ON THE ADMISSIBILITY OF ESTIMATORS OF TWO ORDERED GAMMA SCALE PARAMETERS UNDER ENTROPY LOSS FUNCTION

Authors: N. Nematollahi
- Department of Statistics, Allameh Tabataba’i University, Tehran, Iran nematollahi@atu.ac.ir
Z. Meghnatisi
- Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
Zahra.meghnatisi@kiau.ac.ir

Received: June 2010 Revised: August $2011 \quad$ Accepted: September 2011

Abstract:

- Suppose that a random sample of size n_{i} is drawn from a gamma distribution with known shape parameter $\nu_{i}>0$ and unknown scale parameter $\beta_{i}>0, i=1,2$, satisfying $0<\beta_{1} \leq \beta_{2}$. In estimation of β_{1} and β_{2} under the entropy loss function, we consider the class of mixed estimators of β_{1} and β_{2}. It is shown that a subclass of mixed estimators of β_{i} beats the usual estimators $\overline{X_{i}} / \nu_{i}, i=1,2$, and the inadmissible estimators in the class of mixed estimators are derived. Also the asymptotic efficiency of mixed estimators relative to the usual estimators are obtained. Finally the results are extended to a subclass of the scale parameter exponential family and the family of transformed chi-square distributions.

Key-Words:

- admissibility; entropy loss function; exponential family; gamma distribution; mixed estimators; ordered parameters.

AMS Subject Classification:

- 62F30, 62C15, 62F10.

1. INTRODUCTION

When an ordering among parameters is known in advance, the problem of estimating the smallest or the largest parameters arises in various practical problems. For example, in estimating the mean lives of two components in which one is produced by a standard factory and the other is produced by a local factory, it is quite natural to assume an ordering among mean lives of the components that produced by two factory.

Estimating the ordered parameters has been considered by several researchers. For a classified and extensively reviewed work in this area, see van Eeden (2006). Suppose that an estimator is admissible when no information on the ordering of parameters is given. Then a natural question of interest is: Does this estimator remain admissible when it is assumed that the parameters are ordered?

A few researchers address this question for some well known distributions under the Squared Error Loss (SEL) and scale-invariant SEL function. For example, Katz (1963) introduced mixed estimators for simultaneous estimation of two ordered binomial parameters and showed that they are better than the unrestricted Maximum Likelihood Estimators (MLEs). Kumar and Sharma (1988) considered mixed estimators for two ordered normal means and discussed the minimaxity and inadmissibility of them. In estimating the ordered scale parameters of two exponential distributions Kaur and Singh (1991), Vijaysree and Singh $(1991,1993)$, Kumar and Kumar $(1993,1995)$, and Misra and Singh (1994) considered componentwise or simultaneous estimation of the ordered means of two exponential distributions and discussed the admissibility and inadmissibility of mixed estimators based on the sample means and the restricted MLEs. In estimating the ordered scale parameters of two gamma distributions, Misra et al. (2002) derived a smooth estimator that improves upon the best scale equivariant estimators, Chang and Shinozaki (2002) considered estimation of linear functions of the ordered scale parameters and Meghnatisi and Nematollahi (2009) considered admissibility and inadmissibility of mixed estimators of the ordered scale parameters when the shape parameters are arbitrary and known, see also Self and Liang (1987).

Suppose that $X_{i j}, j=1,2, \ldots, n_{i}, i=1,2$, be two independent random samples from gamma distribution with known shape parameter $\nu_{i}>0$ and unknown scale parameter $\beta_{i}>0, i=1,2$, with probability density function (pdf)

$$
f_{X_{i j}}(x)=\frac{1}{\beta_{i}^{\nu_{i}} \Gamma\left(\nu_{i}\right)} x^{\nu_{i}-1} e^{-x / \beta_{i}}, \quad \begin{align*}
& x>0, \quad \nu_{i}>0, \quad \beta_{i}>0 \tag{1.1}\\
& \\
& j=1, \ldots, n_{i}, \quad i=1,2
\end{align*}
$$

We assume that $0<\beta_{1} \leq \beta_{2}$, and want to estimate β_{1} and β_{2} component-wise.

It is interesting to note that in the literature, estimating the ordered parameters are often considered under the SEL and scale-invariant SEL function which are symmetric about the parameter value and convex in estimator δ. In some estimation problems, over-estimation may be more serious than under-estimation. For example, in estimating the average life of the components of an aircraft, over-estimation is usually more serious than under-estimation. In such cases, the usual methods of estimation, which are based on symmetric loss function may be inappropriate. In this regard, Misra et al. (2004) used asymmetric LINEX loss function to estimate the ordered parameters of two normal populations. As an alternative to scale-invariant SEL, which is appropriate for estimating the scale parameters β_{1} and β_{2}, consider the entropy loss function given by

$$
\begin{equation*}
L\left(\beta_{i}, \delta_{i}\right)=\frac{\delta_{i}}{\beta_{i}}-\ln \frac{\delta_{i}}{\beta_{i}}-1, \quad i=1,2 \tag{1.2}
\end{equation*}
$$

which is also known as Stein's loss. This loss is convex in δ_{i} and not symmetric, also it penalizes heavily under-estimation. In estimating the ordered parameters under the entropy loss function, Parsian and Nematollahi (1995) discussed the admissibility of usual estimators of the ordered Poisson parameters and Chang and Shinozaki (2008) compared the linear function of maximum likelihood and unbiased estimators of ordered gamma scale parameters and its reciprocals. For a review of the literature in using entropy loss, see Parsian and Nematollahi (1996) and references cited therein. Under the loss (1.2), the best scale invariant and admissible estimator of β_{i} under the model (1.1) is $\delta_{i}=\sum_{j=1}^{n_{i}} X_{i j} / n_{i} \nu_{i}=\overline{X_{i}} / \nu_{i}$, $i=1,2$ (see Dey et al., 1987 and Nematollahi, 1995), and it is also the MLE of β_{i}, $i=1,2$.

In this paper we consider the class of mixed estimators of β_{1} and β_{2} under the model (1.1) with the restriction $0<\beta_{1} \leq \beta_{2}$, and discuss the admissibility and inadmissibility of the usual and mixed estimators of β_{1} and β_{2} under the entropy loss (1.2). To this end, in Section 2, a subclass of mixed estimators of β_{i} that beats the usual estimators $\delta_{i}=\overline{X_{i}} / \nu_{i}, i=1,2$, is obtained and the inadmissible estimators in the class of mixed estimators are identified. In Section 3, the admissible estimators in the class of mixed estimators are considered. The asymptotic efficiency of mixed estimators relative to the usual estimators are given in Section 4. In Section 5, the results are extended to a subclass of the scale parameter exponential family and also the family of transformed chi-square distributions introduced by Rahman and Gupta (1993).

2. INADMISSIBILITY RESULTS

Let $X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}, i=1,2$, be two independent random samples from Gamma (ν_{i}, β_{i})-distribution, $i=1,2$, with pdf (1.1) where $0<\beta_{1} \leq \beta_{2}$ are unknown and ν_{1}, ν_{2} are known positive real valued shape parameters. Let $\gamma_{i}=n_{i} \nu_{i}$
and $\delta_{i}=\sum_{j=1}^{n_{i}} X_{i j} / \gamma_{i}=\overline{X_{i}} / \nu_{i}, i=1,2$. Then δ_{1} and δ_{2} are the ML, best scale equivariant and admissible estimators of β_{1} and β_{2}, respectively, when β_{1} and β_{2} are unrestricted. Consider the mixed estimators

$$
\begin{equation*}
\delta_{1 \alpha}=\min \left(\delta_{1}, \alpha \delta_{1}+(1-\alpha) \delta_{2}\right), \quad 0 \leq \alpha<1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2 \alpha}=\max \left(\delta_{2}, \alpha \delta_{2}+(1-\alpha) \delta_{1}\right), \quad 0 \leq \alpha<1 \tag{2.2}
\end{equation*}
$$

of β_{1} and β_{2}, respectively. When $\alpha=\alpha_{1}=\frac{\gamma_{1}}{\gamma_{1}+\gamma_{2}}$, then $\delta_{1 \alpha}$ is the MLE of β_{1} and if $\alpha=\alpha_{2}=\frac{\gamma_{2}}{\gamma_{1}+\gamma_{2}}$, then $\delta_{2 \alpha}$ is the MLE of β_{2} when $\beta_{1} \leq \beta_{2}$, see Robertson et al. (1988) and Chang and Shinozaki (2002) for more details.

