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Abstract:

• The approximation for the distribution function of a test statistic is extremely impor-
tant in statistics. A distribution-free test for stochastic ordering in the competing risks
model has been proposed by Bagai et al. (1989). Herein, we performed a standard
saddlepoint approximation in the tails for the Bagai statistic under finite sample sizes.
We then compared the saddlepoint approximation with the Bagai approximation to
obtain the exact critical value. The table of the critical values was extended by using
the saddlepoint approximation. Additionally, the orders of errors of a saddlepoint
approximation were derived.
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1. INTRODUCTION

Testing hypotheses is one of the most important challenges in performing

nonparametric statistics. Various nonparametric statistics have been proposed

and discussed over the course of many years. However, the single most chal-

lenging testing problem lies in calculating the exact critical test statistic value

for small data sets. It is also difficult to obtain the exact critical value when

the sample sizes are moderate to large in size. Under these circumstances, we

must estimate the exact critical value with an approximation method. Hence,

considering approximations for evaluating the density or distribution function of

the test statistic remains one of the most important topics in statistics. For the

approximation presented in this study, we used a saddlepoint formula proposed

by Daniels (1954, 1987) and of the type developed by Lugannani and Rice (1980).

The saddlepoint approximation can be obtained for any statistic that admits a

cumulant generating function. Additionally, for small sample sizes, the saddle-

point can generate accurate probabilities in the distribution tails. Saddlepoint

approximations have been used with great success by many authors, and excel-

lent discussions of their applications to a range of distributional problems are

provided by Reid (1988), Jensen (1995), Goutis and Casella (1999), Huzurbazar

(1999), Kolassa (2006) and Butler (2007). Additionally, Easton and Ronchetti

(1986) have discussed saddlepoint approximations by using expansions of the cu-

mulant generating function. For conducting a distribution-free test, Giles (2001)

and Chen and Giles (2008) compared saddlepoint approximations with the limit-

ing distribution of the Anderson–Darling (1952, 1954) and the Sinclair and Spurr

(1988) tests and found that the saddlepoint approximations were better than

both. In nonparametric statistics, researchers are very interested in considering

approximations under finite sample sizes. Froda and van Eeden (2000) proposed

a uniform saddlepoint expansion to the null distribution of the Wilcoxon–Mann–

Whitney test (Gibbons and Chakraborti, 2003). Additionally, Bean et al. (2004)

compared a saddlepoint approximation of the Wilcoxon–Mann–Whitney test with

that of Edgeworth, and determined normal and uniform approximations under

finite sample sizes.

In addition to assessing distributions, nonparametric statistics are used to

test the competing risks model. Various authors have proposed the test statistics

for the case in which there are competing risks and without censoring. For exam-

ple, Bagai et al. (1989) developed distribution-free rank tests for stochastic order-

ing in the two independent competing risks model. Yip and Lam (1992) suggested

a class of weighted log-rank-type statistics, and Neuhaus (1991) constructed the

asymptotically optimal rank tests for q competing risks against stochastic order-

ing without censoring. Hu and Tsai (1999) considered the linear rank tests for

a competing risks model. In this paper, we considered a saddlepoint approxima-

tion to the small size sample distribution of the statistic proposed by Bagai et al.

(1989), and we estimated the exact critical value of the Bagai statistic for large
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sample sizes, also using a saddlepoint approximation. We expect to apply the

saddlepoint approximation to the other statistics for testing stochastic ordering

in the competing risks model. In Section 2, we introduce Bagai’s (1989) statistic,

namely V , and the moment-generating function of the V statistic. In Section 3,

we report on a saddlepoint approximation to the distribution of the V statistic

and compare a saddlepoint approximation with that of Bagai. In addition, we

extend the table of the critical values of the Bagai statistic using the saddlepoint

approximation. In Section 4, we report on the derivation of the orders of the

errors of a saddlepoint approximation.

2. THE BAGAI STATISTIC

In this section, we introduce a distribution-free test for stochastic ordering

in a two independent competing risks model. We assumed that X and Y are

independent and absolutely continuous random variables. Let X1, ..., Xn and

Y1, ..., Yn be two random samples of independent observations of size n, each of

which has a continuous distribution described as F and G, respectively, denoting

the hypothetical times to failure of the n individuals in the sample under the two

risks. We observed only (T1, δ1), ..., (Tn, δn), where Ti = min(Xi, Yi) denotes the

time to failure and δi = I(Xi > Yi) indicates the cause of failure of the i-th unit.

