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1. INTRODUCTION

In recent years, several authors proposed generalized first-order autoregres-

sive (or AR(1)) models with marginal distributions on R+ := [0,∞). Lewis et al.

(1989) constructed gamma AR(1) processes with random coefficients based on the

beta-gamma transformation. As an application, they analyzed inter-failure times

of a computer system. Sim (1990) introduced a generalized multiplication based

on a conditional compound Poisson distribution to construct a gamma AR(1)

processes. Al-Osh and Alzaid (1993) provided extensions of the gamma models

in Lewis et al. (1989) via the Gamma-Dirichlet transformation. Grunwald et al.

(2000) introduced the family of conditional linear AR(1) (CLAR(1)) models.

A CLAR(1) process is a Markov process (Xn, n ≥ 0) such that the conditional

expectation E(Xn|Xn−1) is linear affine. The authors fitted a CLAR(1) model to

rainfall data. Zhu (2002) introduced a class of generalized AR(1) (GAR(1)) pro-

cesses with marginal distributions on R+. As an application, Zhu (2002) fitted a

GAR(1) process with a gamma marginal distribution to ozone data. Darolles et al.

(2006) introduced a general class of compound autoregressive AR(1) (CAR(1))

processes for non-Gaussian time series. CAR(1) processes are specified in terms

of their conditional Laplace transforms.

The aim of this paper is to develop a class of AR(1) sequences of random

variables (rv’s) with values in R+ by way of Lévy processes, or processes with sta-

tionary independent increments. Our starting point is a continuous convolution

semigroup of cumulant generating functions denoted by C = (Ct, t ≥ 0) and its

related operator ⊙C (the definition is recalled below) introduced by van Harn and

Steutel (1993). The equation governing our models (equation (2.1)) is analogous

to the one describing the standard AR(1) process, with the operator ⊙C replac-

ing the standard multiplication. We obtain various distributional and regression

properties for these models and we discuss conditions that lead to stationarity

and time reversibility. A number of stationary C-AR(1) processes with specific

marginals are presented and are shown to generalize several existing models.

The paper is organized as follows. In Section 2 we introduce C-AR(1) processes

and give their representation in terms of independent sequences of R+-valued

Lévy processes. We describe their various properties and obtain a limit theorem

that leads to the property of stationarity for C-AR(1) processes. We also dis-

cuss a connection between the concept of C-self-decomposability of van Harn and

Steutel (1993) and stationarity of C-AR(1) processes. In Section 3 we present a

number of specific stationary solutions for C-AR(1) processes. Characterizations

of their marginal distributions are obtained and some examples are discussed.

The question of time reversibility of C-AR(1) processes is addressed in Section 4.

In the rest of this section we recall some definitions and results that are

needed in the sequel. For proofs and further details we refer to Hansen (1989),

van Harn and Steutel (1993), and Steutel and van Harn (2004).
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The Laplace–Stieltjes transform (LST) of an R+-valued rv X with distri-

bution function F (x) is denoted by φX :

φX(τ) =

∫ ∞

0
e−τx dF (x) (τ ≥ 0) .

C = (Ct; t ≥ 0) will denote a continuous composition semigroup of cumu-

lant generating functions (cgf’s): for every t ≥ 0, Ct = − lnLt for some infinitely

divisible LST Lt, Ct 6≡ 1, and δC = − ln(−L′
1(0)) > 0. For any τ ≥ 0,

(1.1) C0(τ) = τ ; Cs◦Ct(τ) = Cs+t(τ) (s, t≥ 0); lim
t↓0

Ct(τ) = τ ; lim
t→∞

Ct(τ) = 0 .

The infinitesimal generator U of the semigroup C is defined by

U(τ) = lim
t↓0

(

Ct(τ) − τ
)

/t (τ ≥ 0) ,

and satisfies U(0) = 0 and U(τ) < 0 for τ > 0. U admits the representation

U(τ) = aτ −
1

2
σ2 τ2 −

∫ ∞

0

(

e−τx − 1 + τ x/(1 + x2)
)

dN(x) ,

where a is real, σ ≥ 0, andN(dx) is a Lévy spectral function such that
∫ y
0 x

2 dN(x)

<∞ for every y > 0. Moreover, the following non-explosion condition holds:

∣

∣

∣

∣

∫ y

0+

U(x)−1 dx

∣

∣

∣

∣

= ∞ for sufficiently small y > 0 .

A related function, called the A-function, is defined by

(1.2) A(τ) = exp

{
∫ 1

τ

(

U(x)
)−1

dx

}

(

τ ≥ 0; A(0) = 0
)

.

The functions U(τ) and A(τ) satisfy for every t ≥ 0 and τ ≥ 0,

(1.3)
∂

∂t
Ct(τ) = U

(

Ct(τ)
)

= U(τ)C ′
t(τ) and A

(

Ct(τ)
)

= e−tA(τ) .

Moreover,

(1.4) δC = −U ′(0) and C ′
t(0) = e−δCt (t ≥ 0) .

The infinite divisibility of Lt(τ) and the second part of (1.4) imply that for

any τ > 0 and t > 0,

(1.5) Ct(τ) < τ .
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For an R+-valued rvX and α ∈ (0, 1), the generalized multiplication α⊙CX

is defined by

(1.6) α⊙C X = Y (X) ,

where (Y (s), s ≥ 0) is an R+-valued Lévy process, independent of X, such that

φY (1)(τ) = exp(−Ct(τ)), t = − lnα. The LST of α⊙C X is given by

(1.7) φα⊙CX(τ) = φX

(

Ct(τ)
)

, t = − lnα .

If E(X) <∞, then

(1.8) E(α⊙C X) = αδCE(X) .

2. C -AR(1) PROCESSES

Definition 2.1. A sequence (Xn, n ∈ Z) of R+-valued rv’s is said to be

a C-AR(1) process if for any n ∈ Z,

(2.1) Xn = α⊙C Xn−1 + ǫn ,

where 0 < α < 1 and (ǫn, n ∈ Z) is an iid sequence of R+-valued rv’s that is

assumed independent of the Y variables that define the operator ⊙C (see below).

(ǫn, n ∈ Z) is called the innovation sequence of (Xn, n ∈ Z).

