent random samples, the

previous identity means that the copula Ck of the random vector Mk is the same

for every sample size k. Clearly, a max-stable copula is also an extreme-value

copula, being in its own domain of attraction. Conversely, each extreme-value

copula can be shown to be max-stable: in (2.4), partition the sample of size

n = mk in m blocks of size k and let m tend to infinity for fixed k. Since the

limit must not depend on k, the max-stability relation follows.

In summary, we have found that nondegenerate limit distributions of vec-

tors of appropriately normalized componentwise maxima have extreme-value mar-

gins and an extreme-value or max-stable copula. Specifically, if

Pr

[

d
⋂

j=1

{

Mnj − bnj

anj
≤ xj

}

]

w−→ G(x1, ..., xd) , n → ∞ ,
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then necessarily

G(x1, ..., xd) = C
(

G1(x1), ..., Gd(xd)
)

with extreme-value margins G1, ..., Gd and an extreme-value copula C. Conver-

gence of margins and convergence of copulas being two isolated issues, we can

ignore the former and rather focus on the latter. In fact, the way in which the

components are normalized is immaterial, as long as the transformations applied

to the components are increasing.

2.2. Dependence functions

Take logarithms and apply a linear expansion to see that (2.4) is equivalent

to

lim
n→∞

n
{

1 − C1

(

1 − n−1x1, ..., 1 − n−1xd

)

}

= − log C
(

e−x1 , ..., e−xd
)

= ℓ(x) , x ∈ [0,∞)d .
(2.5)

The limit ℓ is called the stable tail dependence function of C, going back to Huang

(1992) and Drees & Huang (1998). The variable n tending to infinity along the

positive integers can be replaced by a variable t tending to infinity along the

positive reals.

The best known example is the Gumbel–Hougaard copula, for which ℓθ(x) =

(xθ
1 + ··· + xθ

d)
1/θ in terms of a parameter θ ∈ [1,∞] (Gumbel, 1960; Hougaard,

1986). The function ℓθ happens to be the θ-norm of the vector x. The fact that

ℓθ is a norm is no coincidence: in a remarkable paper by Molchanov (2008), a

characterization is given of all the norms that can give rise to stable tail depen-

dence functions. In Falk et al. (2010), ℓ(x) is called the D-norm of x, with D

referring to the Pickands dependence function, see below.

Let X = (X1, ..., Xd) denote a generic random vector in the original sample.

The expression on the left-hand side in (2.5) contains the rescaled probability

1 − C1

(

1 − x1/n, ..., 1 − xd/n
)

=
(2.6)

= Pr
[

F1(X1) > 1 − x1/n or ... or Fd(Xd) > 1 − xd/n
]

.

This probability concerns the event that at least one among the d components

X1, ..., Xd should exceed a high percentile of its own distribution. The copula

domain-of-attraction condition (2.4), originally involving the vector of compo-

nentwise sample maxima, has been replaced by a condition on the upper tail of a

single random vector. This is akin to the familiar peaks-over-threshold approach

in univariate extreme-value theory.



Max-Stable Models 67

The tail copula, R, of Schmidt & Stadtmüller (2006) arises if all d compo-

nents are required to exceed a large percentile simultaneously:

lim
n→∞

n Pr
[

F1(X1) > 1 − x1/n and ... and Fd(Xd) > 1 − xd/n
]

=

= R(x) , x ∈ [0,∞)d .

Clearly, the relation between the functions ℓ and R is governed by the inclusion-

exclusion formula. In higher dimensions, ℓ is somewhat more convenient than R,

as setting some components xj in the definition of ℓ to zero allows one to re-

trieve the lower-dimensional margins of the extreme-value copula. This is not

possible for the tail copula R, as setting even a single xj to zero immediately

yields R(x) = 0. The difference between the two functions ℓ and R is depicted in

Figure 1.
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Figure 1: Left: the stable tail dependence function ℓ — at least one
component should be large. Right: the tail copula R — all
components must be large simultaneously. Here Uj = Fj(Xj)
for j = 1, 2.