In this section, we identify the values of α such that $\delta_{i \alpha}$ is inadmissible among the class of mixed estimators of β_{i} and $\delta_{i \alpha}$ dominates the usual estimator δ_{i} of $\beta_{i}, i=1,2$. Let $R\left(\boldsymbol{\beta}, \delta_{i \alpha}\right)=E\left[\frac{\delta_{i \alpha}}{\beta_{i}}-\ln \frac{\delta_{i \alpha}}{\beta_{i}}-1\right]$ and $R\left(\boldsymbol{\beta}, \delta_{i}\right)=E\left[\frac{\delta_{i}}{\beta_{i}}-\ln \frac{\delta_{i}}{\beta_{i}}-1\right]$ be the risk functions of $\delta_{i \alpha}$ and $\delta_{i}, i=1,2$, respectively. Also, let $y_{1}=\beta_{2} / \beta_{1}$, $y_{2}=\beta_{1} / \beta_{2}$ and $z=\gamma_{1} y_{1} /\left(\gamma_{1} y_{1}+\gamma_{2}\right)$. Since $0<\beta_{1} \leq \beta_{2}$, we have $y_{1} \geq 1,0<y_{2} \leq 1$ and $0<z<1$.

Theorem 2.1. With $\alpha_{1}=\frac{\gamma_{1}}{\gamma_{1}+\gamma_{2}}$, under the entropy loss function (1.2), for $\alpha \in\left(\alpha_{1}, 1\right), \gamma_{1}>1$ and $0<\beta_{1} \leq \beta_{2}$,

$$
R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)<R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)<R\left(\boldsymbol{\beta}, \delta_{1}\right) .
$$

Proof: Let $T_{1}=\frac{\gamma_{2} \delta_{2}}{\gamma_{1} y_{1} \delta_{1}+\gamma_{2} \delta_{2}}$ and $T_{2}=\frac{\gamma_{1} \delta_{1}}{\beta_{1}}+\frac{\gamma_{2} \delta_{2}}{\beta_{2}}$. Then $\delta_{1}=\frac{\beta_{1} T_{2}\left(1-T_{1}\right)}{\gamma_{1}}$, $\delta_{2}=\frac{\beta_{2} T_{1} T_{2}}{\gamma_{2}}$ and T_{1} and T_{2} are statistically independent with $T_{1} \sim \operatorname{Beta}\left(\gamma_{2}, \gamma_{1}\right)$ and $T_{2}{ }_{\sim}^{\gamma} \operatorname{Gamma}\left(\gamma_{1}+\gamma_{2}, 1\right)$. Let $\Delta_{1}=R\left(\boldsymbol{\beta}, \delta_{1}\right)-R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$, then

$$
\begin{align*}
& \Delta_{1}= E\left[\left\{\begin{array}{l}
\delta_{1}-\ln \frac{\delta_{1}}{\beta_{1}}-\frac{\alpha \delta_{1}+(1-\alpha) \delta_{2}}{\beta_{1}} \\
\\
\\
\\
\left.\left.\quad+\ln \frac{\alpha \delta_{1}+(1-\alpha) \delta_{2}}{\beta_{1}}\right\} I_{[0, \infty)}\left(\delta_{1}-\delta_{2}\right)\right] \\
=E
\end{array}\right.\right. \\
&=E\left[\left\{\frac{(1-\alpha)\left(\delta_{1}-\delta_{2}\right)}{\beta_{1}}+\ln \left(\alpha+(1-\alpha) \frac{\delta_{2}}{\delta_{1}}\right)\right\} I_{[0, \infty)}\left(\delta_{1}-\delta_{2}\right)\right] \\
&= \frac{1-\alpha}{\gamma_{1} \gamma_{2}}\left(\gamma_{2}-\left(\gamma_{1} y_{1}+\gamma_{2}\right) T_{1}\right) T_{2} \tag{2.3}\\
&\left.\left.\quad+\ln \left(\alpha+(1-\alpha) \frac{\gamma_{1} y_{1} T_{1}}{\gamma_{2}\left(1-T_{1}\right)}\right)\right\} I_{0,1-z]}\left(T_{1}\right)\right] \\
&=E {\left[f_{1 \alpha}\left(T_{1}\right) I_{[0,1-z]}\left(T_{1}\right)\right] }
\end{align*}
$$

where

$$
\begin{align*}
f_{1 \alpha}(x)= & \frac{(1-\alpha)\left(\gamma_{1}+\gamma_{2}\right)}{\gamma_{1} \gamma_{2}}\left(\gamma_{2}-\left(\gamma_{1} y_{1}+\gamma_{2}\right) x\right) \\
& +\ln \left(\frac{\alpha \gamma_{2}(1-x)+(1-\alpha) \gamma_{1} y_{1} x}{\gamma_{2}(1-x)}\right) \tag{2.4}
\end{align*}
$$

From (2.4) and the distribution of T_{1}, the expectation (2.3) exist whenever $\gamma_{1}>1$. Now using the fact that $\ln x \geq 1-\frac{1}{x}$ for $x>0$, we have

$$
\begin{align*}
f_{1 \alpha}(x) \geq & \frac{(1-\alpha)\left(\gamma_{2}-\left(\gamma_{1} y_{1}+\gamma_{2}\right) x\right)}{\gamma_{1} \gamma_{2}\left(\alpha \gamma_{2}(1-x)+(1-\alpha) \gamma_{1} y_{1} x\right)} \\
& \times\left[x\left(\gamma_{1}+\gamma_{2}\right)\left((1-\alpha) \gamma_{1} y_{1}-\alpha \gamma_{2}\right)+\alpha \gamma_{2}\left(\gamma_{1}+\gamma_{2}\right)-\gamma_{1} \gamma_{2}\right] \tag{2.5}\\
= & \frac{1-\alpha}{\gamma_{1} \gamma_{2}\left[\alpha \gamma_{2}(1-x)+(1-\alpha) \gamma_{1} y_{1} x\right]} g_{1 \alpha}(x)
\end{align*}
$$

where

$$
\begin{equation*}
g_{1 \alpha}(x)=A_{1}\left(y_{1}, \alpha\right) x^{2}+B_{1}\left(y_{1}, \alpha\right) x+C_{1}\left(y_{1}, \alpha\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{align*}
& A_{1}\left(y_{1}, \alpha\right)=\left(\gamma_{1}+\gamma_{2}\right)\left(\gamma_{1} y_{1}+\gamma_{2}\right)\left(\alpha \gamma_{2}-(1-\alpha) \gamma_{1} y_{1}\right) \\
& B_{1}\left(y_{1}, \alpha\right)=\gamma_{2}\left[\left(\gamma_{1} y_{1}+\gamma_{2}\right)\left(\gamma_{1}-\alpha\left(\gamma_{1}+\gamma_{2}\right)\right)\right. \tag{2.7}\\
&\left.\quad+\left(\gamma_{1}+\gamma_{2}\right)\left((1-\alpha) \gamma_{1} y_{1}-\alpha \gamma_{2}\right)\right] \\
& C_{1}\left(y_{1}, \alpha\right)= \gamma_{2}^{2}\left[\alpha\left(\gamma_{1}+\gamma_{2}\right)-\gamma_{1}\right]
\end{align*}
$$

Note that $C_{1}\left(y_{1}, \alpha\right)>0$ for all $y_{1} \geq 1$ and $\alpha>\alpha_{1}$. When $A_{1}\left(y_{1}, \alpha\right) \neq 0$, the quadratic form (2.6) has the roots

$$
x_{1}=1-z \quad \text { and } \quad x_{2}=1-z+\frac{\gamma_{1} \gamma_{2}^{2}\left(y_{1}-1\right)}{A_{1}\left(y_{1}, \alpha\right)}
$$

If $A_{1}\left(y_{1}, \alpha\right)>0$, then $x_{1}=1-z$ is the smaller positive root and if $A_{1}\left(y_{1}, \alpha\right)<0$ then $x_{1}=1-z$ is the only positive root when $\alpha \in\left(\alpha_{1}, 1\right)$. For the case $A_{1}\left(y_{1}, \alpha\right)=0$, $x_{1}=1-z$ is the only root. So, from (2.5), $f_{1 \alpha}(x)>0$ for $x \in[0,1-z]$, and hence $\Delta_{1}>0$ for all $0<\beta_{1} \leq \beta_{2}$ when $\alpha \in\left(\alpha_{1}, 1\right)$, i.e., $R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)<R\left(\boldsymbol{\beta}, \delta_{1}\right)$ for all $\alpha \in\left(\alpha_{1}, 1\right)$ when $\gamma_{1}>1$.