In the remainder of this paper we will at times refer to the single-ended

C-AR(1) processes (Xn, n ≥ 0) that arises when equation (2.1) is assumed to

hold only for n ≥ 0.

The generalized multiplication α ⊙C Xn−1 in (2.1) is performed indepen-

dently for each n. More precisely, we assume the existence of a sequence (Y (n)(·),

n ∈ Z) of iid R+-valued Lévy processes, independent of (ǫn, n ∈ Z), such that

the LST of Y (n)(1) is

(2.2) φY (n)(1)(τ) = exp
(

−Ct(τ)
)

, τ ≥ 0 ,

where t = − lnα, and (see (1.6))

α⊙C Xn−1 = Y (n−1)(Xn−1) , n ∈ Z .

In terms of LST’s, equation (2.1) translates, by way of (1.7), into

(2.3) φXn
(τ) = φXn−1

(

Ct(τ)
)

φǫ(τ) , τ ≥ 0 ,

where φǫ(τ) is the marginal LST of (ǫn, n ∈ Z) and t = − lnα.

Some results on conditional and joint distributions of a C-AR(1) process

are given next.
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Proposition 2.1. Let (Xn, n ≥ 0) be a C-AR(1) process for some α ∈

(0, 1). Let t = − lnα. The following assertions hold for any n ≥ 1.

(i) The conditional LST of Xn given Xn−1 = x, x ≥ 0, is

(2.4) φXn|Xn−1=x(τ) = exp
(

−xCt(τ)
)

φǫ(τ) , τ ≥ 0 .

(ii) The bivariate joint LST of (Xn−1, Xn) is given by

(2.5) φ(Xn−1,Xn)(τ1, τ2) = φǫ(τ2)φXn−1

(

τ1 + Ct(τ2)
)

.

(iii) More generally, the joint LST of (X1, X2, ..., Xn) can be found recur-

sively by

(2.6) φ(X1,...,Xn)(τ1, ...,τn) = φǫ(τn)φ(X1,...,Xn−1)

(

τ1, ...,τn−2, τn−1+Ct(τn)
)

.

Proof: (i) follows from (2.1) and the fact that φY (n)(x)(τ) = exp(−xCt(τ)).

To show (ii), we recall that the joint LST φ(Xn−1,Xn)(τ1, τ2) of (Xn−1, Xn) is

defined by

φ(Xn−1,Xn)(τ1, τ2) = E
(

e−(τ1Xn−1+τ2Xn)
)

, τ1 ≥ 0, τ2 ≥ 0 .

It can be rewritten as

φ(Xn−1,Xn)(τ1, τ2) = E
(

e−τ1Xn−1E
(

e−τ2Xn |Xn−1

)

)

,

which, combined with (2.4), yields

φ(Xn−1,Xn)(τ1, τ2) = E
(

e−(τ1+Ct(τ2))Xn−1 φǫ(τ2)
)

,

which, in turn, implies (2.5). The exact same argument establishes (2.6). The

details are omitted.

We note, by definition, that any C-AR(1) process is necessarily a Markov

process. Moreover, by using (2.3) recursively (and the fact that (Ct, t ≥ 0) is

a semigroup), it can be shown that a C-AR(1) process (Xn, n ∈ Z) admits the

following representation for any k ≥ 1,

(2.7) Xn
d
= αk ⊙C Xn−k +

k−1
∑

i=0

αi ⊙C ǫn−i , n ∈ Z .

Basic regression properties of C-AR(1) processes are gathered in the fol-

lowing proposition.
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Proposition 2.2. Assume U ′′(0) <∞. Let (Xn, n ∈ Z) be a C-AR(1)

process (for some 0 < α < 1) such that E(Xn) <∞ and E(X2
n) <∞ for any

n ∈ Z, µǫ = E(ǫ0) <∞ and σ2
ǫ = Var(ǫ0) <∞.

(i) The regression of Xn on Xn−1 is linear:

(2.8) E(Xn|Xn−1) = αδCXn−1 + µǫ , n ∈ Z .

(ii) The conditional variance of Xn given Xn−1 is linear:

(2.9) Var(Xn|Xn−1) = BXn−1 + σ2
ǫ , n ∈ Z .

where B =
(

1 − U ′′(0)
U ′(0)

)

αδC (1 − αδC ).

(iii) For any n∈Z and k≥0, the covariance at lag k, Γn(k)= cov(Xn−k, Xn)

of (Xn, n ∈ Z) is

(2.10) Γn(k) = αkδC Var(Xn−k) .

(iv) For any n ∈ Z and k ≥ 0,

(2.11) E(Xn) = αkδCE(Xn−k) + µǫ

k−1
∑

i=o

αiδC ,

and

(2.12) Var(Xn) = α2kδC Var(Xn−k) + B
k

∑

i=1

α2(i−1)δCE(Xn−i) + σ2
ǫ

k
∑

i=1

α2(i−1)δC ,

where the constant B is as in (2.9) above.

Proof: We note that for x ≥ 0

E(Xn|Xn−1 = x) = −φ′Xn|Xn−1=x(0) ,

where φXn|Xn−1=x(τ) is given by (2.4). By differentiating (2.4) and using (1.4)

we obtain (2.8). By differentiating twice (w.r.t. τ) the expression U(Ct(τ)) =

C ′
t(τ)U(τ) (t=− lnα) and letting τ ↓ 0, we obtain via (1.4), C ′′

t (0) =αδC (αδC−1)·

·U ′′(0)/U ′(0). Moreover,

E(X2
n|Xn−1 = x) = φ′′Xn|Xn−1=x(0) ,

and

Var(Xn|Xn−1 = x) = φ′′Xn|Xn−1=x(0) −
(

φ′Xn|Xn−1=x(0)
)2
.

Direct calculations, along with (1.4) and the formula for C ′′
t (0) found above,

leads to (2.9). Equation (2.10) is obtained by applying a conditioning argument

to (2.7). Finally, (2.11) and (2.12) are easily derived from (2.8) and (2.9).
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The following result demonstrates the existence of a stationary C-AR(1)

process.