On the basis of these data types, we were interested in testing the hypothesis:

H0 : F (x) = G(x) against H1 : F (x) 6 G(x) .

Subsequently, Bagai et al. (1989) proposed a test statistic, namely V , as

V = 2
n

∑

i=1

(2n−1−Ri)δi −
3 n(n−1)

2
.

Here, Ri denotes the rank of Ti among T1, ..., Tn. In addition, the moment-gen-

erating function of the V statistic is given by Bagai et al. (1989) as follows:

M∗(s) = 2−n exp

(

−3 n(n−1)s

2

) n+1
∏

j=2

{

1− exp
(

2s(2n− j)
)

}

.

However, there is a typo in the M∗(s) formula given by Bagai et al. (1989), and

we should use the moment-generating function M(s) as follows:

M(s) = 2−n exp

(

−3 n(n−1)s

2

) n+1
∏

j=2

{

1+ exp
(

2s(2n− j)
)

}

.

By using the moment-generating function M(s), the mean and variance of the V

statistic are respectively given by

E(V ) = 0 and var(V ) =
n(n−1) (14n −13)

6

under the null hypothesis. We consider a saddlepoint approximation by using the

moment-generating function M(s) in the next section.
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3. SADDLEPOINT APPROXIMATION

3.1. Saddlepoint approximation to Bagai statistic

In this section, we considered a saddlepoint approximation (Daniels, 1954,

1987) to the distribution of the V statistic. In the previous section, the moment-

generating function M(s) was given by

M(s) = 2−n exp

(

−3 n(n−1)s

2

) n+1
∏

j=2

{

1+ exp
(

2s(2n− j)
)

}

.

The cumulant generating function of the V statistic, namely κ(s), is

κ(s) = log
[

M(s)
]

= −n log 2 −
3 n(n−1)s

2
+

n+1
∑

j=2

log
{

1+ exp
(

2s(2n− j)
)

}

.

To obtain the saddlepoint approximation, we evaluated the first two derivatives

of the cumulant generating function as

κ(1)(s) = −
3 n(n−1)

2
+

n+1
∑

j=2

2(2n− j) exp
(

2s(2n− j)
)

1 + exp
(

2s(2n− j)
)

and

κ(2)(s) =
n+1
∑

j=2

4(j − 2n)2 exp
(

2s(j + 2n)
)

(

exp(2 j s) + exp(4ns)
)2 ,

where κ(i)(·) denotes the i-th derivative. A highly lucid account of the generalized

Lugannani and Rice formula for nonnormal distributions was suggested by Wood

et al. (1993). Then, to determine the saddlepoint approximation to Pr(V ≥ v),

we solved the saddlepoint equation, κ(1)(s) = v, and used the unique solution

(s = ŝ) to calculate

ŵ =
√

2
(

ŝ v −κ(ŝ)
)

sgn(ŝ) =
√

2
(

ŝκ(1)(ŝ)−κ(ŝ)
)

sgn(ŝ) and û = ŝ
√

κ(2)(ŝ) ,

given by Wood et al., where sgn(ŝ) = ±1, 0 if ŝ is positive, negative, or zero.

The saddlepoint approximation to the cumulative distribution function of the

V statistic is

Pr(V ≥ v) ≈ 1 − Φ(ŵ) + φ(ŵ)

{

1

û
−

1

ŵ

}

,

where φ(·) is the standard normal density function and Φ(·) is the corresponding

cumulative distribution function.
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3.2. Numerical results

In this section, we report on the evaluation of the tail probability using the

saddlepoint approximation. For this test, we listed the exact probability of the

V statistic derived by Bagai et al., namely EP , the Bagai’s approximation, namely

AB, and a saddlepoint approximation, namely AS , given in Tables 1 and 2.

