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Abstract:

• To forecast future values of a time series is one of the main goals in times series anal-
ysis. Many forecasting methods have been developed and its performance evaluated.
In order to make a selection among an avalanche of such emerging methods they have
to be compared in a kind of forecasting competition. One of these competitions is the
M3 competition with its 3003 time series. The competition results in Makridakis and
Hibon (2000) paper are frequently used as a benchmark in comparative studies.
The Boot.EXPOS approach developed by the authors, combines the use of exponen-
tial smoothing methods with the bootstrap methodology to forecast time series. The
idea is to join these two approaches (bootstrap and exponential smoothing) and to
construct a computational algorithm to obtain forecasts. It works in an automatic
way and can be summarized as follows: (i) choose an exponential smoothing model,
among several proposed using the mean squared error, and obtain the model compo-
nents; (ii) fit an AR to the residuals of the adjusted model; the order of the AR is
selected by AIC criterion; (iii) center the new residuals obtained in previous step and
resample; (iv) obtain a bootstrapped replica of the time series according to the AR
model and exponential smoothing components found in first step; (v) forecast future
values according to model in (i); (vi) compute the point forecast as the mean or as
the median of the predicted values. The performance of the procedure here proposed
is evaluated by comparing it with other procedures presented in the M3 competition.
Some accuracy measures are used for that comparison. All computational work is done
using the R2.8.1 software (R Development Core Team, 2008).
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1. INTRODUCTION

In our days it is well known the importance of time series studies. These

studies provide indicators about a country economy, the unemployment rate, the

export and import product rates, etc. A time series is a set of observations usually

ordered in equally spaced intervals. The first step in the analysis of any time

series is the description of the historic series. It includes the graphical rep-

resentation of the data. When a time series is plotted, common patterns are

frequently found. These patterns might be explained by many possible cause-

and-effect relationships. Common components are the trend, seasonal effect,

cyclic changes and randomness. The more interesting and ambitious task is to

forecast future values of a series on the basis of its recorded past, and more

specifically to calculate forecast intervals. Classical procedures to obtain forecast

intervals assume that the distribution of the error process is known. Bootstrap

approaches have been proposed to compute distribution free forecast intervals.

The authors here propose a procedure (Boot.EXPOS) to forecast time series that

is inspired on sieve bootstrap approach (Bühlmann, 1997). The Boot.EXPOS

procedure starts by selecting the best exponential smoothing method accord-

ing to the characteristics that a times series reveals, among a set of methods.

After adjusting the best model, our attention is drawn to the residual part.

The bootstrap is then used after an autoregressive adjustment, selected by AIC

criterion. The time series is then reconstructed, adding the initial components (if

they exist) to the bootstrapped residuals, see Cordeiro and Neves (2007a, 2007b)

for more details. Forecasts are finally obtained using the model initially selected.

The procedure runs automatically, so its possible to test it on large data sets.

Surely there are advantages and disadvantages in this automatic process, but

for now we are not discussing this. The issue here is to discuss measures of its

performance, results and progress achieved. The computational work was done

using the R software. Some of the R packages and functions were used, but new

functions needed to be constructed.

2. EXPONENTIAL SMOOTHING METHODS

Exponential smoothing (EXPOS) refers to a set of forecasting methods,

several of which are widely used. The EXPOS is a procedure that continually

updates a forecast emphasizing the most recent experience, that is, recent ob-

servations are given more weight than the older observations. Single exponential

smoothing, Holt’s linear trend, Holt–Winters seasonal smoothing with either ad-

ditive or multiplicative seasonality are some examples of EXPOS methods, see

DeLurgio (1998) for more details. The forecasting performance of exponential



138 Clara Cordeiro and M. Manuela Neves

smoothing methods has been addressed by several authors. A very good reviewing

of the past 25 years of time series forecasting is given by De Gooijer and Hynd-

man (2006). These methods are relatively simple but reveal robust approaches to

forecasting and are accurate in model identification. The classical Box–Jenkins

ARIMA models require the user to identify an appropriate model and to use at

least 50 observations to have a good chance of success (Chatfield, 1978).

Table 1 shows four EXPOS methods addressed here, where data with or

without trend and/or with or without seasonal components are considered. The

goal is to choose the EXPOS model using the mean squared error criterion and

then separate the pattern (trend or/and seasonality) components from the error

term.

Table 1: The EXPOS methods considered.