Theorem 2.1. Let (Xn, n ≥ 0) be a single-sided C-AR(1) process with

coefficient α ∈ (0, 1). Then (Xn, n ≥ 0) admits a proper limit distribution as

n→ ∞ if and only if

(2.13)

∫ y

0

1 − φǫ(x)

x− Ct(x)
dx < ∞ , t = − lnα ,

for some y > 0, and therefore for all y > 0.

Proof: We combine a Poisson mixture argument due to van Harn and

Steutel (1993) and a convergence result for branching processes with immigration

due to Foster and Williamson (1971). An induction argument based on (2.3) leads

to

φXn
(τ) = φX0

(

Cnt(τ)
)

n−1
∏

j=0

φǫ

(

Cjt(τ)
)

, t = − lnα, τ ≥ 0, n ≥ 1 .

Therefore, the sequence (φXn
(τ), n ≥ 0) is decreasing for every τ ≥ 0. It follows

that

(2.14) φ(τ) = lim
n→∞

φXn
(τ)

exists for each τ ≥ 0.

Let λ>0. By van Harn and Steutel (1993), the functions F (λ) =(F
(λ)
t ; t≥ 0)

defined by

(2.15) F
(λ)
t (z) = 1 −

1

λ
Ct

(

λ(1 − z)
)

(z ∈ [0, 1]) .

form a continuous composition semigroup of probability generating functions

(pgf’s), with

(2.16)
∂

∂z
F

(λ)
t (z)

∣

∣

∣

∣

z=1

= e−δct

for each t > 0.

Consider the branching process with immigration
(

Y
(λ)
n , n ≥ 0

)

(2.17) Y (λ)
n =

Y
(λ)
n−1
∑

i=1

W
(λ)
i + ǫ(λ)

n ,

where (W
(λ)
n , n≥1) and (ǫ

(λ)
n , n≥ 0) are independent sequences of iid Z+-valued

rv’s with respective marginal pgf’s F
(λ)
t (z) and Pǫ(λ)(z) = φǫ(λ(1 − z)), 0≤ z≤1
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and t=− lnα. Moreover, Y
(λ)
0 has pgf P

Y
(λ)
0

(z) = φX0(λ(1 − z)) and is indepen-

dent of (W
(λ)
n , n ≥ 1) and (ǫ

(λ)
n , n ≥ 0). By (2.3), 2.15), (2.17), and an induction

argument, we have

(2.18) P
Y

(λ)
n

(z) = φXn

(

λ(1 − z)
)

, n ≥ 0, 0 ≤ z ≤ 1 .

By (2.16), (Y
(λ)
n , n ≥ 0) is a sub-critical branching process.

Let’s now assume that (2.13) holds. Simple calculations show that

(2.19)

∫ 1

0

1 − Pǫ(λ)(x)

F
(λ)
t (x) − x

dx =

∫ λ

0

1 − φǫ(x)

x− Ct(x)
dx < ∞ , t = − lnα .

By the main Theorem of Foster and Williamson (1971), case (iii), (Y
(λ)
n , n ≥ 0)

has a proper limit distribution, as n→ ∞, whose pgf is (by (2.18))

(2.20) P (λ)(z) = lim
n→∞

φXn

(

λ(1 − z)
)

, 0 ≤ z ≤ 1 .

It follows by (2.14) that for every λ > 0, φ(λ(1 − z)) = P (λ)(z), 0 ≤ z ≤ 1.

Therefore, by Lemma A.6 in van Harn and Steutel (1993), φ(τ) is the LST of

a distribution on R+.

Conversely, assume that (Xn, n ≥ 0) admits a proper limit distribution as

n→∞. The limit LST φ(τ) is given by (2.14). Hence, for every λ>0, (Y
(λ)
n , n≥0)

has a proper limit distribution whose pgf is P (λ)(z) of (2.20). We deduce by the

converse of the Theorem in Foster and Williamson (1971), case (iii), that (2.19)

holds for every λ > 0, which in turn implies (2.13).

Since a single-sided C-AR(1) process (Xn, n ≥ 0) is Markovian, it is sta-

tionary if and only if it is started with its limit distribution. By Theorem 2.1, such

a limit distribution exists if condition (2.13) holds. We note that a single-sided

process can be extended to a doubly-infinite stationary process (see the proof of

Theorem 2.2 below).

Next, we explore the relationship between self-decomposability and sta-

tionary C-AR(1) processes. A distribution on R+ with LST φ(τ) is said to be

C-self-decomposable (van Harn and Steutel, 1993) if for any t > 0, there exists

an LST φt(τ) such that

(2.21) φ(τ) = φ
(

Ct(τ)
)

φt(τ) , τ ≥ 0 .

Any C-self-decomposable distribution can arise as the marginal distribution

of a stationary C-AR(1) process. More precisely, we have the following result.
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Theorem 2.2. Let φ(τ) be the LST of a C-self-decomposable distribu-

tion. For any α ∈ (0, 1), there exists a stationary C-AR(1) process (Xn, n ∈ Z)

whose marginal distribution has LST φ(τ).

Proof: Let α ∈ (0, 1) and t = − lnα. By the Kolmogorov extension theo-

rem (Breiman, 1968), there exists a probability space (Ω,F , µ) on which one can

define an array (Y (n)(·), n ≥ 0) of iid R+-valued Lévy processes such that Y (n)(1)

has LST (2.2), a sequence of iid rv’s (ǫn, n ≥ 0) with common LST φǫ(τ) = φt(τ) of

(2.21), and a rvX0 with LST φ(τ), with the further property that (Y (n)(·), n ≥ 0),

(ǫn, n ≥ 0), and X0 are independent. We then construct a single-ended INAR1

process (Xn, n ≥ 0) via equation (2.1). This implies that for every n ≥ 1, the

LST φXn
(τ) of Xn satisfies (2.3), with φX0(τ) = φ(τ). It follows by (2.3) and

(2.21) that φXn
(τ) = φ(τ) for every n ≥ 0. Therefore, the Xn’s are identically

distributed. Since (Xn, n ≥ 0) is a Markov process, its stationarity ensues. The

existence of the doubly infinite extension (Xn, n ∈ Z) follows from Proposition

6.5, page 105, in Breiman (1968).

Next, we state a representation theorem for stationary C-AR(1) processes.

The proof follows easily from (2.7) and is omitted.

