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Abstract:

• Sousa and Michailidis (2004) developed the sum plot based on the Hill (1975) estimator
as a diagnostic tool for selecting the optimal k when the distribution is heavy tailed.
We generalize their method to any consistent estimator with any tail type (heavy,
normal and light tail). We illustrate the method associated to the generalized Hill
estimator and the moment estimator.

As an attempt to reduce the bias of the generalized Hill estimator, we propose new
estimators based on the regression model which are based on the estimates of the
generalized Hill estimator. Here weighted least squares and weighted trimmed least
squares is proposed. The bias and the mean squared error (MSE) of the estimators is
studied using a simulation study. A few practical examples are proposed.
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1. INTRODUCTION

In order to estimate a tail index using k upper order statistics, one needs

to determine an appropriate value of k. There exist a variety of diagnostic plots

and adaptive estimation methods that assist in threshold selection. The list of

plots includes Zipf, Hill, empirical mean-excess and sum plots. Adaptive selection

procedures are listed for instance in Beirlant et al. (2005). The aim of this paper

is to generalize the graphical tool developed by Sousa and Michailidis (2004)

assisting in choosing a sensible estimate or a value of k. Their sum plot is based

on the assumption that the distribution is heavy tailed. We extend the approach

to all estimators which use a set of extreme order statistics in the estimation

of a real valued extreme value index. Here we illustrate the approach using the

generalized Hill estimator introduced in Beirlant et al. (1996b) and the moment

estimator proposed by Dekkers et al. (1989).

In this paper we also propose new estimators of the extreme value index

based on the regression associated to the estimates of the (generalized) Hill esti-

mator for various k = 1, ..., K for some K.

The article is organized as follows. In section 2, we first specify the original

sum plot in subsection 2.1. Then we generalize it using the generalized Hill

estimator in subsection 2.2 and using the moment estimator in subsection 2.3.

In subsection 2.4 we illustrate the method with some simulation results. The

new estimators based on regression models are introduced in section 3, first for

the original Hill sum plot in subsection 3.1 and then for the generalized Hill sum

plot in 3.2. Finally, some simulations and practical examples are presented in

subsections 3.3 and 3.4.

2. SUM PLOTS

The sum plot by Sousa and Michailidis (2004) and Henry III (2009), are

examples of the following principle. Let γ̂k,n (which uses k upper order statistics

from the total sample of size n) be a consistent estimator of γ as k, n → ∞ and

k/n → 0. Assume first that γ̂k,n is an unbiased estimator i.e. Eγ̂k,n = γ. Define

the random variables Sk, for k = 1, 2, ..., n −1, by

(2.1) Sk := k γ̂k,n

then ESk = k γ. Therefore the plot (k, Sk) is approximately linear for the range

of k where γ̂k,n ≈ γ, i.e. γ̂k,n is constant in k. The slope of the linear part

of the graph (k, Sk) can then be used as an estimator of γ. Assume now that

γ̂k,n is a consistent estimator but biased, that is Eγ̂k,n = γ + (bias), then ESk =
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k γ+k(bias). If the bias is constant in k then (k, Sk) is again linear with the slope

equal to γ + (bias). Typically though the bias is not constant in k and hence the

path of (k, Sk) will depend on the non constant function in k defining the bias.

The sum plot introduced in Sousa and Michailidis (2004) is based on the Hill

estimator (Hill, 1975). The sum plot by Henry III (2009) is based on a harmonic

moment estimator. Both proposals were limited to the family of Pareto-type

distributions.

So given γ̂k,n, any consistent estimator of γ based on k top order statistics,

we propose a sum plot (k, Sk) based on γ̂k,n with Sk defined in (2.1). The only

strong assumption on γ̂k,n is consistency which is a natural requirement on any

estimator. This plot could be helpful in identifying an appropriate region of k,

the number of order statistics to be used in γ̂k,n. One could argue that the plots

(k, Sk) and (k, γ̂k,n) are statistically equivalent. The sum plot naturally leads to

the estimation of the slope whereas (k, γ̂k,n) leads to horizontal plots and hence

estimation of the intercept. Here we consider the case of a real-valued γ and

hence increasing or decreasing sum plots allow to assess the sign of γ.

Since each estimator will have its own sum plot, we hereafter name the

associated sum plot along the name of the estimator. For example the sum plot

based on the Hill estimator is named the Hill sum plot.

