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1. INTRODUCTION

In many cancer studies, the main outcome under assessment is the time to

death. However, other types of events can be observed during the follow-up pe-

riod. For example, in colon cancer studies more than one event is often observed

such as “local recurrence”, “distant metastasis” and “dead”. The occurrence of

these intermediate events often affect patient’s prognosis and can be modeled

using a Cox proportional hazards model with a time-dependent covariate. Alter-

natively, a natural way to model such data is by using a multi-state model with

states based on the values of these categorical-valued time-dependent covariates.

A multi-state model is a model for a stochastic process which occupies one

of a set of discrete states at any time. These models are well adapted for modeling

complex event histories (Andersenet al. [1]; Hougaard [2]; Meira-Machadoet al. [3]).

The use of such models is very useful for describing event history data offering a

better understanding of the process of the illness, and leading to a better knowl-

edge of the evolution of the disease over time. Issues of interest include the esti-

mation of progression rates, assessing the effects of individual risk factors, survival

rates or prognostic forecasting.

The complexity of a multi-state model greatly depends on the number

of states defined and by the transitions allowed among these states. The sim-

plest form of multi-state model is the “two-state model”, or mortality model,

for survival analysis (with only two states, “Alive” and “Dead”, and a single

transition). Splitting the “Alive” state from the simple mortality model for sur-

vival data into two transient states, we therefore obtain the simplest progres-

sive three-state model, illustrated in Figure 1. Graphically, multi-state models

may be illustrated using diagrams with rectangular boxes to represent possible

states and with arrows between the states representing the allowed transitions.

States can be transient or absorbing. A state is said to be an absorbing state

if no transitions can emerge from the state (e.g. death). Irreversible illness-

death models are often used to model disease processes in medical cancer studies.

2008).

Figure 1: Progressive three-state model. 

State 1 State 2 State 3State 1 State 2 State 3

Figure 1: Progressive three-state model.

In these models, individuals may pass from the initial state (e.g. disease-free;

state 1), to the intermediate event or disease state (e.g. recurrence; state 2) and

then to the absorbing state (e.g. dead; state 3). Individuals are at risk of death
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in each transient state (states 1 and 2). Figure 2 shows the schematic diagram

of transitions involved in the illness-death model.

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead

Figure 2: Progressive illness-death model.

The inference in multi-state models is traditionally performed under a

Markov assumption for which past and future are independent given its present

state (see e.g. [4] and [5]). However, this assumption may fail in some applica-

tions, leading to inconsistent estimators. In such cases, alternative (non-Markov)

estimators are needed. In this work we review some recent developments in this

area, focussing on the estimation of several quantities such as the bivariate dis-

tribution function and the transition probabilities. Specifically, we focus on the

three-state model of Figure 1 and the illness-death model depicted in Figure 2.

In the progressive three-state model, the times between consecutive events (which

define states 2 and 3) are often of interest. In Section 2 we present several estima-

tors of the bivariate distribution function of the gap times. Some related problems

as estimation of the marginal distribution of the second gap time is discussed.

In the framework of the illness-death model, several estimators for the transition

probabilities are presented in Section 3. In Section 4, an example of application

on bladder tumor recurrence data is re-analyzed to assess the proposed models

and methodologies. We also apply our estimation procedures to data from one of

the first successful trials of adjuvant chemotherapy for colon cancer. Finally we

conclude with a discussion section.

2. ESTIMATION OF THE BIVARIATE DISTRIBUTION

2.1. Notation

Assume the progressive three-state model of Figure 1. Let (T12, T23) be a

pair of gap times of successive events, which are observed subjected to random

right-censoring. Let C be the right-censoring variable, assumed to be indepen-

dent of (T12, T23) and let Y = T12 + T23 be the total time. Because of this, we only



Multi-State Models 87

observe (T̃12i, T̃23i, ∆1i, ∆2i), 1 ≤ i ≤ n, which are n independent replications of