Classification Method

1 Single exponential smoothing

2 Holt’s linear trend

3 Holt–Winters seasonal smoothing with additive seasonality

4 Holt–Winters seasonal smoothing with multiplicative seasonality

2.1. Holt–Winters method

The Holt–Winters forecasting method is applied whenever the data behav-

ior is trendy and is seasonally. Relatively to the seasonal factor it can be additive

or multiplicative, depending on the oscillatory movement along the time period.

The additive Holt–Winters (classification 3 in Table 1) has the following recursive

equations to estimate the trend and the seasonal factor at time t

Tt = α(Xt − St−s) + (1 − α) (Tt−1 + bt−1)

bt = β (Tt − Tt−1) + (1 − β)bt−1

St = γ (Xt − Tt) + (1 − γ)St−s

with α, β, γ ∈ [0, 1] and

Tt smoothed value at end of period t after adjusting for seasonality

Xt value of actual demand at end of period t

St−s smoothed seasonal index, s periods ago

bt smoothed value of trend through period t
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α smoothing constant used for Tt

β smoothing constant used to calculate the trend (bt)

γ smoothing constant used for calculate the seasonal index in period t.

The prediction equation is

(2.1) X̂t(h) = Tt + h×bt + St+h−rs

where h = 1, 2, 3, ... is the forecast horizon and r = 1 if 1 ≤ h ≤ s, r = 2 if

s < h ≤ 2s, etc.

The multiplicative Holt–Winters (classification 4 in Table 1) has as recursive

equations

Tt = α(Xt/St−s) + (1 − α) (Tt−1 + bt−1)

bt = β (Tt − Tt−1) + (1 − β)bt−1

St = γ (Xt/Tt) + (1 − γ)St−s

and prediction equation

(2.2) X̂t(h) = (Tt + h×bt)×St+h−rs ,

where the parameters are defined above.

The exponential smoothing parameters (α, β, γ) are estimated by mini-

mizing the sum of squared errors and are restricted to values in (0,1). Simple

exponential smoothing and Holt’s method (classification 1 and 2 in Table 1)

are derived from the above equations considering the corresponding exponential

smoothing parameters (β, γ) to be set to zero.

3. ABOUT BOOTSTRAP

The bootstrap resampling technique (Efron, 1979) is a very popular method-

ology in independent data because of its simplicity and nice properties. It is a

computer-intensive method that presents solutions in situations where the tradi-

tional methods fail. Efron’s bootstrap classical approach has revealed inefficient

in the context of dependent data, such as in the case of time series, where the

dependence data arrangement should be kept during the resampling scheme. But

for dependent data the generating process is often not fully specified. Then there

exists no unique way for resampling.

A great development in the resampling methods area for dependent data

has been observed, see Lahiri (2003). The majority of those methods suggests

the use of blocks, in order to keep the dependence structure. Different versions
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of blocking differ in the way as blocks are constructed. The most well known

versions are: Nonoverlapping Block Bootstrap (Carlstein, 1992); Moving Block

Bootstrap (Künsch, 1989); Circular Block Bootstrap (Politis and Romano, 1992)

and Stationary Block Bootstrap (Politis and Romano, 1994). For a large class of

stationary processes, Bühlmann (1997) presents the sieve bootstrap method based

on a sieve of autoregressive processes of increasing order. Recently Alonso et al.

(2002) extended the sieve approach in order to obtain prediction intervals.

In Cordeiro and Neves (2006) several bootstrap methodologies for dependent

data were compared in constructing forecast intervals and the sieve bootstrap

has revealed as a good compromise for obtaining forecast intervals.

3.1. Particular approach: sieve bootstrap

In 1997, Bühlmann proposed a bootstrap scheme called sieve bootstrap.

This method is based on the idea of fitting parametric models first and after-

wards resampling from the residuals. However the model is chosen adaptively

rather than considering a pre-fixed model. This approach is different from other

bootstrap methods, the sample bootstrap is (conditionally) stationary and does

not present structure of dependence. Another different feature is that the sieve

bootstrap sample is not a subsample from the original data, as in other methods.

Given a sample X1, ..., Xn, from a stationary process, select the order p = p(n)

of an autoregressive approximation by AIC criterion. The autoregressive coeffi-

cients are Yule–Walker estimates. The AR(p) model is used to filter the residuals

series. The residuals are then centered and the empirical cumulative distribution

function of these residuals is obtained. From this distribution we get an i.i.d.

resample of the centered residuals. Use the AR for obtaining a new series X∗

t

by recursion. Given X∗

1 , ..., X∗

T
compute the estimation of the autoregressive

coefficients and then obtain future bootstrap observations by recursion from the

new series.