In the following subsections we illustrate the proposed sum plot principle

using the Hill, the generalized Hill and the moment estimator. We also illustrate

the performance of these sum plots on simulated data and on some real data sets.

2.1. The Hill sum plot

Let X1,n < X2,n < · · · < Xn,n denote the order statistics of a random

sample (X1, X2, ..., Xn) from a heavy tailed distribution F with

(2.2) 1 − F (x) = x−1/γ lF (x) , x > 0 ,

where lF is a slowly varying function at infinity satisfying

lF (λx)/lF (x) → 1 when x → ∞ , for all λ > 0 .

Let the random variables SH
k,n (k = 1, ..., n) be defined as

(2.3) SH
k,n =

k
∑

j=1

Zj :=
k
∑

j=1

j log
Xn−j+1,n

Xn−j,n
.

Sousa and Michailidis (2004) introduced the diagnostic plot (k, SH
k,n), the sum

plot for estimating the tail index γ. This plot is called the Hill sum plot since
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the Hill (1975) estimator Hk,n satisfies

(2.4) Hk,n =
1

k

k
∑

j=1

log Xn−j+1,n − log Xn−k,n =
1

k
SH

k,n .

To understand the behavior of the Hill sum plot we rely on a representation

of the variables Zj from (2.3) (j = 1, ..., n) provided in Beirlant et al. (2001).

We remind that the model (2.2) is well-known to be equivalent to

(2.5) U(x) = xγ lU (x) ,

where U(x) = inf
{

y : F (y) ≥ 1 − 1/x
}

(x > 1) and with lU again a slowly varying

function. Often, the following second order condition on lU is assumed

lU (tx)

lU (x)
= 1 + b(x)

tρ−1

ρ

(

1 + o(1)
)

,

where b is a rate function satisfying b(x) → 0 as x → ∞ and ρ < 0. Under this

second order condition, Beirlant et al. (2001) have shown that

(2.6)

∣

∣

∣

∣

∣

Zj −
(

γ + bn,k

( j

k + 1

)

−ρ
)

Ej + βj

∣

∣

∣

∣

∣

= oP (bn,k) ,

uniformly in j ∈ {1, ..., k}, as k, n → ∞ with k/n → 0, where (E1, ..., Ek) is a

vector of independent and standard exponentially distributed random variables,

bn,k := b
(

(n +1)/(k +1)
)

, 2 ≤ k ≤ n −1 and 1
k

∑k
j=1 βj = oP (bn,k).

Hence, for SH
k =

∑k
j=1Zj ,

∣

∣

∣

∣

∣

∣

SH
k −

(

k γ + k bn,k/(1− ρ) + γ
k
∑

j=1

(Ej −1) + oP (k bn,k)

)

∣

∣

∣

∣

∣

∣

= oP (k bn,k)

since 1
k

∑k
j=1

( j
k+1

)

−ρ ∼ 1
1−ρ as k, n → ∞ with k/n → 0, where as usual, an ∼ bn

is equivalent to an/bn → 1 as n → ∞.

In the specific case where b(x) = Cxρ
(

1 + o(1)
)

for some real constant C

(Hall, 1982), then we obtain

(2.7)

∣

∣

∣

∣

∣

∣

SH
k −

(

k γ + Cnρk1−ρ + γ
k
∑

j=1

(Ej −1)

)

+ oP (k bn,k)

∣

∣

∣

∣

∣

∣

= oP (k bn,k) .

Sousa and Michailidis (2004) only considered the case C = 0.

The Hill sum plot is a graphical tool in which one is searching for a range

of k where the sum plot is linear, or equivalently where Hk,n is constant in k,

if such a behaviour becomes apparent. Whereas the Hill estimator can be seen as
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an estimator of the slope in a Pareto quantile plot (see for instance Beirlant et al.

(1996a) and Kratz and Resnick (1996)), the sum plot now can be viewed as a

regression plot from which new estimators can be constructed by regression of SH
k,n

on k, as suggested by (2.7). As the regression error will turn out smaller on the

sums of noise variables γ(Ej −1) rather than on extreme log-data, regression on

the sum plot appears to be an interesting alternative approach. In practice we put

ρ =−1 so that in that case we will fit a quadratic regression model as discussed

in Section 3. The second order parameter could be replaced by estimators such

as discussed in Fraga Alves et al. (2003). In the simulation study the case of the

Burr distribution with ρ = −0.5 gives an idea of the loss of accuracy by setting

ρ = −1.