(T̃12, T̃23, ∆1, ∆2), where T̃12 = T12 ∧ C, ∆1 = I(T12 ≤C), and T̃23 = T23 ∧C2,

∆2 = I(T23 ≤C2) with C2 = (C − T12) I(T12 ≤C) the censoring variable of the

second gap time. Since ∆2 = 1 implies ∆1 = 1 then ∆2 = ∆2∆1 = I(Y ≤C) is

the censoring indicator pertaining to the total time. Define Ỹ = Y ∧C and let

F1 and G denote the distribution functions of T12 and C, respectively. Since

T12 and C are independent, the Kaplan–Meier estimator based on the pairs

(T̃12i, ∆1i)’s, consistently estimates the distribution F1. Similarly, the distri-

bution of the total time may be consistently estimated by the Kaplan–Meier

estimator based on (T̃12i + T̃23i, ∆2i)’s. Because T23 and C2 will be in general

dependent, the estimation of the marginal distribution for the second gap time

is not a simple issue. The same applies to the bivariate distribution function

F12(x, y) = P (T12 ≤ x, T23 ≤ y). This issue have received much attention recently.

Among others it was investigated by Lin et al. [6], Van Keilegom [7], de Uña-

Álvarez and Meira-Machado [8] or de Uña-Álvarez and Amorim [9].

In this section we present four estimators for the bivariate distribution

function of the gap times. All estimator are somehow related since all use (in

different ways) the Kaplan–Meier estimator [10].

2.2. Methods

A simple estimator for the bivariate distribution function of the gap times is

based on the Kaplan–Meier survival function (Conditional Kaplan–Meier, CKM).

Since F12(x, y) = P (T12 ≤ x, T23 ≤ y) = P (T23 ≤ y |T12 ≤ x)P (T12 ≤ x) one

simple estimator for the bivariate distribution is given by

(2.1) F̂12(x, y) = F̂1(x) F̂KM

(
y |T12 ≤ x, ∆1 =1

)

where F̂1(x) is the Kaplan–Meier product-limit estimator based on the pairs

(T̃12i, ∆1i)’s. The F̂KM(y |T12 ≤ x,∆1 = 1) is the conditional distribution function

for the subset of T12 ≤ x and ∆1 = 1 (the Kaplan–Meier estimator based on the

subset (T̃23i, ∆2i)’s such that T̃12i ≤ x and ∆1i = 1).

Another estimator for the bivariate distribution function was proposed by

Lin et al. [6]. This estimator is based on inverse probability of censoring weighted

(IPCW) and is expressed as

(2.2)
∽

F12(x, y) =
∽

H(x, 0) −
∽

H(x, y)

where
∽

H(x, y) =
1

n

n∑

i=1

I
(
T̃12i ≤ x, T̃23i > y

)

1 − Ĝ
(
(T̃12i + y)−

)



88 Lúıs Meira-Machado

and where Ĝ stands for the Kaplan–Meier estimator of the censoring distribution

based on the (Ỹi, 1−∆2i)’s.

Recently de Uña-Álvarez and Meira-Machado [8] proposed a simple esti-

mator for the bivariate distribution. The idea behind the estimator is using the

Kaplan–Meier estimator pertaining to the distribution of the total time to weight

the bivariate data. The proposed estimator (Weighted Kaplan–Meier, WKM) is

given by

(2.3) F̃12(x, y) =

n∑

i=1

Wi I
(
T̃12i ≤ x, T̃23i ≤ y

)

where

Wi =
∆2i

n − Ri + 1

i−1∏

Rj=1

[
1 −

∆2j

n − Rj + 1

]

are the Kaplan–Meier weights attached to Ỹi when estimating the marginal dis-

tribution of Y from (Ỹi, ∆2i)’s, and for which the ranks of the censored Ỹi’s, Ri,

are higher than those for uncensored values in the case of ties.

An estimator related to (2.3) was recently proposed by de Uña-Álvarez and

Amorim [9]. In this estimator they assume a presmoothed version of the Kaplan–

Meier estimator (see [11] and [12] for more details). Presmoothing goes back at

least to Dikta (1998) and the idea is to replace the censoring indicators by some

smooth fit. This smooth can be based on a certain parametric family (yielding

a semiparametric estimator) or using a nonparametric binary regression curve.