Now from (2.3) and (2.4), when $\gamma_{1}>1$ we have

$$
\begin{aligned}
\frac{\partial R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)}{\partial_{\alpha}}= & -\frac{\partial \Delta_{1}}{\partial \alpha} \\
= & E\left[\left\{\frac{\gamma_{1}+\gamma_{2}}{\gamma_{1} \gamma_{2}}\left(\gamma_{2}-\left(\gamma_{1} y_{1}+\gamma_{2}\right) T_{1}\right)\right.\right. \\
& \left.\left.-\frac{\gamma_{2}\left(1-T_{1}\right)-\gamma_{1} y_{1} T_{1}}{\alpha \gamma_{2}\left(1-T_{1}\right)+(1-\alpha) \gamma_{1} y_{1} T_{1}}\right\} \times I_{[0,1-z]}\left(T_{1}\right)\right] \\
= & E\left[\frac{g_{1 \alpha}\left(T_{1}\right)}{\gamma_{1} \gamma_{2}\left\{\alpha \gamma_{2}\left(1-T_{1}\right)+(1-\alpha) \gamma_{1} y_{1} T_{1}\right\}} I_{[0,1-z]}\left(T_{1}\right)\right],
\end{aligned}
$$

where $g_{1 \alpha}(x)$ is given by (2.6). For $\alpha \in\left(\alpha_{1}, 1\right)$ the above expectation is exist, and using a similar argument after relation (2.7), we conclude that $g_{1 \alpha}(x)>0$ for all $\alpha \in\left(\alpha_{1}, 1\right)$ and $x \in[0,1-z]$. Therefore, from (2.8), $R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$ is an increasing function of α for $\alpha \in\left(\alpha_{1}, 1\right)$, i.e., $R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)<R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$ for all $\alpha \in\left(\alpha_{1}, 1\right)$ and $\gamma_{1}>1$, which completes the proof.

To compare the risks of $\delta_{1 \alpha_{1}}, \delta_{1 \alpha}$ and δ_{1}, we use a Monte Carlo simulation study. First note that $\frac{\gamma_{i} \delta_{i}}{\beta_{i}} \sim \operatorname{Gamma}\left(\gamma_{i}, 1\right), i=1,2$, so the risk function of δ_{i}, $i=1,2$, under the entropy loss function (1.2) is given by

$$
\begin{align*}
R\left(\beta_{i}, \delta_{i}\right) & =E\left[\frac{\delta_{i}}{\beta_{i}}-\ln \frac{\delta_{i}}{\beta_{i}}-1\right]=1-E\left[\ln \frac{\gamma_{i} \delta_{i}}{\beta_{i}}\right]+\ln \gamma_{i}-1 \\
& =-\frac{\Gamma^{\prime}\left(\gamma_{i}\right)}{\Gamma\left(\gamma_{i}\right)}+\ln \gamma_{i}=\ln \gamma_{i}-\psi\left(\gamma_{i}\right), \quad i=1,2, \tag{2.9}
\end{align*}
$$

where $\psi\left(\gamma_{i}\right)=\frac{\Gamma^{\prime}\left(\gamma_{i}\right)}{\Gamma\left(\gamma_{i}\right)}$ is the digamma function. Using similar argument as in proof of Theorem 2.1, we have

$$
\begin{array}{rl}
R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)=E & {\left[\frac{\delta_{1 \alpha}}{\beta_{1}}-\ln \frac{\delta_{1 \alpha}}{\beta_{1}}-1\right]} \\
=E & E\left[\left(\frac{\alpha \delta_{1}+(1-\alpha) \delta_{2}}{\beta_{1}}-\ln \frac{\alpha \delta_{1}+(1-\alpha) \delta_{2}}{\beta_{1}}-1\right) I_{[0, \infty)}\left(\delta_{1}-\delta_{2}\right)\right. \\
& \left.+\left(\frac{\delta_{1}}{\beta_{1}}-\ln \frac{\delta_{1}}{\beta_{1}}-1\right) I_{(0, \infty)}\left(\delta_{2}-\delta_{1}\right)\right] \\
(2.10)=E & {\left[\left(\frac{\delta_{1}-(1-\alpha)\left(\delta_{1}-\delta_{2}\right)}{\beta_{1}}-\ln \left(\frac{\delta_{1}-(1-\alpha)\left(\delta_{1}-\delta_{2}\right)}{\beta_{1}}\right)-1\right)\right.} \\
& \left.\times I_{[0, \infty)}\left(\delta_{1}-\delta_{2}\right)+\left(\frac{\delta_{1}}{\beta_{1}}-\ln \frac{\delta_{1}}{\beta_{1}}-1\right) I_{(0, \infty)}\left(\delta_{2}-\delta_{1}\right)\right] \\
=E & {\left[\left\{\left[\frac{T_{2}\left(1-T_{1}\right)}{\gamma_{1}}-\frac{1-\alpha}{\gamma_{1} \gamma_{2}}\left(\gamma_{2}-\left(\frac{\gamma_{1}}{y_{2}}+\gamma_{2}\right) T_{1}\right) T_{2}\right]\right.\right.} \\
& \left.-\ln \left[\frac{T_{2}\left(1-T_{1}\right)}{\gamma_{1}}-\frac{1-\alpha}{\gamma_{1} \gamma_{2}}\left(\gamma_{2}-\left(\frac{\gamma_{1}}{y_{2}}+\gamma_{2}\right) T_{1}\right) T_{2}\right]-1\right\} I_{(0,1-z]}\left(T_{1}\right) \\
& \left.+\left\{\frac{T_{2}\left(1-T_{1}\right)}{\gamma_{1}}-\ln \left(\frac{T_{2}\left(1-T_{1}\right)}{\gamma_{1}}\right)-1\right\} I_{(1-z, 1)}\left(T_{1}\right)\right] .
\end{array}
$$

Similarly $R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)$ is obtained with replacing α by α_{1} in (2.10). To calculate $R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$ in (2.10), we generate a random sample of size $m_{1}=1000$ from $T_{1} \sim$ $\operatorname{Beta}\left(\gamma_{2}, \gamma_{1}\right)$ and a random sample of size $m_{2}=1000$ from $T_{2} \sim \operatorname{Gamma}\left(\gamma_{1}+\gamma_{2}, 1\right)$ for some values of γ_{1} and γ_{2}. Then by using Monte Carlo integration, the estimated risk of (2.10) is computed for α and α_{1}. Tables 1 and 2 show the risk of δ_{1} and estimated risks of $\delta_{1 \alpha_{1}}$ and $\delta_{1 \alpha}$ for some values of γ_{1}, γ_{2} and α. From these tables we observe that $R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)<R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)<R\left(\boldsymbol{\beta}, \delta_{1}\right)$ for $\alpha \in\left(\alpha_{1}, 1\right)$, which is proved analytically in Theorem 2.1.