The dependence functions ℓ and R are homogeneous:

ℓ(ax) = lim
t→∞

t
{

1 − C1

(

1 − x1/(t/a), ..., 1 − xd/(t/a)
)

}

= lim
s→∞

a s
{

1 − C1

(

1 − x1/s, ..., 1 − xd/s
)

}

(2.7)

= a ℓ(x) , a > 0 , x ∈ [0,∞)d ,

and similarly for R. It is therefore sufficient to consider the restriction of these

functions to the unit simplex ∆d−1 =
{

(w1, ..., wd) ∈ [0, 1]d : w1 + ···+ wd = 1
}

.
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The restriction of ℓ to ∆d−1 is called the Pickands dependence function, D, after

Pickands (1981). By homogeneity,

ℓ(x) = (x1 + ··· + xd)D(w1, ..., wd) , wj =
xj

x1 + ··· + xd
.

Frequently, the variable wd = 1−w1 − ···−wd−1 is suppressed from the notation

and D is written as a function of the arguments (w1, ..., wd−1) only.

The probability on the right-hand side of (2.6) involves the union of the

events
{

Fj(Xj) > 1 − xj/n
}

, each of which has probability xj/n, provided 0 ≤
xj ≤ n. As a consequence, we have the elementary bounds

max(x1/n, ..., xd/n) ≤ Pr
[

F1(X1) > 1− x1/n or ... or Fd(Xd) > 1− xd/n
]

≤ x1/n + ··· + xd/n .

Multiplying by n and letting n tend to infinity, we obtain

(2.8) max(x1, ..., xd) ≤ ℓ(x1, ..., xd) ≤ x1 + ··· + xd , x ∈ [0,∞)d .

By (2.5) and (2.8), an extreme-value copula C must satisfy

(2.9) u1 ··· ud ≤ C(u1, ..., ud) ≤ max(u1, ..., un) , u ∈ [0, 1]d .

The lower and upper bounds in the two previous displays can be attained, corre-

sponding to the extreme cases of independence and perfect association. In partic-

ular, max-stable models are positive quadrant dependent. In fact, in Garralda-

Guillem (2000), the stronger property is shown that bivariate extreme-value copu-

las are monotone regression dependent; see also Theorem 5.2.10 in Resnick (1987).

By (2.5), the copula C can be given in terms of the tail dependence function

through

C(u1, ..., ud) = exp
{

−ℓ
(

− log u1, ..., − log ud

)

}

, u ∈ (0, 1]d .

In extreme-value theory, it is often convenient to standardize to other distribu-

tions than the uniform (0, 1) law. The three most common forms are the unit

Fréchet distribution, the Gumbel distribution, and the reverse exponential distri-

bution, yielding respectively

C
(

e−1/x1 , ..., e−1/xd
)

= exp
{

−ℓ
(

1/x1, ..., 1/xd

)

}

, x ∈ (0,∞)d ,(2.10)

C
(

e−e−x1

, ..., e−e−xd
)

= exp
{

−ℓ
(

e−x1 , ..., e−xd
)

}

, x ∈ R
d ,(2.11)

C
(

ex1 , ..., exd
)

= exp
{

−ℓ
(

−x1, ...,−xd

)

}

, x ∈ (−∞, 0)d .(2.12)

When using unit Fréchet margins, the notation V (x1, ..., xd) = ℓ(1/x1, ..., 1/xd)

is often employed too.



Max-Stable Models 69

2.3. The intensity measure

The transformation of the components Xj to uniform (0, 1) random vari-

ables via the probability integral transform Fj(Xj) has the disadvantage that all

the action regarding the upper extremes is compressed to the neighbourhood of 1.

Instead, for a univariate sequence ξ1, ξ2, ... of independent and identically dis-

tributed random variables with common distribution function Fξ, define the first

exceedance time of the level x by

T (x) = inf
{

i = 1, 2, ... : ξi > x
}

.

If Fξ(x) < 1, then T (x) will be a geometric random variable with success proba-

bility equal to 1 − Fξ(x). Its expectation,

E[T (x)] =
1

1 − Fξ(x)
,

is called the return time of the level x.

Now let us apply this return time transformation to each of the d compo-

nents of the random vector (X1, ..., Xd). The return time of observation Xj is

Yj = 1/{1−Fj(Xj)}. The law of Yj is unit Pareto rather than uniform on (0, 1),

as Pr
[

Yj > y
]

= Pr
[

Fj(Xj) > 1−1/y
]

= 1/y for y ≥ 1. We find that values of Xj

corresponding to high percentiles of Fj are mapped to large values of Yj . As is

evident from Figure 2, extremes are magnified.
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Figure 2: Two views on a sample: uniform (left) versus Pareto (right).