The term “presmoothing” comes from the fact that smoothing is simply used to

get a modified version of the Kaplan–Meier weights, but the final estimator is

not smooth itself. Throughout this paper we will assume that the probability of

censoring for the second gap time, T23, given the (possibly censored) gap times be-

longs to a parametric family of binary regression curves. Put m(x, y) = P (∆2 =1 |

T̃12 = x, Ỹ = y), that is, the probability of uncensoring for the total time Y given

the observable information on both gap times. Then the new estimator (Smooth

Weighted Kaplan–Meier, SWKM) is expressed as

(2.4) F 12(x, y) =
n∑

i=1

W ⋆
i I

(
T̃12i ≤ x, T̃23i ≤ y

)

where

W ⋆
i =

m(T̃12i, Ỹi)

n − Ri + 1

i−1∏

Rj=1

[
1 −

m(T̃12j , Ỹj)

n − Rj + 1

]

are the presmoothed Kaplan–Meier weights where each censoring indicator ∆2j

in Wi is replaced by the conditional probability of censoring for the second gap

time, given the available information. The m function stands for a (smooth)

parametric binary regression model, e.g. logistic. In practice, we assume that
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m(x, y) = m(x, y; β) where β is a vector of parameters which typically will be

computed by maximizing the conditional likelihood of the ∆2’s given (T̃12, T̃23) for

those with ∆1 = 1. Thus, we introduce the parametrically presmoothed Kaplan–

Meier weights as

W ⋆
i (β) =

m(T̃12i, Ỹi; β)

n − Ri + 1

i−1∏

Rj=1

[
1 −

m(T̃12j , Ỹj ; β)

n − Rj + 1

]
.

Note that, unlike (2.3), the SWKM estimator may attach positive mass

to pair of gap times with censored second gap time; but only for those with

uncensored first gap time. Conditions under which both estimators are consistent

is fully discussed in papers by de Uña-Álvarez and Meira-Machado [8] and de Uña-

Álvarez and Amorim [9]. Note that without presmoothing, the estimator (2.4)

reduces to (2.3). Without censoring both reduce to the empirical estimator.

It is also important to mention that estimators (2.2), (2.3) and (2.4) are

only estimable on {(x, y) : x + y ≤ Cmax} where Cmax is the maximum follow-up

time. This means that consistency of these estimators is only guaranteed on the

triangle shown in Figure 3.

T23

Cmax

t

T12CmaxCmax – t  

Figure 3: Estimable area of estimators (2.2), (2.3) and (2.4).

We note that the estimates produced via Kaplan–Meier (CKM) may not

produce a valid bivariate distribution since it does not guarantee that the bivariate

distribution function is monotone. The problem can be explained to the fact that,

as the conditioning set T12≤ x changes, the redistribution to the right of the prob-

ability mass associated with censored observations also changes. In contrast to

the other two methods, the estimators by de Uña-Álvarez and Meira-Machado [8]

and de Uña-Álvarez and Amorim [9] are a proper distribution function, in the

sense that it attaches positive mass to each observation.
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Results of an extensive simulation study comparing the four methods are

reported in Meira-Machado and Moreira [13]. The main conclusions are the

following:

(a) the CKM estimator has larger bias for higher values of the first gap

time, but in some cases is one of the estimators with less variance;

(b) the WKM estimator has less bias than its smooth version (SWKM);

however as expected the later obtained less variance (and less mean

square error);

(c) the WKM and IPCW estimator are almost unbiased but the last one

obtains higher levels of variance for small values of the second gap time.

From the introduced estimators we can obtain an estimator for the marginal

distribution of the second gap time, F2(y) = P (T23 ≤ y), namely

F̂2(y) = F̂12(+∞, y) = F̂KM(y |∆1 = 1) ,(2.5)

F̃2(y) = F̃12(+∞, y) =
n∑

i=1

Wi I(T̃23i ≤ y) .(2.6)

Note that estimator (2.5), obtained from the CKM, is the Kaplan–Meier estima-

tor based on (T̃23i, ∆2i)’s such that ∆1 = 1 (i.e., for which the first gap time is

uncensored). Estimator (2.6) is different because the Kaplan–Meier weights Wi

in this estimator are based on the Ỹi-ranks rather than on the T̃23i-ranks. Indeed,

since T23 and C2 are expected to be dependent, the ordinary Kaplan–Meier esti-

mator of F2 (estimator (2.5)) will be in general inconsistent. The corresponding

estimators for (2.2) and (2.4) are obtained using the same ideas.