Table 1: Estimated risks of $\delta_{1 \alpha_{1}}$ and $\delta_{1 \alpha}$ when $\gamma_{1}=1$ in comparison of $R\left(\boldsymbol{\beta}, \delta_{1}\right)=0.5772$.

y_{2}	$\gamma_{2}=1, \alpha=0.6$		$\gamma_{2}=2$		$\alpha=0.5$	$\gamma_{2}=3$		$\alpha=0.4$
	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$		
0.1	0.5481	0.5502	0.5474	0.5496	0.5256	0.5263		
0.2	0.5419	0.5459	0.5209	0.5285	0.5273	0.5310		
0.3	0.5515	0.5559	0.5261	0.5341	0.5012	0.5096		
0.4	0.5643	0.5688	0.5087	0.5202	0.5103	0.5181		
0.5	0.5080	0.5137	0.5306	0.5405	0.5050	0.5149		
0.6	0.5192	0.5236	0.5100	0.5222	0.4724	0.4839		
0.7	0.5051	0.5111	0.5424	0.5535	0.4652	0.4762		
0.8	0.5430	0.5474	0.5258	0.5347	0.4743	0.4841		
0.9	0.5341	0.5382	0.4586	0.4675	0.4603	0.4699		
1.0	0.5123	0.5161	0.4914	0.4990	0.4581	0.4656		

Table 2: Estimated risks of $\delta_{1 \alpha_{1}}$ and $\delta_{1 \alpha}$ when $\gamma_{1}=2$ in comparison of $R\left(\boldsymbol{\beta}, \delta_{1}\right)=0.2704$.

y_{2}	$\gamma_{2}=2, \alpha=0.7$		$\gamma_{2}=3$		$\alpha=0.6$	$\gamma_{2}=4, \alpha=0.5$	
	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha_{1}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$	
0.1	0.2674	0.2685	0.2582	0.2589	0.2666	0.2668	
0.2	0.2596	0.2619	0.2578	0.2602	0.2498	0.2514	
0.3	0.2497	0.2542	0.2633	0.2674	0.2502	0.2538	
0.4	0.2297	0.2369	0.2629	0.2685	0.2637	0.2679	
0.5	0.2358	0.2433	0.2410	0.2485	0.2431	0.2500	
0.6	0.2391	0.2468	0.2103	0.2194	0.2254	0.2317	
0.7	0.2358	0.2451	0.2389	0.2481	0.2288	0.2371	
0.8	0.2510	0.2589	0.2243	0.2338	0.2093	0.2155	
0.9	0.2531	0.2618	0.2284	0.2352	0.2344	0.2392	
1.0	0.2332	0.2395	0.2262	0.2338	0.2369	0.2412	

Theorem 2.2. With $\alpha_{2}=\frac{\gamma_{2}}{\gamma_{1}+\gamma_{2}}=1-\alpha_{1}$, under the entropy loss function (1.2), for $\alpha \in\left(\alpha_{2}, 1\right), \gamma_{2}>1$ and $0<\beta_{1} \leq \beta_{2}$,

$$
R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)<R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)<R\left(\boldsymbol{\beta}, \delta_{2}\right) .
$$

Proof: Let $\Delta_{2}=R\left(\boldsymbol{\beta}, \delta_{2}\right)-R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$, then using similar argument as in the proof of Theorem 2.1, we have

$$
\begin{aligned}
\Delta_{2}= & E\left[\left\{\frac{(1-\alpha)\left(\delta_{2}-\delta_{1}\right)}{\beta_{2}}+\ln \left(\alpha+(1-\alpha) \frac{\delta_{1}}{\delta_{2}}\right)\right\} I_{[0, \infty)}\left(\delta_{1}-\delta_{2}\right)\right] \\
= & E\left[\left\{\frac{1-\alpha}{\gamma_{1} \gamma_{2}}\left(\left(\gamma_{1}+\gamma_{2} y_{2}\right) T_{1}-\gamma_{2} y_{2}\right) T_{2}\right.\right. \\
& \left.\left.+\ln \left(\alpha+(1-\alpha) \frac{\gamma_{2} y_{2}\left(1-T_{1}\right)}{\gamma_{1} T_{1}}\right)\right\} I_{[0,1-z]}\left(T_{1}\right)\right] \\
= & E\left[f_{2 \alpha}\left(T_{1}\right) I_{[0,1-z]}\left(T_{1}\right)\right]
\end{aligned}
$$

where

$$
\begin{align*}
f_{2 \alpha}(x)= & \frac{(1-\alpha)\left(\gamma_{1}+\gamma_{2}\right)}{\gamma_{1} \gamma_{2}}\left(\left(\gamma_{1}+\gamma_{2} y_{2}\right) x-\gamma_{2} y_{2}\right) \\
& +\ln \left(\frac{\alpha \gamma_{1} x+(1-\alpha) \gamma_{2} y_{2}(1-x)}{\gamma_{1} x}\right) . \tag{2.12}
\end{align*}
$$

From (2.12) and the distribution of T_{1}, the expectation (2.11) exists whenever $\gamma_{2}>1$. Now from (2.12) and the inequality $\ln (x) \geq 1-\frac{1}{x}$ for $x>0$, we have

$$
\begin{equation*}
f_{2 \alpha}(x) \geq \frac{1-\alpha}{\gamma_{1} \gamma_{2}\left[\alpha \gamma_{1} x+(1-\alpha) \gamma_{2} y_{2}(1-x)\right]} g_{2 \alpha}(x) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{2 \alpha}(x)=A_{2}\left(y_{2}, \alpha\right) x^{2}+B_{2}\left(y_{2}, \alpha\right) x+C_{2}\left(y_{2}, \alpha\right), \tag{2.14}
\end{equation*}
$$

and

$$
\begin{align*}
A_{2}\left(y_{2}, \alpha\right)= & \left(\gamma_{1}+\gamma_{2}\right)\left(\gamma_{1}+\gamma_{2} y_{2}\right)\left(\alpha \gamma_{1}-(1-\alpha) \gamma_{2} y_{2}\right), \\
B_{2}\left(y_{2}, \alpha\right)= & \gamma_{2}\left[\left(\gamma_{1}+\gamma_{2} y_{2}\right)\left((1-\alpha)\left(\gamma_{1}+\gamma_{2}\right) y_{2}-\gamma_{1}\right)\right. \tag{2.15}\\
& \left.-\left(\gamma_{1}+\gamma_{2}\right) y_{2}\left(\alpha \gamma_{1}-(1-\alpha) \gamma_{2} y_{2}\right)\right], \\
C_{2}\left(y_{2}, \alpha\right)= & \gamma_{2}^{2} y_{2}\left[\gamma_{1}-(1-\alpha)\left(\gamma_{1}+\gamma_{2}\right) y_{2}\right] .
\end{align*}
$$

Note that $C_{2}\left(y_{2}, \alpha\right)>0$ and $A_{2}\left(y_{2}, \alpha\right)>0$ for all $y_{2} \leq 1$ and $\alpha>\alpha_{2}$. The quadratic form (2.14) has the roots

$$
x_{1}=1-z \quad \text { and } \quad x_{2}=1-z+\frac{\gamma_{1}^{2} \gamma_{2}\left(1-y_{2}\right)}{A_{2}\left(y_{2}, \alpha\right)}
$$

and hence $x_{1}=1-z$ is the smallest positive root. Hence, from (2.13), $f_{2 \alpha}(x)>0$ for $x \in[0,1-z]$, and $\Delta_{2}>0$ for all $0<\beta_{1} \leq \beta_{2}$ when $\alpha \in\left(\alpha_{2}, 1\right)$, which is shown that $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)<R\left(\boldsymbol{\beta}, \delta_{2}\right)$ for all $\alpha \in\left(\alpha_{2}, 1\right)$ when $\gamma_{2}>1$.

Now, similar to the proof of Theorem 2.1, it is easy to show that for $\gamma_{2}>1$,

$$
\begin{aligned}
\frac{\partial R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)}{\partial \alpha}= & -\frac{\partial \Delta_{2}}{\partial \alpha} \\
= & E\left[\left\{\frac{\gamma_{1}+\gamma_{2}}{\gamma_{1} \gamma_{2}}\left(\left(\gamma_{1}+\gamma_{2} y_{2}\right) T_{1}-\gamma_{2} y_{2}\right)\right.\right. \\
& \left.\left.-\frac{\gamma_{1} T_{1}-\gamma_{2} y_{2}\left(1-T_{1}\right)}{\alpha \gamma_{1} T_{1}+(1-\alpha) \gamma_{2} y_{2}\left(1-T_{1}\right)}\right\} \times I_{[0,1-z]}\left(T_{1}\right)\right] \\
= & E\left[\frac{g_{2 \alpha}\left(T_{1}\right)}{\gamma_{1} \gamma_{2}\left\{\alpha \gamma_{1} T_{1}+(1-\alpha) \gamma_{2} y_{2}\left(1-T_{1}\right)\right\}} I_{[0,1-z]}\left(T_{1}\right)\right],
\end{aligned}
$$

where $g_{2 \alpha}(x)$ is given by (2.14). Since $g_{2 \alpha}(x)>0$ for all $x \in[0,1-z]$ and $\alpha \in$ $\left(\alpha_{2}, 1\right)$, so from (2.16) $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ is an increasing function of α for $\alpha \in\left(\alpha_{2}, 1\right)$, i.e., $R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)<R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ for all $\alpha \in\left(\alpha_{2}, 1\right)$ and $\gamma_{2}>1$, which completes the proof.