3.2. Boot.EXPOS procedure

Here a different approach is proposed: first fit an EXPOS model to the data

and then to proceed like the above procedure over the residuals — Boot.EXPOS

(Cordeiro and Neves, 2008). The Boot.EXPOS procedure starts by selecting

the best forecasting method, section 2. The seasonality and trend components

(if they exist) are removed from the initial series and only added at the end to

reconstruct the series. In between, the procedures go on like the sieve bootstrap

approach. This general steps are described in Table 2, where it is also established

a comparison between the previous and the new approach.
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Table 2: The previous and the new approach.

Sieve bootstrap Boot.EXPOS

Step 0: Select the best EXPOS method;
components are removed and the
residuals obtained;

Step 1: Adjust an autoregressive model
with increasing order p using AIC
criterion;

Step 1: Adjust an autoregressive model
with increasing order p using AIC
criterion;

Step 2: Obtain the residuals; Step 2: Obtain the residuals;

For B replicates: For B replicates:

Step 3: Resample the centered residuals; Step 3: Resample the centered residuals;

Step 4: Use AR for obtaining a new series
by recursion;

Step 4: Use AR for obtaining a new series
by recursion;

Step 5: Fit AR(p) to the new series; Step 5: Add the components in Step 0 to
the new series; fit EXPOS method
(same type as in Step 0);

Step 6: Obtain the predicted values from
the new series using the previous
AR(p) fit.

Step 6: Obtain the predicted values from
the new series using the previous
EXPOS fit.

3.2.1. Dealing with some statistical issues

The initial step in the Boot.EXPOS procedure is to fit an EXPOS method

selected by MSE, section 2. Then the random part is separated from the other

patterns, such as trend or/and seasonality (these patterns are added at the end).

Next, a test on the stationarity of the random part is performed, before the AR

adjustment. If the stationarity is not accepted, transformation to the data is

required.

Statistical tests used to study stationarity and data transformations:

• Test for a unit root in a time series when the model under considera-

tion in the null hypothesis does not present autocorrelation in the error

term. In such case, simple version of the Dickey–Fuller test is the most

appropriate (Halkos and Kevork, 2005).

• Box–Cox transformations (Box and Cox, 1964) can impose stability on

data variance stability and can make seasonal effect additive. Trans-

formation is used whenever data exhibit multiplicative seasonality, i.e.,
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when EXPOS model choice is 4 according to Table 1. Although the use

of these transformations are not worthwhile in some cases, for exam-

ple in economic data (Nelson and Granger, 1979), there can be some

advantages in using it. Computational work with λ = 0, −1 ≤ λ ≤ 1,

0 ≤ λ ≤ 1, 0 ≤ λ ≤ 0.5, 0 ≤ λ ≤ 0.9 and 0 ≤ λ ≤ 0.99, was performed

and it has revealed a good option when 0 ≤ λ ≤ 1.

• Differencing can transform a non-stationary series to a stationary se-

ries. The KPSS (Kwiatkowski et al., 1992) procedure tests for the null

hypothesis that a time series has a stationary root against a unit-root.

Boot.EXPOS application makes all these procedures whenever the non-

stationarity is detected. But if the data goes over to the above processes and

the presence of the non-stationarity is still detected in the data, the best EXPOS

method is used to obtain forecast without bootstrapping.

4. FORECAST ACCURACY MEASURES

To evaluate the performance of Boot.EXPOS procedure some accuracy

measures are used. In M3 competition some of those measures are calculated.

Concerning this subject it is also interesting to read the article proposed by

Hyndman and Koehler (2006).

Let Xt denote the observation at time t and X̂t the forecast of Xt. The fore-

cast error is defined by et = Xt − X̂t. The forecasts are computed for a hold-out

period. Thus the out-of-sample forecasts X̂n(1), ..., X̂n(h) are computed based on

the data from time t = 1, ..., n. Accuracy measures are then computed in order

to compare our results with those presented in Makridakis and Hibon (2000) in

http://www.forecastingprinciples.com/m3-competition.html. The following ac-

curacy measures are here considered:

Table 3: Two accuracy measures.