2.3. Alternative estimators based on the location-scale model

Other estimators were proposed to estimate the bivariate distribution func-

tion. A valid estimator of the bivariate distribution function was provided by Van

Keilegom [7] which is based on Akritas [14] estimator. However this approach

has some limitations since some smoothing is required. Alternative estimators for

the above quantities were also given in Van Keilegom et al. [15]. This method-

ology assumes that the vector of gap times (T12, T23) satisfies the nonparametric

location-scale regression model T23 = m(T12) + σ(T12)ε, where the functions m

and σ are“smooth”, and ε is independent of T12. On the basis of the idea of trans-

fer of tail information, the estimator of the error distribution is used to introduce

nonparametric estimators for the bivariate distribution function. As shown by

the authors, these estimators will be more efficient than the previous, since it

allows for the transfer of tail information from lightly censored areas to heavily

ones. More details about these methods can be found in the independent paper

by Van Keilegom et al. [15].
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3. ESTIMATION OF THE TRANSITION PROBABILITIES

3.1. Notation

One major goal in longitudinal multi-state studies is the estimation of tran-

sition probabilities. Traditionally these quantities are estimated via a nonpara-

metric model (using e.g. the Aalen–Johansen estimator [4]). In a recent paper,

Meira-Machado et al. [16] introduce a substitute for the Aalen–Johansen estima-

tor in the case of a non-Markov illness-death model. They showed that the new

estimator may behave much more efficiently than the Aalen–Johansen when the

Markov assumption does not hold. More recently, Amorim et al. [17] propose

a modification of Meira-Machado et al. [16] estimator based on presmoothing

ideas which allows for a variance reduction in the presence of censoring. These

estimators will be presented in this section, assuming an illness-death model.

In this section we consider the illness-death model depicted in Figure 2 and

we assume that all subjects are in state 1 (‘healthy’) at time t = 0. The illness-

death model is fully characterized by three transitions: two competing transitions

leaving state 1 and one transition to the absorbing ‘dead’ state for those subjects

visiting state 2. Therefore, we have three potential transition times, Thj , from

state h to state j. This means that a subject not visiting state 2 will reach the

absorbing state at time T13, while this time will be T12 +T23 if the subject passes

through state 2 before. We denote by ρ = I(T12 ≤ T13) the indicator of visiting

state 2 at some time. Let Z = T12 ∧ T13 be the sojourn time in state 1, and let

Y = T12 + ρ T23 be the total survival time of the process. In practice, several

issues influence the observation of these variables Thj . Whenever T13 ≤ T12, one

gets a right censored value of T12 and no information on T23 is available. Similarly,

the value of T13 will be censored for those individuals entering state 2. Further,

right censoring may appear due to time limitation in following-up or to other

causes. This extra censoring is modeling by considering a censoring variable C

which is assumed to be independent of the process; finally, we put Z̃ = Z ∧ C

and Ỹ = Y ∧ C for the censored versions of Z and Y, and ∆1 = I(Z ≤C) and

∆2 = I(Y ≤C) for the respective censoring indicators.

3.2. Estimators based on the Kaplan–Meier weights

Meira-Machado et al. [16] derived estimators for the transition probabilities

p11(s, t), p12(s, t), p22(s, t), for a general non-Markov illness-death process without

recovery as follows. Let H denote the survival function for Z then the transition
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probabilities are written as

p11(s, t) =
P (Z > t)

P (Z > s)
=

H(t)

H(s)
,(3.1)

p12(s, t) =
P (s < Z ≤ t < Y )

P (Z > s)
=

E
[
ϕst(Z, Y )

]

H(s)
,(3.2)

p22(s, t) =
P (Z ≤ s, t < Y )

P (Z ≤ s < Y )
=

E
[
ϕ̃st(Z, Y )

]

E
[
ϕ̃ss(Z, Y )

] ,(3.3)

where ϕst(u, v) = I(s < u≤ t, v > t) and ϕ̃st(u, v) = I(u≤ s, v > t).

Then, (3.1) and the denominator of (3.2) only involve the Z variable, and

they can be estimated by the ordinary Kaplan–Meier estimator, Ĥ, based on the

pairs (Z̃i, ∆1i)’s. The transition probability (3.3) and the numerator of the (3.2)

involve expectations of particular transformations of the pair (Z, Y ) that can be

estimated in different ways. In this section we present two methods to empirically

approximate these expectations from the data
{(

Z̃i, Ỹi,∆1i,∆2i,∆1iρi

)
, 1≤ i≤ n

}
,

which are assumed to form a random sample of the vector (Z̃, Ỹ,∆1, ∆2, ∆1ρ).