Table 1-1: Numerical results for 1% significance level.

n v EP AB AS

7 51 0.0156 0.0183 0.016256
8 68 0.0117 0.0126 0.010587
9 84 0.0117 0.0113 0.009430

10 99 0.0107 0.0117 0.010029
11 115 0.0102 0.0118 0.010393
12 134 0.0105 0.0186 0.009538
13 152 0.0102 0.0109 0.009701
14 169 0.0106 0.0116 0.010537
15 191 0.0103 0.0107 0.009674
16 210 0.0105 0.0111 0.010161
17 232 0.0100 0.0181 0.009895
18 255 0.0100 0.0105 0.009595
19 275 0.0104 0.0110 0.010205
20 298 0.0104 0.0109 0.010201

Table 1-2: Difference between EP and approximations.

n |EP − AB | |EP − AS |

7 0.0027 0.000656

8 0.0009 0.001113
9 0.0004 0.002270
10 0.0010 0.000671

11 0.0016 0.000193

12 0.0081 0.000962

13 0.0007 0.000499

14 0.0010 0.000063

15 0.0004 0.000626
16 0.0006 0.000339

17 0.0081 0.000105

18 0.0005 0.000405

19 0.0006 0.000195

20 0.0005 0.000199
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The numeric results for 1% and 5% significance levels are listed in Tables 1-1 and

2-1, respectively. The difference between the exact probability of the V statistic

and the approximations is given in Tables 1-2 and 2-2, respectively, where the

best result is in bold. Note that v and n denote the exact critical value of the

Bagai statistic and the sample size, respectively. We treated the cases 7 ≤ n ≤ 20

at a 1% significance level and 5 ≤ n ≤ 20 at 5% significance, which represent the

same cases as presented in Bagai et al. (1989).

Table 2-1: Numerical results for 5% significance level.

n v EP AB AS

5 22 0.0625 0.0522 0.057870
6 31 0.0625 0.0499 0.051279
7 41 0.0547 0.0463 0.047075
8 50 0.0508 0.0499 0.050831
9 62 0.0508 0.0461 0.046546

10 73 0.0508 0.0472 0.047642
11 83 0.0527 0.0513 0.051902
12 98 0.0500 0.0467 0.046961
13 108 0.0528 0.0516 0.052143
14 123 0.0511 0.0494 0.049753
15 137 0.0516 0.0495 0.049831
16 150 0.0523 0.0512 0.051650
17 166 0.0519 0.0500 0.050448
18 181 0.0516 0.0506 0.050878
19 197 0.0516 0.0505 0.050748
20 214 0.0511 0.0499 0.050178

Table 2-2: Difference between EP and approximations.

n |EP − AB | |EP − AS |

5 0.0103 0.004630

6 0.0126 0.011221

7 0.0084 0.007625

8 0.0009 0.000031

9 0.0047 0.004254

10 0.0036 0.003158

11 0.0014 0.000798

12 0.0033 0.003039

13 0.0012 0.000657

14 0.0017 0.001347

15 0.0021 0.001769

16 0.0011 0.000650

17 0.0019 0.001452

18 0.0010 0.000722

19 0.0011 0.000852

20 0.0012 0.000922
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The results of Table 1 revealed that the saddlepoint approximation to the

distribution of the V statistic is more suitable than the Bagai’s approximation

at a 1% significance level. For the cases of n = 8, 9 and 15, Bagai’s approxi-

mation is better than the saddlepoint approximation. However, the saddlepoint

approximation is conservative for the exact probability of the V statistic for n = 8

and 15. In addition, Table 2 indicates that the saddlepoint approximation to the

distribution of the V statistic is better than the Bagai’s approximation at the

5% significance level. We then estimated the exact critical values of the Bagai

statistic using the approximation AS for large sample sizes because it is difficult

to derive an exact critical value otherwise.

Table 3: Critical values of the V statistic by saddlepoint approximation.

n v Probability v Probability

21 323 0.00991 231 0.05002
22 347 0.00997 248 0.05017
23 372 0.00994 266 0.04992
24 397 0.01001 284 0.04994
25 423 0.01000 302 0.05018
30 561 0.00997 400 0.04999
35 711 0.00998 506 0.05012
40 872 0.01001 621 0.04993
45 1044 0.01001 743 0.04993
50 1226 0.01002 872 0.04994

4. ORDERS OF ERRORS OF SADDLEPOINT APPROXIMATION

In this section, we consider the error orders of a saddlepoint approximation.

From Section 3, we developed a standardized cumulant generating function of the

V statistic as follows:

κ∗(s) = −n log 2 −
3 n(n−1)s

2 σ
+

n+1
∑

j=2

log
{

1+ exp
(

2s(2n− j)/σ
)

}

,

where

σ2 =
n(n−1) (14n−13)

6
.