Now we compare the risks of $\delta_{2 \alpha_{2}}, \delta_{2 \alpha}$ and δ_{2}. Similar to (2.10), we can show that

$$
\begin{aligned}
R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)=E & {\left[\frac{\delta_{2 \alpha}}{\beta_{2}}-\ln \frac{\delta_{2 \alpha}}{\beta_{2}}-1\right] } \\
=E[& \left\{\left[\frac{T_{1} T_{2}}{\gamma_{2}}-\frac{1-\alpha}{\gamma_{1} \gamma_{2}}\left(\left(\gamma_{1}+\gamma_{2} y_{2}\right) T_{1}-\gamma_{2} y_{2}\right) T_{2}\right]\right. \\
17) & \left.-\ln \left[\frac{T_{1} T_{2}}{\gamma_{2}}-\frac{1-\alpha}{\gamma_{1} \gamma_{2}}\left(\left(\gamma_{1}+\gamma_{2} y_{2}\right) T_{1}-\gamma_{2} y_{2}\right) T_{2}\right]-1\right\} \\
& \left.\times I_{(0,1-z]}\left(T_{1}\right)+\left\{\frac{T_{1} T_{2}}{\gamma_{2}}-\ln \left(\frac{T_{1} T_{2}}{\gamma_{2}}\right)-1\right\} I_{(1-z, 1)}\left(T_{1}\right)\right] .
\end{aligned}
$$

To calculate $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ in (2.17), we use a Monte Carlo simulation study similar to the one used for computing (2.10). Tables 3 and 4 show the risk of δ_{2} and estimated risks of $\delta_{2 \alpha_{2}}$ and $\delta_{2 \alpha}$ for some values of γ_{1}, γ_{2} and α. From these tables we see that $R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)<R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)<R\left(\boldsymbol{\beta}, \delta_{2}\right)$ for $\alpha \in\left(\alpha_{2}, 1\right)$, which is proved analytically in Theorem 2.2 .

Table 3: Estimated risks of $\delta_{2 \alpha_{2}}$ and $\delta_{2 \alpha}$ when $\gamma_{2}=2$ in comparison of $R\left(\boldsymbol{\beta}, \delta_{2}\right)=0.2704$.

y_{2}	$\gamma_{1}=1, \alpha=0.8$		$\gamma_{1}=2$		$\alpha=0.7$	$\gamma_{1}=3, \alpha=0.6$	
	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$	
0.1	0.2452	0.2469	0.2610	0.2634	0.2531	0.2538	
0.2	0.2551	0.2629	0.2454	0.2499	0.2544	0.2610	
0.3	0.2468	0.2557	0.2256	0.2354	0.2273	0.2377	
0.4	0.2248	0.2378	0.2062	0.2204	0.2039	0.2184	
0.5	0.2189	0.2303	0.1947	0.2126	0.1985	0.2141	
0.6	0.2045	0.2185	0.1838	0.2025	0.1787	0.1962	
0.7	0.2151	0.2281	0.1846	0.2009	0.1644	0.1796	
0.8	0.2149	0.2272	0.1784	0.1938	0.1569	0.1718	
0.9	0.1912	0.2017	0.1849	0.1968	0.1568	0.1672	
1.0	0.1942	0.2002	0.1607	0.1723	0.1444	0.1539	

Table 4: Estimated risks of $\delta_{2 \alpha_{2}}$ and $\delta_{2 \alpha}$ when $\gamma_{2}=3$ in comparison of $R\left(\boldsymbol{\beta}, \delta_{2}\right)=0.1758$.

y_{2}	$\gamma_{1}=2, \alpha=0.7$		$\gamma_{1}=3$		$\alpha=0.6$	$\gamma_{1}=4, \alpha=0.5$	
	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha_{2}}\right)$	$R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$	
0.1	0.1706	0.1711	0.1655	0.1658	0.1689	0.1692	
0.2	0.1719	0.1735	0.1644	0.1656	0.1610	0.1618	
0.3	0.1567	0.1595	0.1628	0.1649	0.1623	0.1638	
0.4	0.1568	0.1608	0.1458	0.1494	0.1527	0.1552	
0.5	0.1419	0.1474	0.1325	0.1370	0.1362	0.1392	
0.6	0.1340	0.1402	0.1371	0.1415	0.1276	0.1309	
0.7	0.1359	0.1419	0.1174	0.1226	0.1155	0.1188	
0.8	0.1281	0.1335	0.1208	0.1252	0.1031	0.1065	
0.9	0.1194	0.1242	0.1159	0.1184	0.1024	0.1041	
1.0	0.1220	0.1242	0.1035	0.1055	0.1007	0.1015	

Remark 2.1. Theorem 2.1 shows that for $\alpha \in\left(\alpha_{1}, 1\right)$ the mixed estimators (2.1) are inadmissible and are beaten by the MLE $\delta_{1 \alpha_{1}}$ of β_{1} when $\gamma_{1}>1$. Also Theorem 2.2 show that for $\alpha \in\left(\alpha_{2}, 1\right)$ the mixed estimators (2.2) are inadmissible and are beaten by the MLE $\delta_{2 \alpha_{2}}$ of β_{2} when $\gamma_{2}>1$. If $\gamma_{1}=\gamma_{2}=\gamma$, i.e., $n_{1} \nu_{1}=n_{2} \nu_{2}$, then $\alpha_{1}=\alpha_{2}=\frac{1}{2}$ and the mixed estimators $\delta_{1 \alpha}$ and $\delta_{2 \alpha}$ are inadmissible for $\alpha \in\left(\frac{1}{2}, 1\right)$ when $\gamma>1$. Note that this is the case when $n_{1}=n_{2}$ and $\nu_{1}=\nu_{2}$.

3. ADMISSIBILITY RESULTS

In this section, for the case $\gamma_{1}=\gamma_{2}=\gamma$ and $\gamma>1$, we discuss the admissibility of $\delta_{1 \alpha}$ and $\delta_{2 \alpha}$ for β_{1} and β_{2} in the class of mixed estimators (2.1) and (2.2), respectively. As noted in Remark 2.1, these estimators are inadmissible when $\alpha \in\left(\frac{1}{2}, 1\right)$. So, we discuss their admissibility for $\alpha \in\left[0, \frac{1}{2}\right]$ in the sequel.
(i) Admissibility of $\delta_{2 \alpha}$

For deriving admissible estimators in the class of mixed estimators (2.2), we find values of α that minimizes the risk function $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$. From (2.16) with $\gamma_{1}=\gamma_{2}=\gamma$ and $\gamma>1$, we have

$$
\begin{align*}
\frac{\partial R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)}{\partial \alpha}=E[& \left\{2\left(\left(1+y_{2}\right) T_{1}-y_{2}\right)\right. \tag{3.1}\\
& \left.\left.-\frac{\left(1+y_{2}\right) T_{1}-y_{2}}{\alpha\left\{\left(1+y_{2}\right) T_{1}-y_{2}\right\}+y_{2}\left(1-T_{1}\right)}\right\} I_{\left[0, \frac{y_{2}}{1+y_{2}}\right]}\left(T_{1}\right)\right]
\end{align*}
$$

which is a strictly increasing function of α, i.e., $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ for fixed $\boldsymbol{\beta}$ is a strictly convex function of α. Therefore for $\alpha>0, \gamma>1$ and fixed $\boldsymbol{\beta}, R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ will be minimized at the point α given by $\frac{\partial R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)}{\partial \alpha}=0$ which reduces to

$$
\begin{align*}
& E\left[\left\{\frac{2}{y_{1}}-\frac{1}{\alpha_{2}\left(y_{1}, \gamma\right)\left\{\left(1+y_{1}\right) T_{1}-1\right\}+\left(1-T_{1}\right)}\right\}\right. \\
& \left.\qquad \quad \times\left\{\left(1+y_{1}\right) T_{1}-1\right\} I_{\left[0, \frac{1}{1+y_{1}}\right]}\left(T_{1}\right)\right]=0 . \tag{3.2}
\end{align*}
$$

For $y_{1}=1$, (3.2) reduces to

$$
\begin{equation*}
\left(2 \alpha_{2}(1, \gamma)-1\right) E\left[\frac{\left(2 T_{1}-1\right)^{2}}{\alpha_{2}(1, \gamma)\left\{2 T_{1}-1\right\}+\left(1-T_{1}\right)} I_{\left[0, \frac{1}{2}\right]}\left(T_{1}\right)\right]=0 \tag{3.3}
\end{equation*}
$$