2.2. The generalized Hill sum plot

Using a similar approach we derive the generalized sum plot for γ ∈ R based

on the generalized Hill estimator by Beirlant et al. (1996b). Here the underlying

model is that the distribution belongs to a maximum domain of attraction: there

exist sequences of constants (an; an > 0) and (bn) such that

lim
n→∞

P

(

Xn,n − bn

an
≤ x

)

= exp
(

−(1 + γx)−1/γ
)

, 1 + γx > 0 .

Define the function UH as follows

(2.8) UH := U(x) E
(

log X − log U(x)
∣

∣ X > U(x)
)

.

This function possesses the regular variation property for the full range of γ.

The empirical counterpart of UH at x = n/k is given by

(2.9) UHk,n := Xn−k,n

(

1

k

k
∑

i=1

log Xn−i+1,n − log Xn−k,n

)

= Xn−k,n Hk,n .

Using the property of regular variation of UH, Beirlant et al. (1996b) proposed

an estimator of γ ∈R by fitting a constrained least-squares line to the points

with coordinates (− log(j/n), log UHj,n) (j = 1, ..., k) to obtain the generalized

Hill estimator H∗

k,n. Similarly as in (2.4), H∗

k,n is given by

(2.10) H∗

k,n =
1

k

k
∑

i=1

(

(i +1) log
UHi,n

UHi+1,n
+

i +1

i
− (i +1) log

i +1

i

)

.

Define random variables SUH
k , for k = 1, ..., n − 2, as

(2.11) SUH
k :=

k
∑

i=1

(i +1)

(

log

(

Xn−i,n

Xn−i−1,n

Hi,n

Hi+1,n

)

+
1

i
+ log

i +1

i

)

.
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Since SUH
k = kH∗

k,n, we obtain the generalized Hill sum plot (k, SUH
k ), and we

expect that for the range of k where H∗

k,n is constant (or stable) the plot will

be linear. Note that the range of k where the Hill estimator is constant, the

term Hj,n/Hj+1,n → 1, and (2.11) is almost reduced to SH
k , except that the term

including the largest observation is deleted.

Under general second order regular variation conditions, in Dierckx (2000)

it is shown that for 1 ≤ j ≤ k, 2 ≤ k ≤ n − 2, it holds for

Z∗

j := (j +1)

(

(

log UHj,n − log UHj+1,n

)

+
1

j
+ log

j +1

j

)

that

∣

∣

∣

∣

∣

∣

Z∗

j −





(

γ + b̃n,k

(

j +1

k +1

)

−ρ
)

Ej+1 + γ (Ej+1−1)(2.12)

+ (j +1)

(

log
Ēj

Ēj+1
− log

j +1

j
+

1

j

)



+ β̃j

∣

∣

∣

∣

∣

∣

= oP

(

b̃n,k

)

as k, n → ∞ with k/n → 0, where (E1, ..., Ek) is a vector of independent and

standard exponentially distributed random variables, Ēj denotes the sample mean

of (E1, ..., Ej), b̃n,k is some generic notation for a function decreasing to zero, ρ < 0

and 1
k

∑k
j=1 β̃j = oP (bn,k). Note also that for γ < 0, the above expression only

holds for j → ∞.

Let us denote ej := γ (Ej+1−1) + (j +1)
(

log
Ēj

Ēj+1
− log j+1

j + 1
j

)

. In Dierckx

(2000) it is shown that

Eei = 0 ,

Cov(ei, ej) =
γ

j
, i < j ,(2.13)

Var(ei) = (γ − 1)2 +
1 + 2 i

i2
.

Model (2.12) is a direct generalization of the regression model (6) used in

the Hill sum plot, leading to a generalized Hill sum plot regression approach.

In practice we fit the regression model

(2.14) SUH
k = k γ + Cρk1−ρ +

k
∑

j=1

ej .

In the simulations below we will replace ρ by the canonical choice −1 so that

later on we fit a quadratic regression model to the responses SUH
k , k = 1, ..., K for

some K > 0.
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2.3. The moment sum plot

Let H
(2)
k,n be defined as follows

H
(2)
k,n :=

1

k

k
∑

i=1

(

log Xn−i+1,n − log Xn−k,n

)2
.