In Meira-Machado et al. [16], the expectations E
(
ϕst(Z,Y )

)
and E

(
ϕ̃st(Z,Y )

)

were estimated by Kaplan–Meier integrals of the form

n∑

i=1

Wi ϕst(Z̃i, Ỹi)

where Wi are the Kaplan–Meier weight attached to Ỹi when estimating the

marginal distribution of Y from the (Ỹi, ∆2i)’s.

Note that, without right-censoring, the estimator of the transition proba-

bilities reduces to the relative frequency of processes in state j at time t among

those in state h at time s < t. Meira-Machado et al. [16] derived large sample

properties of these estimators which may be generalized to more complicated

non-Markov processes.

The main weakness of this method [16] is that it provides large standard

errors in estimation, specially when there is a large proportion of censored data.

In order to overcome this issue Amorim et al. [17] propose a modification of

Meira-Machado et al. (2006)’s estimator based on presmoothing ideas, in the

presence of censoring. The implementation of these ideas is straightforward in

the case of the progressive three-state model (see Section 2) but not so simple for

the illness-death model (as explained below).

In the presmoothed version [17], the expectations in (3.2) and (3.3) are

estimated by
n∑

i=1

W ⋆
i ϕst(Z̃i, Ỹi)
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where

W ⋆
i =

m(Z̃i, Ỹi)

n − Ri + 1

i−1∏

Rj=1

[
1 −

m(Z̃j , Ỹj)

n − Rj + 1

]

and where m(z, t) stands for an estimator of the binary regression function

m(z, t) = P
(
∆2 = 1 | Z̃ = z, Ỹ = t

)
.

The problem in the illness-death model is that the function m(z, t) will

typically be discontinuous along the line t = z, that is, for those values (Z̃, Ỹ )

corresponding to subjects who are censored while being in state 1 or who suffer a

direct transition to the absorbing state. To construct m(z, t) the authors propose

to estimate independently two functions: m1(z, t) such that m1(Z̃, Ỹ ) is the

conditional probability of censoring on Y given (Z̃, Ỹ ) and given that a transition

to state 2 is observed; and m2(t) which is the conditional probability of observing

a direct transition from state 1 to state 3 given Z̃ = t (or Ỹ = t) and given that

a transition to state 2 is never observed. These functions can be fitted by some

smooth models, so we finally have

m(z, t) = m1(z, t) I(z < t) + m2(t) I(z = t) .

The estimator m1(z, t) is based on the subsample {i : ∆1iρi = 1}, while

m2(t) is computed from {i : ∆1iρi = 0}. The only condition which is assumed

on these two functions is that they should approximate well their targets in a

uniform sense (see [17] for more details).

Results from a simulation study comparing the two methods is reported in

Amorim et al. [17], revealing that the semiparametric estimator is more efficient.

4. EXAMPLES OF APPLICATION

The methods described in Section 2 and Section 3 are illustrated through

two real data sets. First, we use data from a bladder cancer study (Byar (1980))

conducted by the Veterans Administration Cooperative Urological Research Group.

In addition to this data set we also use the well-known and widely studied colon

cancer database. In both data sets, a nonfatal event (recurrence) is observed

during the disease course. Also, in both data sets, recurrence is a time-dependent

covariate that can be re-expressed as a multi-state model, with states based on

the values of the covariate. In the first database all deceased patients died after

having a recurrence making it possible for the progressive three-state model to

be used (Figure 1). In the second database some subjects died without having a

recurrence, making feasible for the illness-death model, depicted in Figure 2, to

be used.
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4.1. Bladder cancer data

In this study, patients had superficial bladder tumors that were removed

by transurethral resection. Many patients had multiple recurrences (up to a

maximum of 9) of tumors during the study, and new tumors were removed at

each visit. For illustration purposes we re-analyze data from 85 individuals in the

placebo and thiotepa treatment groups; these data are available as part of the

R survival package. Here, only the first two recurrence times and the corre-

sponding gap times T12 and T23 are considered. From the total of 85 patients,

47 relapsed at least once and, among these, 29 experienced a new recurrence.

We have a total amount of censoring of 66% from which 44.7% is obtained from

censored observations on the first gap time. We have about 38% of censored Y ’s

among the uncensored first gap time.