Now suppose that the copula C1 is in the domain of attraction of an

extreme-value copula with stable tail dependence function ℓ. Equation (2.5) says
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that the random vector Y = (Y1, ..., Yd) satisfies

t
{

1 − C1

(

1 − x1/t, ..., 1 − xd/t
)

}

= t Pr

[

d
⋃

j=1

{

Yj > t/xj

}

]

= t Pr
[

Y/t ∈
(

[0,∞]d \ [0, 1/x]
)

]

→ ℓ(x) , t → ∞ .

It follows that on the space Ed = [0,∞]d \{0}, there exists a measure µ such that

(2.13) E

[

n
∑

i=1

I
(

Yi/n ∈ ·
)

]

= n Pr
[

Y/n ∈ ·
] v−→ µ( · ) , n → ∞ .

The limit takes place in the mode of vague convergence of measures, meaning that

limn→∞ n E[f(Y/n)] =
∫

Ed
f(x) dµ(x) for every bounded, continuous function f

on Ed that vanishes in a neighbourhood of the origin. Intuitively, when n grows

large, the vector Y/n is pulled towards the origin, in the neighbourhood of which

the function f is zero. The intensity measure then only concerns the upper tail

of the distribution of Y . The first expression in the previous display shows that

µ expresses the limiting average intensity in space of the normalized sample cloud
{

Y1/n, ..., Yn/n
}

. The stable tail dependence function acts as a distribution

function for the intensity measure µ, as we have

ℓ(x) = µ
(

[0,∞]d \ [0, 1/x]
)

.

2.4. Extreme profiles

Assume that the vector of return times Y = (Y1, ..., Yd) with Yj = 1/{1 −
Fj(Xj)} is large, that is, at least one of its components exceeds a high threshold.

The relative sizes of the d components then inform us about the extremal depen-

dence: are some components large simultaneously or is one specific component

dominating all the other ones? Specifically, for y ∈ [0,∞)d \ {0} put

r(y) = y1 + ··· + yd ∈ (0,∞) ,

w(y) =
(

yj/r(y) : j =1, ..., d
)

∈ ∆d−1 ,

to be thought of as the magnitude and the profile of the vector y, respectively.

The spectral measure H lives on the unit simplex and is defined by

H(B) = µ
(

{

y : r(y) >1, w(y)∈B
}

)

,

for Borel subsets B of ∆d−1.
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The measure convergence in (2.13) implies that

E

[

n
∑

i=1

I
{

r(Yi) > n, w(Yi)∈ ·
}

]

=

(2.14)
= n Pr

[

r(Y ) > n, w(Y )∈ ·
] w−→ H( ·) , n → ∞ ,

with vague convergence being replaced by weak convergence because the state

space ∆d−1 is compact. In particular,

(2.15) Pr
[

w(Y )∈ · | r(Y ) > t
] d−→ H( ·)

H(∆d−1)
= Q( ·) , t → ∞ ,

meaning that the conditional distribution of the profile w(Y ) given that the

magnitude r(Y ) is large converges in distribution to the normalized spectral

measure Q.

The spectral measure H and the profile distribution Q( ·) are alternative,

equivalent ways of describing the extreme-value copula C. Indeed, homogeneity

of ℓ in (2.7) implies homogeneity of µ:

(2.16) µ(a ·) = a−1µ( ·) , a > 0 .

As a consequence, the intensity measure satisfies

µ
(

{

y : r(y) > z, w(y)∈B
}

)

= z−1µ
(

{

y | r > 1, w ∈B
}

)

(2.17)
= z−1H(B)

for z > 0 and for Borel sets B of ∆d−1. That is, when expressing a point y in the

coordinates (r, w), the intensity measure µ factorizes into a product measure on

(0,∞) × ∆d−1 given by r−2dr H(dw). Equation (2.17) leads to

(2.18)

∫

f(y)µ(dy) =

∫

∆d−1

∫ ∞

0
f(rw) r−2 dr H(dw)

for µ-integrable functions f , showing how to recover µ and thus ℓ and C from H.

The special case where f is equal to the indicator function of the set
{

y :

maxj xj yj > 1} for some x ∈ [0,∞)d yields, after some computation,

(2.19) ℓ(x) =

∫

∆d−1

max
j=1,...,d

(wj xj)H(dw) .