Since the expectation in (3.3) is finite for $\alpha_{2}(1, \gamma)>0$ and $\gamma>1$, so (3.3) has the root $\alpha_{2}(1, \gamma)=\frac{1}{2}$. From (3.2), $\alpha_{2}\left(y_{1}, \gamma\right)$ is a continuous function of $y_{1} \geq 1$ but the behavior of $\alpha_{2}\left(y_{1}, \gamma\right)$ can not be determined analytically. The graph of $\alpha_{2}\left(y_{1}, \gamma\right)$ as a function of $y_{1} \geq 1$ for different values of $\gamma>1$ are shown in Figure 1. From this figure we observe that $\alpha_{2}\left(y_{1}, \gamma\right)$ decreases as y_{1} or γ or both increases, and for fixed $\gamma, \alpha_{2}\left(y_{1}, \gamma\right) \rightarrow-\infty$ as $y_{1} \rightarrow \infty$. Therefore for each $\alpha \in\left[0, \frac{1}{2}\right]$ there is a y_{1} for which $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ is minimum, which implies that for $\alpha \in\left[0, \frac{1}{2}\right], \delta_{2 \alpha}$ is admissible in the class of mixed estimators. So, we have the following conjecture.

Figure 1: Graph of $\alpha_{2}\left(y_{1}, \gamma\right)$ for different values of γ.

Conjecture 3.1. For $\gamma_{1}=\gamma_{2}=\gamma$ and $\gamma>1$, under the entropy loss function (1.2), the estimator $\delta_{2 \alpha}$ in the class of mixed estimators (2.2) is admissible if and only if $\alpha \in\left[0, \frac{1}{2}\right]$.

Remark 3.1. From (3.1) we have

$$
\begin{aligned}
\frac{\partial R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)}{\partial \alpha}=E[& \left\{\frac{2}{y_{1}}-\frac{1}{\alpha_{2}\left(y_{1}, \gamma\right)\left\{\left(1+y_{1}\right) T_{1}-1\right\}+\left(1-T_{1}\right)}\right\} \\
& \left.\times\left\{\left(1+y_{1}\right) T_{1}-1\right\} I_{\left[0, \frac{1}{1+y_{1}}\right]}\left(T_{1}\right)\right]
\end{aligned}
$$

and for $y_{1}>2$,

$$
\frac{2}{y_{1}}<1<\frac{1}{1-T_{1}}<\frac{1}{\alpha_{2}\left(y_{1}, \gamma\right)\left\{\left(1+y_{1}\right) T_{1}-1\right\}+\left(1-T_{1}\right)}
$$

so, $\frac{\partial R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)}{\partial \alpha}>0$ when $y_{1}>2$. Therefore the minimum value $\alpha_{2}\left(y_{1}, \gamma\right)$ of $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ is attained when $1 \leq y_{1}<2$, so we only need the graph of $\alpha_{2}\left(y_{1}, \gamma\right)$ for $1 \leq y_{1}<2$ (see Figure 1).

(ii) Admissibility of $\delta_{1 \alpha}$

Similarly, From (2.8) with $\gamma_{1}=\gamma_{2}=\gamma$ and $\gamma>1$, we have

$$
\frac{\partial R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)}{\partial \alpha}=E\left[\left\{2\left(1-\left(1+y_{1}\right) T_{1}\right)-\frac{1-\left(1+y_{1}\right) T_{1}}{\alpha\left\{1-\left(1+y_{1}\right) T_{1}\right\}+y_{1} T_{1}}\right\} I_{\left[0, \frac{1}{\left.1+y_{1}\right]}\right.}\left(T_{1}\right)\right]
$$

which is a strictly increasing function of α, i.e., $R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$ for fixed $\boldsymbol{\beta}$ is a strictly convex function of α. Therefore, for $\alpha>0, \gamma>1$ and fixed $\boldsymbol{\beta}, R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$ will be minimized at the point α given by $\frac{\partial R\left(\boldsymbol{\beta}, \delta_{1}\right)}{\partial \alpha}=0$ which reduces to

$$
\begin{align*}
& E\left[\left\{2-\frac{1}{\alpha_{1}\left(y_{1}, \gamma\right)\left\{1-\left(1+y_{1}\right) T_{1}\right\}+y_{1} T_{1}}\right\}\right. \\
& \left.\qquad \quad \times\left\{1-\left(1+y_{1}\right) T_{1}\right\} I_{\left[0, \frac{1}{1+y_{1}}\right]}\left(T_{1}\right)\right]=0 \tag{3.4}
\end{align*}
$$

Similar to part (i), for $y_{1}=1$, (3.4) has the root $\alpha_{1}(1, \gamma)=\frac{1}{2}$. From (3.4), $\alpha_{1}\left(y_{1}, \gamma\right)$ is a continuous function of $y_{1} \geq 1$ but the behavior of $\alpha_{1}\left(y_{1}, \gamma\right)$ can not be determined analytically. The graph of $\alpha_{1}\left(y_{1}, \gamma\right)$ as a function of $y_{1} \geq 1$ for different values of $\gamma>1$ are shown in Figure 2. From this figure we can not determine the minimum value of α for each $\gamma>1$. So, the admissibility or inadmissibility of $\delta_{1 \alpha}$ for $\alpha \in\left[0, \frac{1}{2}\right)$ remain unsolved.

Figure 2: Graph of $\alpha_{1}\left(y_{1}, \gamma\right)$ for different values of γ.

Remark 3.2. The above argument shows that for $y_{1}=1, R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)$ and $R\left(\boldsymbol{\beta}, \delta_{2 \alpha}\right)$ minimized at $\alpha_{1}(1, \gamma)=\frac{1}{2}$ and $\alpha_{2}(1, \gamma)=\frac{1}{2}$, respectively. So, for $\gamma_{1}=$ $\gamma_{2}=\gamma$ and $\gamma>1$, the MLEs $\delta_{1, \frac{1}{2}}, \delta_{2, \frac{1}{2}}$ are admissible for β_{1} and β_{2} among the class of mixed estimators (2.1) and (2.2), respectively.

4. EFFICIENCY OF MIXED ESTIMATORS

Let $e\left(\delta_{i \alpha}, \delta_{i}\right)=R\left(\boldsymbol{\beta}, \delta_{i}\right) / R\left(\boldsymbol{\beta}, \delta_{i \alpha}\right)$ denote the efficiency of $\delta_{i \alpha}$ relative to δ_{i}, $i=1,2$. In Section 2, we derived conditions for which $\delta_{i \alpha}, i=1,2$, is more efficient than $\delta_{i}, i=1,2$. Since $R\left(\boldsymbol{\beta}, \delta_{i}\right)$ and $R\left(\boldsymbol{\beta}, \delta_{i \alpha}\right)$ are positive, so $e\left(\delta_{i \alpha}, \delta_{i}\right)>0$ for $i=1,2$. In this section, we compare the asymptotic efficiency of these mixed estimators relative to usual estimators.

From (2.9), we have $R\left(\boldsymbol{\beta}, \delta_{i}\right)=\ln \gamma_{i}-\psi\left(\gamma_{i}\right), i=1,2$. Note that for $\gamma_{i}>0$, $\frac{1}{2 \gamma_{i}}<\ln \gamma_{i}-\psi\left(\gamma_{i}\right)<\frac{1}{\gamma_{i}}, i=1,2$.

Theorem 4.1. Let $\gamma_{1}=\gamma_{2}=\gamma$ and $\gamma>1$, then for $0 \leq \alpha<1$ and for $i=1,2$,
(a) $\lim _{y_{1} \rightarrow \infty} e\left(\delta_{i \alpha}, \delta_{i}\right)=1$ for all $\gamma>1$.
(b) $\lim _{\gamma \rightarrow \infty} e\left(\delta_{i \alpha}, \delta_{i}\right)=1$ for all $0<\beta_{1}<\beta_{2}$.