The moment estimator Mk,n (Dekkers et al. (1989)) is given by

(2.15) Mk,n := Hk,n + 1 − 1

2

(

1 −
H2

k,n

H
(2)
k,n

)

−1

where Hk,n is the Hill estimator from (2.4).

Let the random variables SM
k , for k = 1, ..., n −1, be defined as

(2.16) SM
k :=

(

k
∑

i=1

log Xn−i+1,n − log Xn−k,n

)

+ k − k

2

(

1 −
H2

k,n

H
(2)
k,n

)

−1

.

Definition (2.16) is equivalent to writing SM
k = k Mk,n, hence (k, SM

k ) is the mo-

ment sum plot. However here a regression model has not been established to the

best of our knowledge.

2.4. Simulation results

The different sum plots have been applied to some simulated data sets.

Six distributions are considered:

• The strict Pareto distribution given by F (x) = 1− x−1/γ , x > 1, γ > 0.

We have chosen γ = 1. Here b(x) = 0.

• The standard Fréchet distribution given by F (x) = exp(−x−1/γ), x > 0,

γ > 0. We have chosen γ = 1. Here ρ = −1.

• The Burr distribution F (x) = 1−
(

η
η+x−τ

)λ
, x > 0, η, τ, λ > 0. We have

chosen η = 1, τ = 0.5, λ = 2, such that γ = 1. Here ρ = −1/λ = −0.5.

• The gamma distribution F (x)= 1
ba Γ(a)

∫ x
0 ta−1exp(−t/b) dt, x>0, a,b>0.

Here we have chosen a = 2, b = 1. Always, γ = 0.

• The uniform distribution F (x) = x (0 < x < 1). Here γ = −1.

• The reversed Burr distribution F (x) = 1−
(

β
β+(x+−x)−τ

)λ
, x>0, η,τ,λ>0,

x+ denotes the right endpoint of the distribution. We have chosen η = 1,

τ = 0.5, λ = 2, x+ = 2, such that γ = −1. Here ρ = −1/λ = −0.5.
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The Hill sum plots, the generalized Hill sum plots and the moment sum plots of

these distributions are shown in Figure 1.
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Figure 1: The Hill sum plot (full line); generalized Hill sum plot (dashed line) and
the moment sum plot (dotted line) are plotted for simulated data sets of
size n=500 from the: (a) strict Pareto; (b) Fréchet; (c) Burr; (d) gamma;
(e) uniform; (f) reversed Burr distribution.

For γ > 0, the three sum plots are comparable for the linear parts of the plots.

For γ = 0 and γ < 0, the generalized Hill sum plot and the moment sum plot are

comparable on these particular data sets. However the generalized Hill sum plot

seems to be less volatile. The sum plots can be used to identify the sign of γ
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for a given data set: increase in k indicates γ > 0, a horizontal pattern indicates

γ = 0 and decrease in k indicates γ < 0. In future work this could be used to test

the domain of attraction condition. For an overview of this problem we can refer

to Neves and Fraga Alves (2008). Moreover, the linear part of these generalized

sum plots can be used to estimate the value of tail index.

3. REGRESSION ESTIMATORS

As indicated before, we propose regression estimators for the extreme value

index γ based on the slope of the Hill and the Generalized Hill sum plots.

3.1. Hill sum plot estimators

Huisman et al. (2001) introduced a new estimator for γ > 0 based on the

Hill sum plot which can be understood from (6). It indeed follows from (6) that

for some constant D

(3.1)
∣

∣

∣Hk,n −
(

γ + Dk−ρ + ǫk

)

∣

∣

∣ = oP (bn,k)

where ǫk = γ/k
∑k

j=1(Ej −1), leading to the regression model

(3.2) Hk,n = γ + Dk−ρ + ǫk , k = 1, ..., K .

Since the variance of the error term Var(ǫk) = γ2/k is not constant, a weighted

least squares regression is applied with a K×K diagonal weight matrix W =

diag
√

1, ...,
√

K. Note that in this way, Huisman et al. (2001), did not take into

account that the error terms are not independent.

In practice, we put ρ = −1. Huisman et al. (2001) assumed that ρ = −1/γ

which is the case for an extreme value distribution.