Incidentally, this representation of ℓ implies that ℓ must be convex. By special-

izing the bounds in (2.8) to the unit vectors in R
d, one finds that the spectral

measure H must satisfy the constraints

(2.20) 1 = ℓ(ej) =

∫

∆d−1

wj H(dw) , j = 1, ..., d .
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It follows that the total mass of H is equal to

H(∆d−1) =

∫

(w1 + ··· + wd)H(dw) = d .

Thanks to this property, it is possible to recover the spectral measure H from

the profile distribution Q. From (2.20), it then follows that a random vector

W = (W1, ..., Wd) on ∆d−1 with law equal to Q must satisfy

(2.21) EQ[Wj ] =

∫

∆d−1

wj Q(dw) = 1/d , j = 1, ..., d .

In §3, we will see that any such law Q can appear as the profile distribution of a

d-variate max-stable distribution.

In case of asymptotic independence, ℓ(x) = x1 + ···+ xd, the profile distri-

bution Q is equal to the discrete uniform distribution on the d vertices of ∆d−1:

asymptotically, only one component can be large at a time. In the case of asymp-

totic perfect dependence, ℓ(x) = max(x1, ..., xd), the profile distribution Q is

degenerate at the center (1/d, ..., 1/d) of ∆d−1: all components are equally large.

These two extreme cases are depicted in Figure 3.
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Figure 3: Asymptotic independence (left) versus
asymptotic perfect dependence (right).

To show the ease with which coefficients related to extremal dependence

can be computed, consider the random variable

N(t) =
d

∑

j=1

I
{

Fj(Xj) > 1 − 1/t
}

,

counting the number of components that exceed a high percentile. The following

dependence coefficients have natural interpretations.
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• Trouble is in the air:

lim
t→∞

t Pr
[

N(t)≥ 1
]

= ℓ(1, ..., 1) =

∫

∆d−1

max(w1, ..., wd)H(dw) .

• Multiple failures:

lim
t→∞

t Pr
[

N(t)≥ k
]

=

∫

∆d−1

w(d−k+1) H(dw) ,

for k = 1, ..., d, where w(1) ≤ ··· ≤ w(d) denote the order statistics of

(w1, ..., wd).

• The sky is falling:

lim
t→∞

t Pr
[

N(t) = d
]

= R(1, ..., 1) =

∫

∆d−1

min(w1, ..., wd)H(dw) .

• System collapse — how bad will it get?

lim
t→∞

E
[

N(t)−k | N(t)≥ k
]

=

∫

(

w(1) + ··· + w(d−k)

)

H(dw)
∫

w(d−k+1) H(dw)

,

for k = 1, ..., d − 1.

3. CONSTRUCTING MODELS

There is a fairly large number of parametric max-stable models available;

see for instance the overviews in Kotz & Nadarajah (2000) and Beirlant et al.

(2004). In a search for flexible models in large dimensions, new families are still

being constructed, as in Ballani & Schlather (2011), Boldi & Davison (2007), Coo-

ley et al. (2010), and Fougères et al. (2009). In this section, a simple construction

device will be proposed and illustrated.

From §2, we recall that max-stable models for extremal dependence can

be represented either via the extreme-value copula C, the stable tail dependence

function ℓ, the intensity measure µ, or the spectral measure H and its normalized

version, the profile distribution Q. However, as these objects must satisfy certain

constraints, construction of parametric models is not obvious, particularly in

high dimensions. Even if flexible parametric forms can be found, interpretation

of the model parameters may not be obvious. In addition, when working with the

spectral measure or profile distribution, the passage to lower-dimensional margins

can be awkward, as the conditioning events in (2.15) will be different according

to which components are selected.
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3.1. A construction device

Let Z be a unit Fréchet random variable, that is, Pr(Z ≤ z) = exp(−1/z)

for z > 0. Let A = (A1, ..., Ad) be a random vector, independent of Z, such that

0 < E[max(Aj , 0)] < ∞ for every j ∈ {1, ..., d}. Consider the random vector

(3.1) X = (X1, ..., Xd) = (A1Z, ..., AdZ) .

The max-stable attractor of the distribution of X can be explicitly calculated.

Lemma 3.1. For x = (x1, ..., xd) ∈ (0,∞)d, we have

lim
n→∞

Pr
[

X1≤ nx1, ..., Xd ≤ nxd

]n
=

(3.2)
= exp

{

−E
[

max
(

A1/x1, ..., Ad/xd, 0
)

]}

.