Then, we obtained the first four derivatives of the standardized cumulant gener-

ating as follows:

κ
(1)
∗ (s) = −

3 n(n−1)

2 σ
+

n+1
∑

j=2

Cj exp(s Cj)

1+ exp(s Cj)
,
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κ
(2)
∗ (s) =

n+1
∑

j=2

C2
j exp(s Cj)

{

1+ exp(s Cj)
}2 ,

κ
(3)
∗ (s) =

n+1
∑

j=2

C3
j exp(s Cj)

{

1− exp(s Cj)
}

{

1+ exp(s Cj)
}3

and

κ
(4)
∗ (s) =

n+1
∑

j=2

C4
j exp(s Cj)

{

1− 4 exp(s Cj) + exp(2s Cj)
}

{

1+ exp(s Cj)
}4 ,

where

Cj =
2 (2n− j)

σ
.

The standardized skewness and standardized kurtosis was then given by

standardized skewness :
κ

(3)
∗ (0)

κ
(2)
∗ (0)

3/2
= 0

standardized kurtosis :
κ

(4)
∗ (0)

κ
(2)
∗ (0)

2 =
−12

(

186 n3 − 489 n2 + 421n − 119
)

5 n(n−1) (14n −13)2
.(4.1)

Bagai et al. noted that the normal approximation was appropriate for n > 20 but

that the difference of the standardized kurtosis from zero is (4.1).

We next derived the orders of the errors of the V statistic. By using an

expansion for the standardized cumulant generating function, we approximated

the κ∗(s) as follows:

κ∗(s) ≈ −n log 2 −
3 n(n−1)s

2 σ
+

n+1
∑

j=2

{

log 2 +
2s(2n− j)

2 σ
+

4s2 (2n− j)2

8 σ2

−
16s4(2n− j)4

192 σ4
+

64s6(2n− j)6

2880 σ6
+ · · ·

}

≈
ns2(n−1)(14n−13)

12 σ2
−

ns4(n−1)(186n3− 489 n2 + 421n −119)

360 σ4

+
ns6(n−1)(76n5− 3207n4 + 5256n3− 494n2 +1637n− 253)

1890 σ6

≈
s2

2
−

1

n

{

s4
(

186 n3− 489 n2 + 421n−119
)

10(n−1)(14n−13)2

}

+
1

n2

{

4s6
(

762 n5− 3207n4 + 5256n3− 4194n2 +1637n− 253
)

35(n−1)2 (14n−13)3

}

+ O(n−3) .
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We then approximated the first four derivatives of the standardized cumulant

generating function by

κ
(1)
∗ (s) ≈ s −

1

n

{

2s3
(

186 n3− 489 n2 + 421n−119
)

5(n−1)(14n−13)2

}

+
1

n2

{

24s5
(

762 n5− 3207n4 + 5256n3− 4194n2 +1637n− 253
)

35(n−1)2 (14n−13)3

}

+ O(n−3) ,

κ
(2)
∗ (s) ≈ 1 −

1

n

{

6s2
(

186 n3− 489 n2 + 421n−119
)

5(n−1)(14n−13)2

}

+
1

n2

{

24s4
(

762 n5− 3207n4 + 5256n3− 4194n2 + 1637n− 253
)

7(n−1)2 (14n−13)3

}

+ O(n−3) ,

κ
(3)
∗ (s) ≈ −

1

n

{

12s
(

186 n3− 489 n2 + 421n−119
)

5(n−1)(14n−13)2

}

+
1

n2

{

96s3
(

762 n5− 3207n4 + 5256n3− 4194n2 +1637n− 253
)

7(n−1)2 (14n−13)3

}

+ O(n−3)

and

κ
(4)
∗ (s) ≈ −

1

n

{

12
(

186 n3− 489 n2 + 421n−119
)

5(n−1)(14n−13)2

}

+
1

n2

{

288s2
(

762 n5− 3207n4 + 5256n3− 4194n2 +1637n− 253
)

7(n−1)2 (14n−13)3

}

+ O(n−3) .

By expanding for κ∗(s) in a Taylor series, we then determined

0 = κ∗(0) = κ∗(s) − sκ
(1)
∗ (s) +

s2κ
(2)
∗ (s)

2
−

s3κ
(3)
∗ (s)

6
+

s4κ
(4)
∗ (s)

24
+ · · · .