Remark that when deleting the second order term Dk−ρ in the regression

model, one obtains a simple average of K Hill estimators. Due to the volatile

behaviour of Hill estimators Hk,n as a function of k it is known that a robust

average of Hill estimators provides better estimators. This will be discussed in

more detail in case of the generalized Hill sum plot where we apply weighted

trimmed least squares regression.
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3.2. Generalized Hill sum plot estimators

In a similar way, a new estimator can be introduced for real valued γ based

on the generalized Hill sum plot. Indeed from (2.14)

(3.3) H∗

k,n = γ + Dk−ρ + ǫ̃k , k = 1, ..., K .

with ǫ̃k =
∑k

j=1 ej/k. The variance of ǫ̃k is asymptotically equal to the asymptot-

ical variance AVar(H∗

k,n) which, according to Beirlant et al. (2005) is equal to

AVar(H∗

k,n) =
1 + γ2

k
; γ > 0

=
(1 − γ) (1 + γ + 2 γ2)

(1 − 2 γ) k
; γ < 0 .

Since the variance of the error term Var(ǫk) = Cγ/k is not constant, a weighted

least square regression is applied with the same K×K weight matrix W as in

case of the Hill sum plot. Here again we ignore the fact that the error terms are

not independent. We also put ρ = −1.

We also apply weighted trimmed least squares regression minimizing the

sum of the ⌊n/2⌋ +1 smallest squared residuals. For more information we refer

to Rousseeuw and Leroy (1987).

3.3. Simulation results

In Figures 2 till 5 we show the simulation results we obtained concerning

weighted least squares regression estimators, trimmed and non trimmed, for some

of the distributions considered in Section 2.4. For each distribution 100 repetitions

of samples of size n = 500 were performed.

Weighted trimmed least squares yields less bias but somewhat higher mean

squared error compared with the non robust regression algorithm. In case γ > 0

we also show the results for the weighted least squares estimators based on the

Hill sum plot. Hill sum plots then yield better results than the generalized Hill

sum plot. Also the trimmed regression algorithm is typically better than the

non-robust version in case of the generalized Hill sum plot.
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Figure 2: Fréchet distribution: (a) means of Hk,n (full line), H∗

k,n (dashed line) and
Mk,n (dotted line) as a function of k; (b) MSE of the estimators in (a);
(c) means of weighted least squares estimators based on the regression model
of the Hill sum plot (full line) and generalized Hill sum plot (dashed line);
(d) MSE of the estimators in (c); (e) same as in (c), but now weighted
trimmed least squares is used; (f) MSE of the estimators in (e).
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Figure 3: Burr distribution with ρ =−0.5: (a) means of Hk,n (full line), H∗

k,n (dashed
line) and Mk,n (dotted line) as a function of k. (b) MSE of the estimators in (a).
(c) means of weighted least squares estimators based on the regression model
of the Hill sum plot (full line) and generalized Hill sum plot (dashed line);
(d) MSE of the estimators in (c); (e) same as in (c), but now weighted
trimmed least squares is used; (f) MSE of the estimators in (e).
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Figure 4: Gamma distribution: (a) means of H∗

k,n (dashed line) and Mk,n (dotted line)
as a function of k; (b) MSE of the estimators in (a); (c) means of weighted
least squares estimators based on generalized Hill sum plot (dashed line);
(d) MSE of the estimators in (c); (e) same as in (c), but now weighted
trimmed least squares is used; (f) MSE of the estimators in (e).
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Figure 5: Reversed Burr: (a) means of H∗

k,n (dashed line) and Mk,n (dotted line)
as a function of k; (b) MSE of the estimators in (a); (c) weighted least
squares estimators based on the generalized Hill sum plot (dashed line);
(d) MSE of the estimators in (c); (e) same as in (c), but now weighted
trimmed least squares is used; (f) MSE of the estimators in (e).
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3.4. Some practical examples

We end this paper showing the proposed methods into action. We apply

the methods to two data sets proposed earlier in Beirlant et al. (2004). The data

sets themselves can be found on http://lstat.kuleuven.be/Wiley.