Proof: Let x ∈ (0,∞)d. We have

Pr
[

X1≤ x1, ..., Xd ≤ xd

]

= Pr
[

A1Z ≤ x1, ..., AdZ ≤ xd

]

= Pr
[

A1/x1≤ 1/Z, ..., Ad/xd ≤ 1/Z
]

= Pr
[

1/Z ≥ max
(

A1/x1, ..., Ad/xd

)

]

.

The distribution of 1/Z is unit exponential. Since A and Z are independent,

Pr
[

X1≤ x1, ..., Xd ≤ xd | A1, ..., Ad

]

= exp
{

−max
(

A1/x1, ..., Ad/xd, 0
)

}

.

It follows that

Pr
[

X1≤ x1, ..., Xd ≤ xd

]

= E
[

exp
{

−max
(

A1/x1, ..., Ad/xd, 0
)

}]

.

Let A(1), A(2), ... be a sequence of independent and identically distributed

copies of A. Fix positive integer n. We have

Pr
[

X1≤ nx1, ..., Xd ≤ nxd

]n
=

=

(

E
[

exp
{

−max
(

A1/x1, ..., Ad/xd, 0
)

}]

)n

= E

[

exp

{

− 1

n

n
∑

i=1

max
(

A
(i)
1 /x1, ..., A

(i)
d /xd, 0

)

}]

.

Equation (3.2) now follows by the law of large numbers and the dominated con-

vergence theorem.
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The margins of the limit distribution function, say G, in (3.2) are equal to

Gj(xj) = exp
{

−E[max(Aj , 0)]/xj

}

for xj > 0. Assume that E[max(Aj , 0)] = 1

for all j = 1, ..., d; this can always be achieved by rescaling the variables Aj if

necessary. In that case, the margins of G are unit Fréchet. Comparing equa-

tions (3.2) and (2.10), we find that the stable tail dependence function of G is

given by

(3.3) ℓA(x1, ..., xd) = E
[

max
(

x1A1, ..., xdAd, 0
)

]

.

The spectral measure H corresponding to ℓ in (3.3) can be identified too.

Write A+
j = max(Aj , 0) and put R = A+

1 + ··· + A+
d . On the event R > 0, define

Wj = A+
j /R; on the event R = 0, the definition of Wj is immaterial — for def-

initeness, put Wj = 1/d if R = 0. Note that W takes values in ∆d−1 and that

E[R] =
∑d

j=1 E[A+
j ] = d. We have A+

j = RWj and thus

ℓA(x1, ..., xd) = E
[

R max
(

W1x1, ..., Wdxd

)

]

= E
[

E
[

R | W1, ..., Wd

]

max
(

W1x1, ..., Wdxd

)

]

.

Comparing this expression with (2.19), we find that the spectral measure H of

ℓA is given by

(3.4) H(dw) = E
[

R | W = w
]

Pr
[

W ∈ dw
]

,

that is, H is absolutely continuous with respect to the law of W with Radon–

Nikodym derivative equal to E
[

R | W = w
]

. Similarly, the profile distribution Q

satisfies

(3.5) Q(dw) = d−1 E
[

R | W = w
]

Pr
[

W ∈ dw
]

.

Intuitively, this makes sense: profiles W that on average yield larger values of R

will have a larger contribution to the joint extremes of X.

Incidentally, this construction shows that any probability distribution Q

on ∆d−1 satisfying (2.21) can appear as the profile distribution of a d-variate

max-stable distribution. Indeed, let the random vector W on ∆d−1 have law Q

and put Aj = dWj for all j = 1, ..., d. As A1 + ··· + Ad = d by construction, the

law of the random vector X in (3.1) is in the domain of attraction of a d-variate

max-stable distribution with profile distribution equal to Q.

If the dimension d is large, realistic models of extremal dependence should

allow for the possibility that only some but not all components of a random

vector are large simultaneously. In terms of the spectral measure or the profile

distribution, this is encoded by the lower-dimensional faces of the unit simplex.