Theorem 2.3. Any stationary C-AR(1) process (Xn, n ∈ Z) admits the

following (infinite order) moving average representation for some 0 < α < 1:

(2.22) Xn
d
=

∞
∑

i=0

αi ⊙C ǫn−i , n ∈ Z ,

where the convergence of the series is in the weak sense.

The mean, variance, and autocorrelation function (ACRF) of a stationary

C-AR(1) process follow straightforwardly from Proposition 2.2.

Proposition 2.3. Assume U ′′(0) <∞. Let (Xn, n ∈ Z) be a stationary

C-AR(1) process (for some 0 < α < 1) such that E(X0) <∞, E(X2
0 ) <∞,

µǫ = E(ǫ0) <∞ and σ2
ǫ = Var(ǫ0) <∞. Then

(i) For any n ∈ Z,

E(Xn) = µǫ(1 − αδC )−1 ,

and

Var(Xn) =

(

1 − U ′′(0)
U ′(0)

)

αδCµǫ + σ2
ǫ

1 − α2δC
.

(ii) For any k ≥ 0 and n ∈ Z, the correlation coefficient of (Xn−k, Xn) is

(2.23) ρ(k) = αkδC .
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We note that the ACRF of a stationary C-AR(1) process, as given by

(2.23), has the same form as that of the standard AR(1) process. It decays

exponentially at lag k. However, unlike the standard AR(1) case, ρ(k) remains

always positive.

3. STATIONARY C -AR(1) PROCESSES WITH SPECIFIC

MARGINAL DISTRIBUTIONS

In this section we present several stationary solutions for C-AR(1) pro-

cesses.

An R+-valued rv X is said to have a C-stable distribution with exponent

γ > 0 if there exists a sequence of iid R+-valued rv’s (Xi, i≥ 0), Xi
d
=X for all i,

such that for any n > 0,

X
d
= n−1/γ ⊙C

n
∑

i=1

Xi .

C-stable distributions are C-self-decomposable and exist only when 0 <

γ ≤ δC (van Harn and Steutel, 1993). Moreover, the LST φ(τ) of a C-stable

distribution with exponent γ ∈ (0, δC ] admits the canonical representation

(3.1) φ(τ) = exp
[

−λA(τ)γ
]

, τ ≥ 0

for some λ > 0, where A(τ) is given in (1.2).

It follows by Theorem 2.2 that for every 0 < α < 1, there exists a sta-

tionary C-AR(1) process (Xn, n ∈ Z) with a C-stable marginal distribution with

exponent γ (0<γ ≤ δC). The marginal distribution of the innovation sequence

(ǫn, n ∈ Z), obtained by solving for φǫ in (2.3) and by using (1.3), is also C-stable

with exponent γ and has LST

(3.2) φǫ(τ) = exp
[

−λ(1 − αγ)A(τ)γ
]

.

Moreover, it can be shown (see van Harn and Steutel, 1993) that stationary

C-AR(1) processes whose marginal is C-stable with finite mean arise only in the

case γ = δC and A′(0) <∞. The process has finite variance if A′′(0) <∞.

We have shown via (3.2) (by letting α = e−t) that the LST φ(τ) of the

marginal distribution of a stationary C-stable C-AR(1) process satisfies the fol-

lowing property: for any t > 0, there exist λ(t) > 0 such that

(3.3) lnφ(τ) = λ(t) lnφ[Ct(τ)] , τ ≥ 0 .

It turns out that this property characterizes such processes.
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Theorem 3.1. A function φ(τ) on R+ is the LST of a C-stable distri-

bution with some exponent γ ∈ (0, δC ] if and only if for any t > 0, there exists

λ(t) > 0 such that (3.3) holds for every τ ≥ 0. The function λ(t) is necessarily of

the form λ(t) = eγt.

Proof: The ‘only if’ part follows from the preceding discussion. We prove

only the ‘if’ part. Let ψ(τ) = lnφ(τ)/ lnφ(1). By (3.3), we have for any t > 0

and τ ≥ 0 (note λ(t) = 1/ψ(Ct(1))),

(3.4) ψ
(

Ct(τ)
)

= ψ
(

Ct(1)
)

ψ(τ) , τ ≥ 0 .

By differentiating (3.4) w.r.t. t, we obtain

∂

∂t
Ct(τ)ψ

′
(

Ct(τ)
)

=
∂

∂t
Ct(1)ψ′

(

Ct(1)
)

ψ(τ) , τ ≥ 0 .

Using ∂
∂tCt(τ) = U(Ct(τ)) and letting t ↓ 0, it follows by (1.1) that

ψ′(τ)

ψ(τ)
=
U(1)

U(τ)
ψ′(1) , τ ≥ 0 ,

whose solution is ψ(τ) = A(τ)γ where γ = −ψ′(1)U(1) > 0. Hence, φ(τ) has the

form (3.1). Since φ(τ) is an LST, γ must satisfy γ ≤ δF (it follows by adapting

to our case the argument in the proof of Lemma 4.2. in van Harn and Steutel

(1993)). The form of λ(t) results from its uniqueness and the ‘only if’ part.

Next, we present a stationary C-AR(1) process with a C-geometric stable

marginal distribution.

An R+-valued rv X is said to have a C-geometric stable distribution if for

any p ∈ (0, 1), there exists α(p) ∈ (0, 1) such that

X
d
= α(p) ⊙C

Np
∑

i=1

Xi ,

where (Xi, i ≥ 1) is a sequence of iid R+-valued rv’s, Xi
d
= X, Np has the geo-

metric distribution with parameter p, and (Xi, i ≥ 1) and Np are independent

(Bouzar, 1999). C-geometric stable distributions are C-self-decomposable and

their LST’s admit the canonical representation

(3.5) φ(τ) =
(

1 + λA(τ)γ
)−1

, τ ≥ 0 ,

for 0 < γ ≤ δC and λ > 0. We will refer to a distribution with LST (3.5) as

C-geometric stable with exponent γ.

By Theorem 2.2, for every α ∈ (0, 1), there exists a stationary C-AR(1)

process (Xn, n ∈ Z) with a C-geometric stable marginal distribution with LST
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(3.5). Its innovation sequence (ǫn, n ∈ Z) has marginal LST (obtained by solving

for φǫ(τ) in (2.3) and by using (1.3))

(3.6) φǫ(τ) = αγ + (1 − αγ)
(

1 + λA(τ)γ
)−1

, τ ≥ 0 ,

where 0 < γ ≤ δC and λ > 0.