The first data set contains daily maximal wind speeds at Brussels airport

(Zaventem) from 1985 till 1992.
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Figure 6: Zaventem daily maximum wind speed data: (a) Hk,n (full line), H∗

k,n

(dashed line) and Mk,n (dotted) as a function of k; (b) weighted least
squares estimators based on the regression model of the Hill sum plot
(full line) and generalized Hill sum plot (dashed line); (c) same as in (b),
but now weighted trimmed least squares is used; (d) sum plots.

In Example 1.1 in Beirlant et al. (2004) the authors come to the conclusion that

the data follow a simple exponential tail beyond 80 km/hr, and hence γ equals 0.

The weighted (trimmed) least squares estimates based on the generalized Hill

sum plot indeed indicates a zero valued extreme value index. Also the moment

and generalized Hill sum plots indeed exhibit an overall horizontal behaviour for

K = 1, ..., 80. The generalized Hill sum plot is less volatile however.
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Finally we consider the AoN Re Belgium fire portfolio data introduced in

section 1.3.3 in Beirlant et al. (2004). Here we omit the covariate information

concerning sum insured and type of building. Here the estimate γ̂ = 1 follows

from the weighted trimmed least squares regression analysis. These estimates are

indeed quite stable over K-values compared to the non-robust version. The sum

plots in Figure 7(d) are quite comparable for K = 1, ..., 80.
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Figure 7: AoN claim size data: (a) Hk,n (full line), H∗

k,n (dashed line) and
Mk,n (dotted line) as a function of k; (b) weighted least squares
estimators based on the regression model of the Hill sum plot (full
line) and generalized Hill sum plot (dashed line); (c) same as in (b),
but now weighted trimmed least squares is used; (d) sum plots.

ACKNOWLEDGMENTS

This research is sponsored by FWO grant G.0436.08N.



198 J. Beirlant, E. Boniphace and G. Dierckx

REFERENCES

[1] Beirlant, J.; Teugels, J.L. and Vynckier, P. (1996a). Practical Analysis

of Extreme Values, Leuven University Press, Leuven.

[2] Beirlant, J.; Vynckier, P. and Teugels, J.L. (1996b). Excess functions
and estimation of the extreme value index, Bernoulli, 2, 293–318.

[3] Beirlant, J.; Dierckx, G.; Guillou, A. and Starica, C. (2001). On expo-
nential Representations of Log-Spacings of Extreme Order Statistics, Extremes,
5, 157–180.

[4] Beirlant, J.; Goegebeur, Y.; Segers, J. and Teugels, J.L. (2004).
Statistics of Extremes, Wiley.

[5] Beirlant, J.; Dierckx, G. and Guillou, A. (2005). Estimation of the
extreme-value index and generalized quantile plots, Bernoulli, 5(6), 949–970.

[6] Dekkers, A.L.M.; Einmahl, J.H.J. and de Haan, L. (1989). A moment
estimator for the index of an extreme-value distribution, Ann. Statist., 17, 1833–
1855.

[7] Dierckx, G. (2000). Estimation of the Extreme Value Index, Doctoral thesis,
Katholieke Universiteit Leuven.

[8] Fraga Alves, M.I.; Gomes, M.I. and de Haan, L. (2003). A new class of
semi-parametric estimators of the second order parameter, Portugaliae Mathe-

matica, 60, 193–213.

[9] Hall, P. (1982). On some simple estimates of an exponent of regular variation,
Journal of the Royal Statistical Society B, 44, 37–42.

[10] Huisman, R.; Koedijk, K.; Kool, C. and Palm, F. (2001). Tail-index es-
timates in small samples, Journal of Business and Economic Statistics, 19(2),
208–216.

[11] Henry III, J.B. (2009). A harmonic moment tail index estimator, Journal of

Statistical Theory and Applications, 8(2), 141–162.

[12] Hill, B. (1975). A simple general approach to inference about the tail of a
distribution, Ann. Statist., 3, 1163–1174.

[13] Kratz, M. and Resnick, S. (1996). The qq-estimator of the index of regular
variation, Communications in Statistics: Stochastic Models, 12, 699–724.

[14] Neves, C. and Fraga Alves, M.I. (2008). Testing extreme value conditions:
an overview and recent approaches, REVSTAT – Statistical Journal, 6, 83–100.

[15] Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier

Detection, Wiley.

[16] Sousa, B. de and Michailidis, G. (2004). A diagnostic plot for estimating the
tail index of a distribution, J. Comput. Graph. Statist., 13(4), 974–1001.