For a non-empty subset I of {1, ..., d}, let ∆d−1,I denote the set of all w in ∆d−1

such that wj > 0 if j ∈ I and wj = 0 otherwise. If the probability of the event
{

minj∈I Aj > 0 ≥ maxj∈Ic Aj

}

is non-zero, then by (3.4), the spectral measure

and the profile distribution will put positive mass on ∆d−1,I . The set I contains

the indices of the components that are large.
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3.2. Examples

The simplicity of (3.3) is appealing and the reader is invited to the apply

the recipe in order to produce his or her own parametric models. In the remainder

of the article, a number of well-known examples are worked out.

Example 3.1 (Independence). Suppose that Pr
[

Aj >0≥max(Ai : i 6= j)
]

= pj for pj > 0 and p1 + ··· + pd = 1. Then only component can be large at the

time. After standardization ensuring that E[max(Aj , 0)] = 1 for all j = 1, ..., d,

we find ℓA(x1, ..., xd) = E
[

max(x1A1, ..., xdAd, 0)
]

= x1 + ···+xd, the stable tail

dependence function of the independence copula.

Example 3.2 (Perfect dependence). Suppose that Aj = aj B with proba-

bility one for all j = 1, ..., d, for some constants aj > 0 and a random variable B

such that E[max(B, 0)] is positive and finite. Then the profile of an extreme

vector is fixed. After standardization, aj = 1/ E[max(B, 0)], the stable tail de-

pendence function is that of perfect positive association, that is, ℓA(x1, ..., xd) =

max(x1, ..., xd).

Example 3.3 (Discrete spectral measures). Suppose that the distribu-

tion of A is discrete with a finite number of atoms. Specifically, suppose that

Pr[A = ak] = pk for k ∈ {1, ..., m}, where ak ∈ R
d and pk ∈ (0, 1) such that

∑m
k=1 pk = 1. Via standardization, ensure that 1 = E[max(Aj , 0)] =

∑m
k=1 pk a+

kj

for all j = 1, ..., d. Put rk = a+
k1 + ···+ a+

kd and write a+
k = rk wk: if rk > 0, then

wkj = a+
kj/rk, whereas if rk = 0, then put wkj = 1/d. It follows that

ℓA(x1, ..., xd) =
m

∑

k=1

pk max
(

a+
k1x1, ..., a

+
kdxd

)

=
m

∑

k=1

(pk rk)max
(

wk1x1, ..., wkdxd

)

.

We find that the spectral measure H and the profile distribution Q are discrete

and are given by

H =
m

∑

k=1

pk rk δwk
, Q =

m
∑

k=1

d−1pk rk δwk
,

with δw a unit point mass at w. The probabilities pk are tilted with the mag-

nitudes rk, giving higher prominence to profiles wk that are associated to larger

values of rk.

Max-stable models with discrete spectral measures are called extreme-value

factor models in Einmahl et al. (2011). Each of the m possible outcomes ak results
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in a different profile, according to the type of event or factor that triggered the

extreme value.

Example 3.4 (Random indicators). Let

ℓ(x, y) = E
[

max(xA, yB, 0)
]

, (x, y) ∈ [0,∞)2 ,

in terms of random variables A and B such that E[max(A, 0)] = E[max(B, 0)] = 1.

Let (I, J) be a pair of random indicators, independent of the pair (A, B), such

that Pr[I =1] = p , Pr[J =1] = q and Pr[I =J =1] = r. In the definition of ℓ,

replace the pair (A, B) by the pair (p−1IA, q−1JB); we assume that 0 < p ≤ 1 and

0 < q ≤ 1. The new stable tail dependence function is equal to

E
[

max
(

p−1xIA, q−1yJB, 0
)

]

= E
[

max
(

p−1xA, q−1yB
)

]

Pr
[

I = J = 1
]

+ E
[

max
(

p−1xA, 0
)

]

Pr
[

I = 1, J = 0
]

+ E
[

max
(

q−1yB, 0
)

]

Pr
[

I = 0, J = 1
]

= ℓ
(

p−1x, q−1y
)

r + p−1x (p− r) + q−1y (q − r) .

Writing α = r/p = Pr
[

J = 1 | I = 1
]

and β = r/q = Pr
[

I = 1 | J = 1
]

, we find

(3.6) ℓα,β(x, y) = ℓ(αx, βy) + (1 − α)x + (1 − β)y , (x, y) ∈ [0,∞)2 .

The new tail copula is simply

Rα,β(x, y) = x + y − ℓα,β(x, y)

= αx + βy − ℓ(αx, βy) = R(αx, βy) , (x, y) ∈ [0,∞)2 .