It follows from (3.6) that a stationary C-AR(1) process (Xn, n ∈ Z) with

a C-geometric stable marginal distribution can be written as

(3.7) Xn = α⊙C Xn−1 + InEn , n ∈ Z ,

where (In, n ∈ Z) and (En, n ∈ Z) are independent sequences of iid rv’s such that

In is Bernoulli(1 − αγ) and En has the same distribution as Xn.

A stationary C-AR(1) process with a C-geometric stable marginal distri-

bution has finite mean only if γ = δF and A′(0) < ∞. It has a finite variance if

A′′(0) <∞.

We have in fact shown by the above argument (and by letting α = e−t)

that the LST φ(τ) of the marginal distribution of a stationary C-geometric stable

C-AR(1) process satisfies the following property: for any t > 0 there exists c(t) ∈

(0, 1) such that

(3.8) φ(τ) = φ
(

Ct(τ)
)

(

c(t) +
(

1 − c(t)
)

φ(τ)
)

, τ ≥ 0 .

We show next that the converse is true.

Theorem 3.2. A function φ(τ) on R+ is the LST of a C-geometric stable

distribution with some exponent γ ∈ (0, δC ] if and only if for any t > 0 there

exists c(t) ∈ (0, 1) such that (3.8) holds. The function c(t) is necessarily of the

form c(t) = e−γt.

Proof: The ‘only if’ part was established in the preceding discussion. We

show the ‘if’ part. Rewriting φ(τ) = (1+ψ(τ))−1, it follows by (3.8) that for any

t > 0, there exists c(t) ∈ (0, 1) such that

(3.9) ψ
(

Ct(τ)
)

= c(t)ψ(τ) , τ ≥ 0 .

Using the exact same argument as the one in the proof of Theorem 3.1 (following

(3.4)), we have ψ(τ) = λA(τ)γ for some 0 < γ ≤ δC and λ > 0. The form of c(t)

follows from its uniqueness and the ‘only if’ part.

We define next a compound gamma distribution and construct the corre-

sponding stationary C-AR(1) process.
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Let 0 < γ ≤ δC , λ > 0, and r > 0. An R+-valued rv X is said to have a

C-compound gamma (γ, λ, r) distribution if its LST has the form

(3.10) φ(τ) =
(

1 + λA(τ)γ
)−r

, τ ≥ 0 .

Note that φ(τ) indeed results from the compounding of C-stable distributions

(with LST (3.1)) by a gamma distribution (with LST φ1(τ) = (1 + τ)−r). The

special case r = 1 in (3.10) gives the C-geometric stable distribution. van Harn

and Steutel (1993) showed that C-compound gamma distributions are C-self-

decomposable (see also Proposition 3.1 below) and arise as solutions to stability

equations for R+-valued processes with stationary independent increments.

Let 0 < γ ≤ δC , λ > 0, and r > 0. By Theorem 2.2, for every α ∈ (0, 1),

there exists a stationary C-AR(1) process (Xn, n∈Z) with a C-compound gamma

(γ, λ, r) marginal distribution. Its innovation sequence (ǫn, n ∈ Z) has LST

(3.11) φǫ(τ) =

(

1 + λαγA(τ)γ

1 + λA(τ)γ

)r

, τ ≥ 0 .

It can be shown by a straightforward calculations that ǫn with LST (3.11) has

the representation

(3.12) ǫ
d
=

N
∑

i=1

(αUi) ⊙C Wi ,

where (Wi, i ≥ 0) is a sequence of iid C-geometric stable rv’s (with LST (3.5)),

(Ui, i ≥ 0) are iid uniform (0, 1) rv’s, and N is Poisson with mean −rγ lnα, with

all these variables being independent. This allows for a shot-noise interpretation

of the process that is similar to the one given by Lawrance (1982) for the gamma

AR(1) process. A shot-noise process is defined by

(3.13) X(t) =

N(t)
∑

m=N(−∞)

αt−τm ⊙C Wm ,

where (Wm, m≥0) are R+-valued iid rv’s (amplitudes of the shots) and (N(t), t≥0)

is a Poisson process with occurrence times at τm. If the Wm’s have their common

LST given by (3.5) and N(t) has rate −r γ lnα, then X(t) of (3.13) sampled at

n = 0,±1,±2, ... gives another representation of the stationary C-AR(1) process

(2.1) with a C-compound gamma (γ, λ, r) marginal distribution. The proof of this

fact is an adaptation of Lawrance’s (1982) argument and the details are omitted.

Other representations of the innovation variable ǫn for a C-AR(1) process

with a C-compound gamma (γ, λ, r) marginal distribution can be obtained by

adapting the ones derived by McKenzie (1987) for an integer-valued AR(1) pro-

cess and by Walker (2000) for the gamma AR(1) process of Gaver and Lewis

(1980).
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As in the previously seen models, a stationary C-AR(1) process with a

C-compound gamma (γ, λ, r) marginal distribution has finite mean only if γ = δC
and A′(0) <∞. It has a finite variance if A′′(0) <∞.

The C-self-decomposability of the C-geometric stable distributions (with

LST (3.5)) and the C-compound gamma distributions (with LST (3.10)) can be

derived from the following, more general, result.

Proposition 3.1. Let ϕ(τ) be the LST of a self-decomposable distri-

bution on R+ with respect to the usual multiplication. Then the compound

distribution on R+ with LST

(3.14) φ(τ) = ϕ
(

λA(τ)γ
)

, τ ≥ 0 ,

for some 0 < γ ≤ δC and λ > 0, is C-self-decomposable.