Proof: (a) For $i=1$, from (2.3) and (2.9) with $\gamma_{1}=\gamma_{2}=\gamma$ and $\gamma>1$ we have

$$
\left|1-\frac{R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)}{R\left(\boldsymbol{\beta}, \delta_{1}\right)}\right|=\frac{1}{\ln \gamma-\psi(\gamma)}\left|E\left[f_{1 \alpha}\left(T_{1}\right)\right] I_{\left[0, \frac{1}{1+y_{1}}\right]}\left(T_{1}\right)\right| \leq A\left(\gamma, y_{1}\right) \int_{0}^{z_{1}}\left|f_{1 \alpha}(x)\right| d x
$$

where $A\left(\gamma, y_{1}\right)=\frac{\Gamma(2 \gamma)\left(z_{1}\left(1-z_{1}\right)\right)^{\gamma-1}}{\Gamma^{2}(\gamma)[\ln \gamma-\psi(\gamma)]}, z_{1}=\frac{1}{1+y_{1}}$ and $f_{1 \alpha}(x)$ is given by (2.4). Notice that

$$
\begin{aligned}
\left|f_{1 \alpha}(x)\right| & =\left|2(1-\alpha)\left(1-\left(1+y_{1}\right) x\right)+\ln \frac{\alpha(1-x)+(1-\alpha) y_{1} x}{1-x}\right| \\
& \leq 2(1-\alpha)\left[1-\left(1+y_{1}\right) x\right]-\ln \frac{\alpha(1-x)+(1-\alpha) y_{1} x}{1-x}
\end{aligned}
$$

Now, if $\alpha=0$ then $\left|f_{1 \alpha}(x)\right| \leq 2\left[1-\left(1+y_{1}\right) x\right]-\ln \frac{x}{1-x}-\ln y_{1}$ and

$$
\begin{align*}
\left|1-\frac{R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)}{R\left(\boldsymbol{\beta}, \delta_{1}\right)}\right| \leq A\left(\gamma, y_{1}\right)\{ & \left\{\frac{-\left[1-\left(1+y_{1}\right) x\right]^{2}}{1+y_{1}}-x \ln x\right. \\
& \left.-(1-x) \ln (1-x)-\left.x \ln y_{1}\right|_{0} ^{\frac{1}{1+y_{1}}}\right\} \tag{4.1}\\
= & A\left(\gamma, y_{1}\right) B_{1}\left(y_{1}\right)
\end{align*}
$$

where

$$
\begin{equation*}
B_{1}\left(y_{1}\right)=\frac{1}{1+y_{1}}+\ln \left(\frac{1+y_{1}}{y_{1}}\right) . \tag{4.2}
\end{equation*}
$$

If $0<\alpha<1$, then using the fact $\ln x \geq 1-\frac{1}{x}, x>0$, we have

$$
\left|f_{1 \alpha}(x)\right| \leq 2(1-\alpha)\left[1-x\left(1+y_{1}\right)\right]+\frac{(1-\alpha)\left[1-\left(1+y_{1}\right) x\right]}{\alpha(1-x)+(1-\alpha) y_{1} x}
$$

and

$$
\begin{aligned}
&\left|1-\frac{R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)}{R\left(\boldsymbol{\beta}, \delta_{1}\right)}\right|=A\left(\gamma, y_{1}\right)\{ \frac{-(1-\alpha)\left[1-\left(1+y_{1}\right) x\right]}{1+y_{1}}-\left[\frac{(1-\alpha)\left(1+y_{1}\right)}{y_{1}-\alpha\left(1+y_{1}\right)}\right] \\
& \times\left[x-\frac{\alpha \ln \left(\alpha(1-x)+(1-\alpha) y_{1} x\right)}{y_{1}-\alpha\left(1+y_{1}\right)}\right. \\
&\left.\left.-\frac{\ln \left(\alpha(1-x)+(1-\alpha) y_{1} x\right)}{1+y_{1}}\right]\right\}\left.\right|_{0} ^{\frac{1}{1+y_{1}}} \\
&=A\left(\gamma, y_{1}\right) B_{2}\left(\alpha, y_{1}\right),
\end{aligned}
$$

where

$$
\begin{align*}
B_{2}\left(\alpha, y_{1}\right)=(1-\alpha) & {\left[\frac{1}{1+y_{1}}-\frac{1}{y_{1}-\alpha\left(1+y_{1}\right)}\right.} \\
& \left.\times\left\{1-\frac{y_{1}}{y_{1}-\alpha\left(1+y_{1}\right)} \ln \left(\frac{y_{1}}{\alpha\left(1+y_{1}\right)}\right)\right\}\right] \tag{4.4}
\end{align*}
$$

It is easy to verify that when $\alpha \in(0,1), B_{1}\left(y_{1}\right) \rightarrow 0$ and $B_{2}\left(\alpha, y_{1}\right) \rightarrow 0$ as $y_{1} \rightarrow \infty$. Also $0 \leq A\left(\gamma, y_{1}\right) \leq \frac{\Gamma(2 \gamma)\left(\frac{1}{4}\right)^{\gamma}}{\Gamma^{2}(\gamma)[\ln \gamma-\psi(\gamma)]}$. So from (4.1) and (4.3), $\lim _{y_{1} \rightarrow \infty}\left|1-\frac{R\left(\boldsymbol{\beta}, \delta_{1}\right)}{R\left(\boldsymbol{\beta}, \delta_{1}\right)}\right|=0$ for all $\alpha \in[0,1)$, i.e., $\lim _{y_{1} \rightarrow \infty} e\left(\delta_{1 \alpha}, \delta_{1}\right)=1$ for all $\alpha \in[0,1)$ and $\gamma>1$, which completes the proof for $i=1$. For $i=2$, the proof is similar.
(b) For $0<\beta_{1}<\beta_{2}$ (i.e., $0<z_{1}<1$) we have

$$
0 \leq A\left(\gamma, y_{1}\right) \leq \frac{2 \gamma \Gamma(2 \gamma)}{\Gamma^{2}(\gamma)}\left(\frac{y_{1}}{\left(1+y_{1}\right)^{2}}\right)^{\gamma-1}=\frac{\gamma^{2} \Gamma(2 \gamma+1)}{\Gamma^{2}(\gamma+1)}\left(z_{1}\left(1-z_{1}\right)\right)^{\gamma-1}
$$

Using Stirling's approximation formula $\left(\Gamma(\gamma+1) \simeq \gamma^{\gamma+\frac{1}{2}} e^{-\gamma} \sqrt{2 \pi}\right)$, we have

$$
0 \leq A\left(\gamma, y_{1}\right) \leq \frac{4}{\sqrt{2 \pi}} \gamma^{\frac{3}{2}}\left(4 z_{1}\left(1-z_{1}\right)\right)^{\gamma-1}
$$

which tends to zero as $\gamma \rightarrow \infty$. Now from (4.1)-(4.4), $\lim _{\gamma \rightarrow \infty}\left|1-\frac{R\left(\boldsymbol{\beta}, \delta_{1 \alpha}\right)}{R\left(\boldsymbol{\beta}, \delta_{1}\right)}\right|=0$, i.e., $\lim _{\gamma \rightarrow \infty} e\left(\delta_{i \alpha}, \delta_{i}\right)=1$ for all $0<\beta_{1}<\beta_{2}$ and $\alpha \in[0,1)$, which completes the proof for $i=1$. For $i=2$, the proof is similar.

5. EXTENSION TO A SUBCLASS OF EXPONENTIAL FAMILY

Let $\mathbf{X}_{i}=\left(X_{i 1}, X_{i 2}, \ldots, X_{i_{n_{i}}}\right), i=1,2$, has the joint probability density function

$$
\begin{equation*}
f\left(\mathbf{x}_{i}, \theta_{i}\right)=C\left(\mathbf{x}_{i}, n_{i}\right) \theta_{i}^{-m_{i}} e^{-T_{i}\left(\mathbf{x}_{i}\right) / \theta_{i}}, \quad i=1,2 \tag{5.1}
\end{equation*}
$$