This is an asymmetric, two-parameter extension of the original model. Imposing

the equality constraint α = β = θ ∈ [0, 1] yields the symmetric, one-parameter

extension

(3.7) ℓθ(x, y) = θ ℓ(x, y) + (1− θ) (x + y) .

In higher dimensions, a vector of indicators (I1, ..., Id) can serve to switch

some components Xj ‘on’ or ‘off’. The dependence structure in these indica-

tors then yields an extremal dependence structure for the random vector X.

Specifically, let pj = Pr[Ij = 1]; we assume 0 < pj ≤ 1. Let A = (A1, ..., Ad) be

a random vector independent of (I1, ..., Id) and such that E[max(Aj , 0)] = 1 for

all j = 1, ..., d. Then we can define a stable tail dependence function via

ℓp(x1, ..., xd) = E
[

max
(

p−1
1 x1I1A1, ..., p−1

d xd IdAd, 0
)

]

(3.8)
=

∑

∅6=c⊂{1,...,d}

p(c) E
[

max
(

p−1
j xj Aj : j ∈ c

)

]
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where p(c) = Pr
[

{j = 1, ..., d : Ij = 1} = c
]

. Keeping the law of A fixed, the pa-

rameter vector p is equal to a probability distribution (p(c))c on the non-empty

subsets c of {1, ..., d}.

In this way, hierarchical structures can easily be built. For instance, in

dimension d = 4, we can think of (I1, I2, I3, I4) = (J, J, K, K). One can also think

of logit-type models for the indicators.

Example 3.5 (Marshall–Olkin copula). Applying the device in (3.6) to

the function ℓ(x, y) = max(x, y) yields the model

ℓα,β(x, y) = max(αx, βy) + (1 − α)x + (1 − β)y = x + y − min(αx, βy) .

The extreme-value copula associated to ℓα,β is the Marshall–Olkin copula

Cα,β(u, v) = uv min(u−α, v−β) = min(u1−αv, uv1−β) , (u, v) ∈ [0, 1]2 .

In higher dimensions, applying the device (3.8) to the function ℓ(x) = max(x),

that is, Aj = 1 with probability one, we get the model

ℓp(x1, ..., xd) =
∑

∅6=c⊂{1,...,d}

p(c) max
(

p−1
j xj : j ∈ c

)

,

the spectral measure of which is discrete. Another stochastic interpretation of

this model is provided in Embrechts et al. (2003).

Example 3.6 (Dirichlet model). Let α1, ..., αd be positive parameters

and let Z1, ..., Zd be independent Gamma(αj , 1) random variables, that is, the

density of Zj is

fj(z) =
1

Γ(αj)
zαj−1e−z , 0 < z < ∞ .

Put Aj = α−1
j Zj , a positive random variable with unit expectation. The stable

tail dependence function associated with the random vector A = (A1, ..., Ad) is

ℓA(x1, ..., xd) = E
[

max
(

x1A1, ..., xdAd

)

]

= E
[

max
(

α−1
1 x1Z1, ..., α

−1
d xdZd

)

]

= E
[

(Z1 + ··· + Zd) max
(

α−1
1 x1V1, ..., α

−1
d xdVd

)

]

,

where Vj = Zj/(Z1+···+Zd). It is well known that the random vector (V1, ..., Vd)

is independent of Z1 + ··· + Zd and has a Dirichlet distribution with parameters

(α1, ..., αd). We find

ℓA(x) = E
[

(α1 + ··· + αd) max
(

α−1
1 x1V1, ..., α

−1
d xdVd

)

]

(3.9)

=
Γ
(
∑d

j=1 αj + 1
)

∏d
j=1 Γ(αj)

∫

∆d−1

max
j=1,...,d

(

α−1
j xj vj

)

d
∏

j=1

v
αj−1
j dv1 ··· dvd−1 .

We recognize the Dirichlet model introduced in Coles & Tawn (1991).
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Example 3.7 (Polynomial Pickands functions). In the Dirichlet model

(3.9), put d = 2 and α1 = α2 = 1, to obtain

ℓ(x, y) = 2

∫ 1

0
max

{

xv, y(1− v)
}

dv = x + y − xy

x + y
.