Proof: We note first that φ(τ) is indeed an LST. Specifically, it is the LST

of the R+-valued rv Y =X(T ) where (X(t), t ≥ 0) is an R+-valued Lévy process

such that X(1) has LST (3.1) and T is a rv (independent of (X(t), t ≥ 0)) with

LST ϕ(τ) (see Steutel and van Harn (2004), Chapter I, Section 3, for a discussion

on compound distributions of the type (3.14)). By self-decomposability with

respect to the usual multiplication, we have for every τ ≥ 0 and t > 0

(3.15) ϕ(τ) = ϕ(e−γt τ)ϕγ,t(τ) ,

for some LST ϕγ,t(τ). Combining equations (1.3), (3.14) and (3.15), yields for

every τ ≥ 0 and t > 0,

φ(τ) = ϕ
(

e−γtλA(τ)γ
)

ϕγ,t

(

λA(τ)γ
)

= ϕ
(

λA
(

Ct(τ)
))

ϕγ,t

(

λA(τ)γ
)

.

Therefore, (2.21) holds for φ(τ), with φt(τ) = ϕγ,t(λA(τ)γ). The same argument

we used above to show that φ(τ) is an LST can be repeated to conclude φt(τ) is

also an LST.

The LST’s described by (3.5) and (3.10) are special cases of (3.14). In

this case, ϕ(τ) = (1 + τ)−r (with r = 1 for (3.5)). Steutel and van Harn (2004),

Chapter 5, Section 9, offer a multitude of examples of LST’s ϕ(τ) from which one

can construct stationary C-AR(1) processes (by combining Proposition 3.1 and

Theorem 2.2).

Next, we present a random coefficient stationary C-AR(1) process with the

C-compound gamma marginal distribution of (LST) (3.10) and with an innova-

tion sequence that is simpler than (3.12) or (3.13).

Let B be a rv taking values in (0, 1) and X an R+-valued rv independent

of B. The random coefficient operator B ⊙C X is defined via its LST by the
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equation

(3.16) φB⊙CX(τ) =

∫ 1

0
φX

(

C− ln b/δC
(τ)

)

dF (b) ,

where F (b) is the distribution function of B.

Lemma 3.1. Let 0 < s < r, 0 < γ ≤ δC , and λ > 0. Define γ1 = γ
δC

and

note γ1 ∈ (0, 1]. Assume that B has the probability density function

(3.17) f(b) =
γ1Γ(r)

Γ(s) Γ(r − s)
bγ1s−1(1 − bγ1)r−s−1 , 0 < b < 1 ,

and that X has the C-compound gamma (γ, λ, r) distribution. Then B⊙CX has

a C-compound gamma (γ, λ, s) distribution.

Proof: Using (3.16), (3.17), and the change of variablewγ =
1− bγ1

1+ λA(τ)γbγ1
,

we obtain

φB⊙CX(τ) =

[

γ1Γ(r)

Γ(s) Γ(r − s)

∫ 1

0
(1 − wγ1)s−1 wγ1(r−s)−1 dw

]

(

1 + λA(τ)γ
)−s

.

Since
γ1Γ(r)

Γ(s) Γ(r − s)

∫ 1

0
(1−wγ1)s−1wγ1(r−s)−1 dw = 1, the conclusion follows.

An R+-valued stochastic process (Xn, n ≥ 0) is said to be a random coef-

ficient C-AR(1) process if it satisfies the equation

(3.18) Xn = Bn ⊙C Xn−1 + ǫn ,

where (Bn, n ≥ 1) is an iid sequence of rv’s with 0 < Bn < 1 and (ǫn, n ≥ 1) is

an iid sequence of R+-valued rv’s. Moreover, it is assumed that Bn, Xn−1, and

ǫn are mutually independent.

Theorem 3.3. Let 0 < s < r, 0 < γ ≤ δC , and λ > 0. Let (Xn, n ≥ 0)

be the random coefficient C-AR(1) process of (3.18) such that Bn has probability

density function (3.17) and ǫn has a C-compound gamma (γ, λ, r − s) distribu-

tion. If X0 has a C-compound gamma (γ, λ, r) distribution, then (Xn, n ≥ 0) is

stationary with a C-compound gamma (γ, λ, r) marginal distribution.

Proof: We have by (3.18) and Lemma 3.1,

φX1(τ) = φB1⊙CX0(τ)φǫ(τ) =
(

1+λA(τ)γ
)−s(

1+λA(τ)γ
)s−r

=
(

1+λA(τ)γ
)−r

.

An induction argument shows that Xn has a C-compound gamma (γ, λ, r) for all

n ≥ 1. Since (Xn, n ≥ 1) is a Markov process, stationarity ensues.
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We conclude the section by mentioning a family of semigroups of cgf’s. For

θ ∈ [0, 1), let

(3.19) C
(θ)
t (τ) =

θ e−θtτ

θ + θ(1 − e−θt)τ
, t, τ ≥ 0, θ = 1 − θ .

It is easy to verify that C
(θ)
t (τ) has a completely monotone derivative and hence

is a cgf. Moreover, straightforward calculations show that the properties in (1.1)

hold. Therefore, C(θ) = (C
(θ)
t , t ≥ 0) is a continuous semigroup of cgf’s. In this

case

(3.20) U (θ)(τ) = −τ(θ + θτ) , A(θ)(τ) =

(

τ

θ + θτ

)1/θ

, δ
(θ)
C = θ .

The special case θ = 0 corresponds to the ordinary multiplication. The sta-

tionary C(0)-AR(1) process with a C(0)-stable marginal distribution corresponds

to the AR(1) process with the standard stable distribution on R+ as its marginal.

The stationary C(0)-AR(1) process with a C(0)-geometric stable marginal dis-

tribution reduces to the Mittag–Leffler AR(1) process of Jayakumar and Pillai

(1993). The stationary C(0)-AR(1) process with a C(0)-compound gamma (with

LST (3.10)) becomes the gamma AR(1) process of Gaver and Lewis (1980).

4. TIME-REVERSIBILITY OF STATIONARY C -AR(1)

PROCESSES

A stochastic process (Xn, n ∈ Z) is said to be time-reversible if for any

n ∈ Z and k ≥ 0, (Xn, Xn+1, ..., Xn+k) and (Xn+k, Xn+k−1, ..., Xn) have the same

joint distribution.

Let (Xn, n∈Z) be a C-AR(1) process. By the Markov property, (Xn, n∈Z)

is time-reversible if and only if for any n ∈ Z, (Xn−1, Xn) and (Xn, Xn−1) have

the same joint distribution. (Xn, n ∈ Z) is time-reversible if and only if for every

n ∈ Z,

(4.1) φ(Xn−1,Xn)(τ1, τ2) = φ(Xn−1,Xn)(τ2, τ1) , τ1 ≥ 0, τ2 ≥ 0 ,

where φ(Xn−1,Xn)(τ1, τ2) is the joint LST of (Xn−1, Xn).