where $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i n_{i}}\right), C\left(\mathbf{x}_{i}, n_{i}\right)$ is a function of \mathbf{x}_{i} and $n_{i}, \theta_{i}=\tau_{i}^{r}$ for some $r>0, m_{i}$ is a function of n_{i} and $T_{i}\left(\mathbf{x}_{i}\right)$ is a complete sufficient statistic for θ_{i} with $\operatorname{Gamma}\left(m_{i}, \theta_{i}\right)$-distribution. For example, Exponential $\left(\beta_{i}\right)$ with $\theta_{i}=\beta_{i}$, $\operatorname{Gamma}\left(\nu_{i}, \beta_{i}\right)$ with $\theta_{i}=\beta_{i}$ and known v_{i}, Inverse Gaussian $\left(\infty, \lambda_{i}\right)$ with $\theta_{i}=\frac{1}{\lambda_{i}}$, $\operatorname{Normal}\left(0, \sigma_{i}^{2}\right)$ with $\theta_{i}=\sigma_{i}^{2}, \operatorname{Weibull}\left(\eta_{i}, \beta_{i}\right)$ with $\theta_{i}=\eta_{i}^{\beta_{i}}$ and known $\beta_{i}, \operatorname{Rayleigh}\left(\beta_{i}\right)$ with $\theta_{i}=\beta_{i}^{2}$, Generalized $\operatorname{Gamma}\left(\alpha_{i}, \lambda_{i}, p_{i}\right)$ with $\theta_{i}=\lambda_{i}^{p_{i}}$ and known p_{i} and α_{i}, Generalized Laplace $\left(\lambda_{i}, k_{i}\right)$ with $\theta_{i}=\lambda_{i}^{k_{i}}$ and known k_{i} belong to the family of distributions (5.1). An admissible linear estimator of $\theta_{i}=\tau_{i}^{r}$ in this family under the entropy loss function can be found in Parsian and Nematollahi (1996).

Since $T_{i}=T_{i}\left(\mathbf{X}_{i}\right), i=1,2$, has a $\operatorname{Gamma}\left(m_{i}, \theta_{i}\right)$-distribution, therefore we can extend the results of Sections $2-4$ to the subclass of exponential family (5.1) by replacing $\gamma_{i}=n_{i} \nu_{i}, \beta_{i}$ and $\sum_{j=1}^{n_{i}} X_{i j}=\gamma_{i} \delta_{i}$ by m_{i}, θ_{i} and $T_{i}\left(\mathbf{X}_{i}\right)$, respectively.

The results of Sections 2-4 can be extended to some other families of distributions which do not necessarily belong to a scale families, such as Pareto or beta distributions. A family of distributions that includes these distributions as special cases, is the family of transformed chi-square distributions which is originally introduced by Rahman and Gupta (1993). They considered the one parameter exponential family

$$
\begin{equation*}
f\left(\mathbf{x}_{i}, \eta_{i}\right)=e^{a_{i}\left(\mathbf{x}_{i}\right) b\left(\eta_{i}\right)+c\left(\eta_{i}\right)+h\left(\mathbf{x}_{i}\right)}, \quad i=1,2 \tag{5.2}
\end{equation*}
$$

and showed that $-2 a_{i}\left(\mathbf{X}_{i}\right) b\left(\eta_{i}\right)$ has a $\operatorname{Gamma}\left(\frac{k_{i}}{2}, 2\right)$-distribution if and only if

$$
\begin{equation*}
\frac{2 c^{\prime}\left(\eta_{i}\right) b\left(\eta_{i}\right)}{b^{\prime}\left(\eta_{i}\right)}=k_{i} \tag{5.3}
\end{equation*}
$$

When k_{i} is an integer, $-2 a_{i}\left(\mathbf{X}_{i}\right) b\left(\eta_{i}\right)$ follow a chi-square distribution with k_{i} degrees of freedom. They called the one parameter exponential family (5.2) which satisfies (5.3), the family of transformed chi-square distributions. For example, beta, Pareto, exponential, lognormal and some other distributions belong to this family of distributions (see Table 1 of Rahman and Gupta,1993).

Now it is easy to show that if condition (5.3) holds then the one parameter exponential family (5.2) is in the form of the scale parameter exponential family (5.1) with $m_{i}=\frac{k_{i}}{2}, T_{i}\left(\mathbf{X}_{i}\right)=a_{i}\left(\mathbf{X}_{i}\right)$ and $\theta_{i}=-1 / b\left(\eta_{i}\right)$ (see Jafari Jozani et al., 2002). Hence with these substitutions, we can extend the results of Sections 2-4 to the family of transformed chi-square distributions.

ACKNOWLEDGMENTS

The authors are grateful to the editor, anonymous referees, Professor Ahmad Parsian of University of Tehran and Dr. Mehran Naghizadeh of Mazandran University for making helpful comments and suggestions on an earlier version of this paper. The research of the first author was supported by the research council of Allameh Tabataba'i University and the research of the second author was supported by the research council of Islamic Azad University-Karaj Branch.

REFERENCES

[1] Chang, Y.T. and Shinozaki, N. (2002). A comparison of restricted and unrestricted estimators in estimating linear functions of ordered scale parameters of two gamma distributions, Annals of the Institute of Statistical Mathematics, 54, 848-860.
[2] Chang, Y.T. and Shinozaki, N. (2008). Estimation of linear functions of ordered scale parameters of two gamma distributions under entropy loss, Journal of the Japan Statistical Society, 2, 335-347.
[3] Dey, D.K.; Ghosh, M. and Srinivasan, C. (1987). Simultaneous estimation of parameters under entropy loss, Journal of Statistical Planning and Inference, 15, 347-363.
[4] Jafari Jozani, M.; Nematollahi, N. and Shafiee, K. (2002). An admissible minimax estimator of a bounded scale-parameter in a subclass of the exponential family under scale-invariant squared-error loss, Statistics and Probability Letters, 60, 437-444.
[5] Katz, M.W. (1963). Estimating ordered probabilities, Annals of Mathematical Statistics, 34, 967-972.
[6] Kaur, A. and Singh, H. (1991). On the estimation of ordered means of two exponential populations, Annals of the Institute of Statistical Mathematics, 43, 347-356.
[7] Kumar, S. and Kumar, A. (1993). Estimating ordered means of two negative exponential populations, Proc. First. Ann. Conf. Ind. Soc. Indust. \& Appl. Math. Univ. of Roorkee, 358-362.
[8] Kumar, S. and Kumar, A. (1995). Estimation of ordered locations of two exponential populations, Proc. First. Ann. Conf. Ind. Soc. III International Symposium on Optimization \& Statistics, Aligarh Univ., 130-135.
[9] Kumar, S. and Sharma, D. (1988). Simultaneous estimation of ordered parameters, Communications in Statistics: Theory and Methods, 17, 4315-4336.
[10] Meghnatisi, Z. and Nematollahi, N. (2009). Mixed estimators of ordered scale parameters of two gamma distributions with arbitrary known shape parameters, Journal of the Iranian Statistical Society, 8, 15-34.
[11] Misra, N.; Choudhary, P.K.; Dhariyal, I.D. and Kundu, D. (2002). Smooth estimators for estimating ordered restricted scale parameters of two gamma distributions, Metrika, 56, 143-161.
[12] Misra, N.; Iyer, S.K. and Singh, H. (2004). The LINEX risk of maximum likelihood estimators of parameters of normal populations having order restricted means, Sankhya, 66, 652-677.
[13] Misra, N. and Singh, H. (1994). Estimation of ordered location parameters the exponential distribution, Statistics, 25, 239-249.
[14] Nematollahi, N. (1995). Estimation under entropy loss function, PhD Thesis, Shiraz University, Iran.
[15] Parsian, A. and Nematollahi, N. (1995). On the admissibility of estimators of two ordered Poisson parameter under the entropy loss function, Communications in Statistics: Theory and Methods, 24, 2451-2467.
[16] Parsian, A. and Nematollahi, N. (1996). Estimation of scale parameter under entropy loss function, Journal of Statistical Planning and Inference, 52, 77-91.
[17] Rahman, M.S. and Gupta, R.P. (1993). Family of transformed chi-square distributions, Communications in Statistics: Theory and Methods, 22, 135-146.
[18] Robertson, T.; Wright, F.T. and Dykstra, R.L. (1988). Order restricted Statistical inference, Wiley, New York.
[19] Self, S.G. and Liang, K.Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, Journal of the American Statistical Association, 82, 605-610.
[20] van Eeden, C. (2006). Restricted parameter space, estimation problems, admissibility and minimaxity properties, Lecture Notes in Statistics, 188, Springer, New York.
[21] Vijayasree, G. and Singh, H. (1991). Simultaneous estimation of two ordered exponential parameters, Communications in Statistics: Theory and Methods, 20, 2559-2576.
[22] Vijayasree, G. and Singh, H. (1993). Mixed estimators of two ordered exponential means, Journal of Statistical Planning and Inference, 35, 47-53.