Then, substituting to the w, we determined

w2 = 2
{

sκ
(1)
∗ (s) − κ∗(s)

}

= 2

{

sκ
(1)
∗ (s) − sκ

(1)
∗ (s) +

s2κ
(2)
∗ (s)

2
−

s3κ
(3)
∗ (s)

6
+

s4κ
(4)
∗ (s)

24
+ · · ·

}

= s2κ
(2)
∗ (s)

{

1−
sκ

(3)
∗ (s)

3 κ
(2)
∗ (s)

+
s2κ

(4)
∗ (s)

12 κ
(2)
∗ (s)

+ · · ·

}

.
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Therefore, we obtained

1

w
=

1

s

√

κ
(2)
∗ (s)

{

1 −
sκ

(3)
∗ (s)

3κ
(2)
∗ (s)

+
s2κ

(4)
∗ (s)

12 κ
(2)
∗ (s)

+ · · ·

}

−
1

2

=
1

s

√

κ
(2)
∗ (s)

{

1 +
sκ

(3)
∗ (s)

6κ
(2)
∗ (s)

−
s2κ

(4)
∗ (s)

24 κ
(2)
∗ (s)

+
s2

(

κ
(3)
∗ (s)

)2

24
(

κ
(2)
∗ (s)

)2
+ · · ·

}

=
1

s

√

κ
(2)
∗ (s)

+ O(n−1)

by applying the binomial theorem and substituting the i-th standardized cumu-

lant. To determine the saddlepoint approximation to Pr
(

(V − E(V ))/σ ≥ v∗
)

,

we solved the saddlepoint equation, κ
(1)
∗ (s) = v∗, and used the unique solution

(s = ŝ) to calculate

ŵ =
√

2
(

ŝ v∗ − κ∗(ŝ)
)

sgn(ŝ) and û = ŝ

√

κ
(2)
∗ (ŝ) ,

where sgn(ŝ) = ±1, 0 if ŝ is positive, negative, or zero. Therefore, we determined

Pr

(

V − E(V )

σ
≥ v∗

)

≈ 1− Φ(ŵ) + φ(ŵ)

{

1

û
−

1

ŵ
+ O(n−1)

}

= 1− Φ(ŵ) + φ(ŵ)

(

1

û
−

1

ŵ

)

+ O(n−1) .

Note that φ(ŵ) ≈ Constant + O(n−1). Typically, an approximation of the above

form has the relative error O(n−3/2). However, the exact distribution of the

standardized Bagai statistic is discrete, so the discrete distribution of the stan-

dardized Bagai statistic may be approximated at its support point by a smooth

function that behaves similarly to a distribution function. Therefore, Φ(r∗(w))

approximates the distribution function of the Bagai statistic with a relative er-

ror of O(n−1) in a normal deviation region in which r∗(w) = w + w−1 log(u/w);

Barndorff-Nielsen and Cox (1994). The use of saddlepoint approximation as a

technique for smoothing discrete distributions is discussed by Davison and Wang

(2002).

5. CONCLUDING REMARKS

In this paper, we considered the saddlepoint approximation to the distri-

bution of the Bagai statistic V (1989). The standard saddlepoint formula pro-

vided an accurate approximation to the distribution of the V statistic. From the

numerical results, we determined that the approximation precision of the saddle-

point approximation is superior to the Bagai’s approximation using finite sample
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sizes. The orders of the errors of a saddlepoint approximation were also derived.

In future work, we intend to 1) compare the orders of the errors of the higher-order

saddlepoint approximation, Bagai’s approximation, and other approximations,

2) be able to apply the saddlepoint approximation to other statistics for testing

the independent competing risks model, and 3) consider the saddlepoint approxi-

mation to the distribution of the V statistic for cases of dependent competing risks

models, e.g. Aly, Kochar and McKeague (1994), Dykstra, Kochar and Robertson

(1995).

ACKNOWLEDGMENTS

The author would like to give his thank to the referee and the editor for their

valuable comments and suggestions. It is a pleasure to acknowledge conversations

with Professor T. Yanagimoto.

REFERENCES

[1] Aly, E.A.A.; Kochar, S.C. and McKeague, L.W. (1994). Some tests for
comparing cumulative incidence functions and cause-specific hazard rates, Journal

of the American Statistical Association, 89, 994–999.

[2] Anderson, T.W. and Darling, D.A. (1952). Asymptotic theory of certain
goodness-of-fit criteria based on stochastic processes, Annals of Mathematical

Statistics, 23, 193–212.

[3] Anderson, T.W. and Darling, D.A. (1954). A test of goodness of fit, Journal

of the American Statistical Association, 49, 765–769.
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