By Proposition 2.2-(i), a time-reversibleC-AR(1) process (Xn, n ∈ Z) (such

that E(Xn) <∞ and E(ǫn) <∞) possesses the property of linear backward re-

gression. That is, there exist c > 0 and d ≥ 0 such that for any n ∈ Z,

(4.2) E(Xn−1|Xn) = d+ cXn .
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We show next that a stationary C-AR(1) process with finite mean and finite

variance has the property of linear backward regression only if its LST admits a

certain form.

Theorem 4.1. Let (Xn, n ∈ Z) be a stationary C-AR(1) process with

finite mean and finite variance with the property of linear backward regression

(4.2). Further, assume

(4.3) Ct(1) ∼ ae−δCt (t→ ∞) ,

for some constant a > 0. Then the marginal distribution of (Xn, n ∈ Z) is in-

finitely divisible with LST φ(τ) of the form

(4.4) φ(τ) = exp

{

−

∫ τ

0

(

b− λA(x)δC
)

dx

}

,

for some b > 0 and λ > 0.

Proof: Let n ∈ Z and let φ(τ), τ ≥ 0, and g(τ1, τ2), τ1, τ2 ≥ 0, be the LST

of Xn and joint LST of (Xn−1, Xn), respectively. Recall that by the stationarity

assumption, both φ(τ) and g(τ1, τ2) are independent of n. By Proposition 2.1-(ii)

and equation (2.3), we have for any τ1, τ2 ≥ 0

(4.5) g(τ1, τ2) = φǫ(τ2)φ
(

τ1 + Ct(τ2)
)

=
φ
(

τ1 + Ct(τ2)
)

φ(τ2)

φ
(

Ct(τ2)
) .

Differentiating g with respect to τ1, then setting τ1 = 0 and τ2 = τ , it follows that

for any n ∈ Z,

(4.6) E(Xn−1e
−τXn) = −

φ(τ)

φ
(

Ct(τ)
) φ′

(

Ct(τ)
)

, τ ≥ 0 .

By the property of linear backward regression (see equation (4.2)), we have for

some c > 0 and d ≥ 0,

E(Xn−1e
−τXn) = E

(

e−τXnE(Xn−1|Xn)
)

= cE(Xne
−τXn) + dE(e−τXn) ,

for any n ∈ Z and τ ≥ 0. Noting that E(Xne
−τXn) = −φ′(τ), it follows that

(4.7) E(Xn−1e
−τXn) = dφ(τ) − c φ′(τ) , τ ≥ 0 .

Letting h(τ) = φ′(τ)/φ(τ) and combining (4.6) and (4.7) , we obtain

c h(τ) − d = h
(

Ct(τ)
)

, τ ≥ 0 .

It follows by differentiation that ch′(τ) = C ′
t(τ)h

′(Ct(τ)). Noting that h′(0) =

Var(Xn) 6= 0 (and recalling that Ct(0) = 0), it follows that c = C ′
t(0) = e−δCt,

with the second equation following from (1.4). This implies

h′(τ) = eδCtC ′
t(τ)h

′
(

Ct(τ)
)

, τ ≥ 0 .
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An induction argument yields for any n ≥ 1,

h′(τ) = enδCth′
(

Cnt(τ)
)

n−1
∏

j=0

C ′
t

(

Cjt(τ)
)

, τ ≥ 0 .

By the semigroup properties (1.1) and (1.3), we have

C ′
t

(

Cjt(τ)
)

= U
(

C(j+1)t(τ)
)

/U
(

Cjt(τ)
)

, j = 0, ..., n− 1 .

Therefore,

(4.8) h′(τ) = enδCt U
(

Cnt(τ)
)

U(τ)
h′

(

Cnt(τ)
)

, τ ≥ 0 .

Calling again on the semigroup properties (1.1) and (1.3), we have for any τ ≥ 0,

lim
n→∞

Cnt(τ) = 0 , lim
n→∞

U
(

Cnt(τ)
)

Cnt(τ)
= U ′(0) = −δC .

By Lemma 3.2-(i) in Hansen (1989),

lim
n→∞

Cnt(τ)

Cnt(1)
= A(τ)δC , τ ≥ 0 .

Moreover, (4.3) implies

lim
n→∞

enδCtCnt(1) = a .

Therefore, by letting n→ ∞ in (4.8), we obtain

h′(τ) = −aδC h
′(0)

A(τ)δC

U(τ)
, τ ≥ 0 .

Since by (1.2) 1/U(τ) = −A′(τ)/A(τ), we have

h(τ) − h(0) =

∫ τ

0
h′(x) dx = ah′(0)

∫ τ

0
δC A

′(x)A(x)δC−1 , τ ≥ 0 ,

which implies (note A(0) = 0)

h(t) = h(0) + ah′(0)A(τ)δC , τ ≥ 0 ,

or φ′(τ)/φ(τ) = h(0) + ah′(0)A(τ)δC . It follows

lnφ(τ) = h(0)τ + ah′(0)

∫ τ

0
A(x)δC dx , τ ≥ 0 .

The representation (4.4) follows by letting b = −h(0) and λ = ah′(0). To show

that φ(τ) of (4.4) is indeed the LST of an infinitely divisible distribution, let

ψ(τ) = b − λA(τ)δC , τ ≥ 0. By Theorem 4.2, Chapter III, Section 4, in Steutel

and van Harn (2004), it is enough to establish that ψ(τ) is completely monotone

on (0,∞). Since φ1(τ) = exp(−λA(τ)δC ) is the LST of a C-stable distribution,
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it is infinitely divisible (van Harn and Steutel, 1993). It follows that the function

ψ1(τ) = − lnφ1(τ) = λA(τ)δC has a completely monotone derivative on (0,∞)

(again by Theorem 4.2 in Steutel and van Harn, 2004, quoted above). Since

ψ′(τ) ≤ 0 and for any n ≥ 2,

(−1)n ψ(n)(τ) = (−1)n−1 (ψ′
1)

(n−1)(τ) , τ > 0 ,

it follows that ψ(τ) is completely monotone on (0,∞).