We computed the estimated values for all the estimators of the bivariate

distribution function, F12(x, y), introduced in Section 2, for x equal to 3, 13, 29

and 49 and y values 3, 10, 17.75 and 36.75, corresponding to marginal survival

probabilities of 0.25, 0.5, 0.75 and 0.95. The estimated values of F12(x, y) are

reported in Table 1. In this case it is clearly seen that the four methods can pro-

vide quite different results, specially at the right tail of the bivariate distribution,

where the censoring effects are stronger.

Table 1: Estimated values of the bivariate distribution function F12(x, y)
for different pairs of values. Bladder cancer data.

y

x Estimator
3 10 17.75 36.75

3

CKM 0.0364 0.0607 0.1261 0.1746

IPCW 0.0320 0.0432 0.1240 0.1726

WKM 0.0128 0.0427 0.1045 0.1167

SWKM 0.0328 0.0556 0.1089 0.1203

13

CKM 0.0763 0.1684 0.2533 0.3284

IPCW 0.0668 0.1510 0.2540 0.3154

WKM 0.1036 0.1742 0.2511 0.2633

SWKM 0.1193 0.1814 0.2565 0.2679

29

CKM 0.1513 0.2703 0.3680 0.4499

IPCW 0.1677 0.2902 0.3830 0.4932

WKM 0.1729 0.2436 0.3205 0.3482

SWKM 0.2331 0.2952 0.3704 0.3913

49

CKM 0.1571 0.2801 0.3803 0.4764

IPCW 0.1556 0.2336 0.4355 0.5457

WKM 0.2294 0.3001 0.3932 0.4209

SWKM 0.2652 0.3273 0.4109 0.4318
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4.2. Colon cancer data

For illustration, we apply the proposed methods of Section 3 to data from

a large clinical trial on patients affected by colon cancer. All subjects underwent

a curative surgery for colo-rectal cancer. Unfortunately, some of these patients

have residual cancer, which lead to disease recurrence and death (in some cases).

From the total of 929 patients, 468 (about 50%) developed recurrence and among

these 414 (88%) died. Only 38 patients died without recurrence. The rest of the

patients (423) remained alive and disease-free up to the end of the follow-up. The

presence of patients that experienced a direct transition from the initial state to

the absorbing state leads to the need of using the illness-death model with states

“Alive and disease-free” (State 1), “Alive with recurrence” (State 2) and “dead”

(State 3). Using Cox proportional hazards models, we verified that the transition

rate from state 2 to state 3 is affected by the time spent in the previous state [19].

This allowed us to conclude that the Markov assumption may be unsatisfactory

for the colon cancer data set. Note that both methods presented in Section 3 do

not make use of the Markov information. We will present estimated transition

probabilities calculated using these two approaches.

Figure 4: Estimated transition probabilities for phj(s, t) with s = 1095
based on the Kaplan–Meier weights (dashed line) and based
on presmoothed Kaplan–Meier weights (solid line).



96 Lúıs Meira-Machado

In Figure 4 we illustrate differences between the estimated transition proba-

bilities, phj(s, t), 1 ≤ h ≤ j ≤ 3, based on presmoothing the Kaplan–Meier weights

(semiparametric) and the estimator corresponding to no presmoothing [16]. The

semiparametric estimator was obtained using a standard logistic model for the

parametric estimation of m. The value s was chosen to be as 3 years (1095 days).

From this figure we see that the semiparametric estimator have more jump points

but with smaller steps. The additional jump points correspond to patients with

censored values of the total time that underwent a transition from state 1 to state 2

before time s (uncensored sojourn time in state 1). The number of jump points

and the size of the steps are strictly related to the amount of censoring and to the

sample size. As expected, both methods provide similar point estimates at small

time values while some departures are appreciated for higher time values. In sum,

the semiparametric approach provides more reliable curves with less variability,

specially in the right tail.

5. DISCUSSION

In this paper we present nonparametric and semiparametric estimators for

quantities of interest in multi-state survival modeling. The interest is focused

on the estimation of the bivariate distribution function for censored gap times

and the estimation of transition probabilities. For both quantities we present two

methods based on the Kaplan–Meier estimator pertaining to the distribution of

the total time to weight the data. One of these methods is based on presmoothing

the Kaplan–Meier estimator. For this, we assume that the probability of censoring

for total time given the (possibly censored) gap times belongs to a parametric

family of binary regression curves. Some of these estimators may behave much

more efficiently than the competing ones. These methods are illustrated using

data from two cancer studies.
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98 Lúıs Meira-Machado
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