The Pickands dependence function associated to ℓ is D(t) = ℓ(1−t, t) = 1−t(1−t)

for t ∈ [0, 1]. Applying the transformation in (3.7) yields the mixture model

D(t) = 1 − θ t (1− t) , t ∈ [0, 1] ,

in terms of a parameter θ ∈ [0, 1], introduced in Tawn (1988). This is the only

model in which D is a quadratic polynomial. Applying the transformation in

(3.6) yields the rational model

Dα,β(t) = ℓ
(

α(1− t), βt
)

+ (1− α) (1− t) + (1− β)t

= 1 − αβt(1− t)

α(1− t) + β t
, t ∈ [0, 1] ,

in terms of parameters α, β ∈ (0, 1].

More generally, bivariate max-stable models of which the Pickands depen-

dence function is a higher-order polynomial can be obtained via the transforma-

tion in (3.7) applied to the function ℓ(x, y) = E[max(xA, yB)] when A and B are

random sums

A = E1 + ··· + EJ , B = F1 + ··· + FK ,

in terms of independent random variables J, K, E1, F1, E2, F2, ... such that

J and K are counting random variables having finite support and unit expectation

and where E1, F1, E2, F2, ... are unit exponential random variables. Polynomial

Pickands dependence functions are studied in Guillotte & Perron (2012).

Example 3.8 (Schlather model). Let (S, T ) be a bivariate normal ran-

dom vector with standard normal margins and with correlation ρ ∈ (−1, 1). Put

A =
√

2π S and B =
√

2π T , so that E[max(A, 0)] = E[max(B, 0)] = 1. The sta-

ble tail dependence function corresponding to the random pair (A, B) is

ℓρ(x, y) = E
[

max(xA, yB, 0)
]

=

∫ 0

s=−∞

∫ ∞

t=0

√
2π yt

1

2π
e−(s2+2ρst+t2)/2 ds dt

+

∫ ∞

s=0

∫ 0

t=−∞

√
2π xs

1

2π
e−(s2+2ρst+t2)/2 ds dt

+

∫ ∞

0

∫ ∞

0

√
2π max(xs, yt)

1

2π
e−(s2+2ρst+t2)/2 ds dt .
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After some tedious calculations, this can be shown to be

ℓρ(x, y) =
1

2
(x + y)

(

1 +

√

1 − 2(ρ + 1)
xy

(x + y)2

)

,

see Schlather (2002). The Pickands dependence function corresponding to this

model is

Dρ(t) =
1

2

{

1 +
√

1 − 2(ρ + 1) t(1 − t)
}

, t ∈ [0, 1] .

Example 3.9 (Hüsler–Reiss model). Let (S, T ) be a bivariate normal

random vector with standard normal margins and with correlation ρ ∈ (−1, 1).

Let σ > 0 and put

A = exp
(

σS − σ2/2
)

, B = exp
(

σT − σ2/2
)

.

The pair (A, B) is lognormal with unit expectations, and it yields the stable tail

dependence function

ℓ(x, y) =

∫ ∞

−∞

∫ ∞

−∞
max

{

xeσs, yeσt
}

e−σ2/2 1

2π
e−(s2+2ρst+t2)/2 ds dt .

The double integral can be calculated in terms of the standard normal cumulative

distribution function Φ, yielding

ℓa(x, y) = xΦ

(

a

2
+

1

a
log(x/y)

)

+ y Φ

(

a

2
+

1

a
log(y/x)

)

with parameter a = σ
√

2(1−ρ). This is the model introduced in Hüsler & Reiss

(1989).
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Montréal. Organizers and participants of the workshop are gratefully acknowl-

edged for their support and their encouraging discussions, from which the paper

has strongly benefited.

The author’s research was supported by IAP research network grant No. P6/03

of the Belgian government (Belgian Science Policy) and by contract No. 07/12/002

of the Projet d’Actions de Recherche Concertées of the Communauté française de
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Eds.), Lecture Notes in Statistics – Proceedings, pp. 127–146, Springer-Verlag, Berlin.

Guillotte, S. & Perron, F. (2012). Polynomial Pickands functions: characterisation

and inference. In preparation.

Gumbel, E.J. (1960). Bivariate exponential distributions, J. Am. Statist. Assoc., 55,
698–707.

Hougaard, P. (1986). A class of multivariate failure time distributions, Biometrika,
73, 671–678.

Huang, X. (1992). Statistics of bivariate extreme values, Ph. D. thesis, Tinbergen
Institute Research Series.
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