We note that Theorem 4.1 remains valid if the property of linear backward

regression is replaced by the (stronger) assumption of time-reversibility.

For the family of semigroups (C(θ), θ ∈ [0, 1)) of (3.19), the condition (4.3)

is easily seen to be satisfied (by (3.19)–(3.20)) as C
(θ)
t (1) ∼ θe−θt (t→∞). Ap-

plying Theorem 4.1 to the semigroup C(θ) (θ ∈ [0, 1)), we obtain (via (3.20)) the

LST φ(θ)(τ) of (4.4) to be, in the case θ = 0,

(4.9) φ(0)(τ) = exp

{

−b τ +
λ

2
τ2

}

, τ ≥ 0 ,

for some b > 0 and λ > 0, and in the case 0 < θ < 1,

(4.10) φ(θ)(τ) = e−cτ

(

1 +
θ

θ
τ

)−r

, τ ≥ 0 ,

for some c ≥ 0 and r > 0. We note that if a rv X has LST φ(θ)(τ) given by (4.10),

for 0 < θ < 1, then X
d
= c+ Y , where Y admits a gamma distribution with LST

(4.11) ϕ(θ)(τ) =

(

1 +
θ

θ
τ

)−r

, τ ≥ 0 .

It is a simple exercise to verify that φ(0)(τ) of (4.9) is the LST of a C(0)-

self-decomposable distribution. In this case, the LST φ
(0)
t (τ) in equation (2.21)

is

(4.12) φ
(0)
t (τ) = exp

{

−b (1 − e−t) τ +
λ

2
(1 − e−2t)τ2

}

, τ ≥ 0 .

Assume that (Xn, n ∈ Z) is a stationary C(0)-AR(1) process with marginal

LSTφ(0)(τ). The marginal LST of the innovation sequence (ǫn, n∈Z) of (Xn, n∈Z)

is given by (4.12). Combining (4.5) with (4.9) and (4.12), we obtain the joint LST

of (Xn−1, Xn) to be

g0(τ1, τ2) = exp

{

−b(t1 + τ2) +
λ

2
(τ2

1 + 2 e−tτ1τ2 + τ2
2 )

}

, τ1 ≥ 0, τ2 ≥ 0 .



Autoregressive Sequences 101

Since g0(τ1, τ2) = g0(τ2, τ1), it follows that (Xn−1, Xn)
d
= (Xn, Xn−1). Therefore,

(Xn, n ∈ Z) is time-reversible (and hence, has the property of linear backward

regression).

The case 0 < θ < 1 is slightly more involved. We need a lemma.

Lemma 4.1. Let 0 < θ < 1. A distribution µ on R+ with LST φ(θ)(τ) of

(4.10) is C(θ)-self-decomposable if and only if c = 0 or, equivalently, if and only

if µ is a gamma distribution with LST ϕ(θ)(τ) of (4.11).

Proof: Assume that µ has LST ϕ(θ)(τ) of (4.11). Straightforward calcu-

lations show that for any t > 0 and τ ≥ 0,

(4.13) ϕ
(θ)
t (τ) =

ϕ(θ)(τ)

ϕ(θ)
(

C
(θ)
t (τ)

)

=

(

1 +
θ

θ

(

1 − e−θt
)

τ

)−r

.

Clearly, ϕ
(θ)
t (τ) is the LST of a gamma distribution. Therefore, µ is C(θ)-self-

decomposable. Conversely, assume that µ is C(θ)-self-decomposable with LST

φ(θ)(τ) of (4.10). By Theorem 5.4 in van Harn and Steutel (1993),

(4.14) lnφ(θ)(τ) = −

∫ τ

0

ln f(x)

U (θ)(x)
dx , τ ≥ 0 ,

where f(τ) is the LST of an infinitely divisible distribution on R+. By differen-

tiating both sides of (4.14) and using (3.20), we deduce that for every τ ≥ 0,

− ln f(τ) = U (θ)(τ)
d

dτ
lnφ(θ)(τ) = c θτ2 + (c θ + r θ)τ .

By Theorem 4.2, Chapter III, Section 4, in Steutel and van Harn (2004), the

function

−
d

dτ
ln f(τ) = 2 c θτ + c θ + r θ

must be a completely monotone function on (0,∞). This can only hold if c= 0.

Assume now that (Xn, n ∈ Z) is a stationary C(θ)-AR(1) process with

marginal LST ϕ(θ)(τ) of (4.11). The marginal LST of the innovation sequence

(ǫn, n ∈ Z) of (Xn, n ∈ Z) is given by (4.13). Using (4.5), along with (4.11) and

(4.13), we find the joint LST of (Xn−1, Xn) to be

gθ(τ1, τ2) =

(

1 +
θ

θ
(τ1 + τ2) +

θ2

θ
2 τ1 τ2

)−r

, τ1 ≥ 0 , τ2 ≥ 0 .

Since gθ(τ1, τ2) = gθ(τ2, τ1), it follows that (Xn−1, Xn)
d
= (Xn, Xn−1). Therefore,

(Xn, n ∈ Z) is time-reversible (and hence, has the property of linear backward

regression).
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We summarize our discussion in the following proposition.

Proposition 4.1. Let θ ∈ [0, 1). A stationary C(θ)-AR(1) process with a

C(θ)-self-decomposable marginal distribution has the property of linear backward

regression if and only if its marginal LST is given by (4.9), if θ = 0, or by (4.11),

if 0 < θ < 1.

The stationary C(θ)-AR(1) process with the gamma marginal distribution

with LST (4.11) is equivalent to the gamma model developed by Sim (1990).

Sim makes use of a generalized multiplication based on a conditional compound

Poisson distribution. Sim’s operator is tailored to lead to a stationary gamma

AR(1) process and offers no other stationary solutions. On the other hand, and as

seen in Section 3, the ⊙C(θ)-multiplication leads to a variety of stationary models.

We conclude by noting that the extension of Proposition 4.1 to an arbitrary

semigroup of cgf’s C is an open question. Specifically, what kind of semigroups

will give rise to a C-self-decomposable distribution with LST of the form (4.4)?
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