Acronyms Name Definition

sMAPE Symmetric Mean Absolute mean

(

200
|et|

Xt +X̂t

)

Percentage Error

RMSE Root Mean Squared Error
√

mean(e2
t
)
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5. A COMPETITIVE EXAMPLE

In this section, the performance and evaluation of the Boot.EXPOS proce-

dure is analyzed. A 3003 time series data — M3 Competition — is used in this

analysis. This huge data set has been used by many researchers as a powerful

tool to test new forecasting methods and this is what we shall present next.

5.1. The competing data

The M3 Competition data set involves 3003 time series selected on a quota

basis of 6 different types of series: micro, industry, finance, demographic and

other; and 4 different time intervals between successive observations: yearly,

quarterly, monthly and other. The historical values of each series are at least

14 observations for yearly data, 16 for quarterly data, 48 for monthly data and

60 observations for other data. The time horizons of forecasting are 6 periods for

yearly data, 8 periods for quarterly and other data, and 18 periods for monthly

data. Table 4 shows the number of series in each category and Figure 1 shows

the plot of examples of some types.

Table 4: The 3003 time series distribution.

Period
Type of times series data

Total
Demographic Finance Industry Macro Micro OTHER

Monthly 111 145 334 312 474 52 1428
OTHER 0 29 0 0 4 141 174
Quarterly 57 76 83 336 204 0 756
Yearly 245 58 102 83 146 11 645

Total 413 308 519 731 828 204 3003

5.2. Some tools use in competition

An automatic procedure to analyze each time series is necessary as there is

a large set of time series. All the intensive computational work is performed using

R 2.8.1 software (RDevelopmentCoreTeam, 2008). Packages such as car, FitAR,

forecast, Mcomp, tseries, among others, are widely used in the implementation

of the new procedures in R language: best.EXPOS() to select the best EXPOS

method and boot.EXPOS() a procedure using bootstrap and EXPOS.
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Figure 1: M3 competition category: monthly (a), quarterly (b),
yearly (c) and “other” (d).

5.3. EXPOS vs Boot.EXPOS

All time series considered are strictly positive. For each category, different

forecasting periods are considered: 6 for yearly, 8 for quarterly and“other”, 18 for

monthly. For the M3 competition a comparison between the forecasts produced

by any of the four EXPOS methods and the forecast produced by Boot.EXPOS

procedure is showed in Figure 2. Symmetric mean absolute percentage error is

one of the accuracy measures used in this study. It can be seen that for the

time period interval yearly and Other the resampling technique is not a favorable

procedure. In the monthly and quarterly cases the scenario is better. It seems

that for time series with components trend and seasonality the Boot.EXPOS

procedure can be a good compromise in forecasting.
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Figure 2: EXPOS and Boot.EXPOS comparison using M3 competition data.

5.4. Boot.EXPOS vs six competition methods

Each M3 competition series was classified according to Table 1, using func-

tion best.EXPOS(). This function selects the model that presents the minimum

MSE. For monthly time series the distribution is showed in Table 5. Here, to il-

lustrate Boot.EXPOS only monthly time series will be considered. For each

series the procedure scheme in Table 2, right, goes from Step 0 to Step 6. One

thousand replications (B = 1000) are carried out and forecasts are obtained for

each replication. Two forecast estimates are obtained: the average and median

of the B forecasted values. Only the average is used here and is based in the 95%

central forecast simulations.

Table 5: Number of monthly time in each method.

Category
Classification

1 2 3 4

Monthly 515 300 345 268
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In these competitions the participating experts are asked to obtain a given

number of forecast values for each data period. Their forecasts are latter com-

pared with the actual values and the accuracy of such forecasts is calculated.

Makridakis and Hibon (2000) lists 24 methods of forecasting used in the M3

competition. Naive2, Box–Jenkins automatic, ForecastPro, THETA, RBH and

ForecastX are the six methods that present the best performance in M competi-

tion (Makridakis et al., 1982) and M3 competition (Makridakis and Hibon, 2000).

These well behaved 6 methods (Hyndman et al., 2002) are used in comparison

to our approach. For the monthly case the sMAPE and RMSE are present in

Tables 6 and 7, respectively.

Table 6: Average symmetric MAPE: 1428 monthly series.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 15.0 13.5 15.7 17.0 14.9 14.4 16.0 15.6 15.9 16.0 16.7 16.0 18.1 18.4 19.3 21.3 19.6 20.7

B-J automatic 12.3 11.7 12.8 14.3 12.7 12.3 13.6 13.0 13.4 13.4 14.5 14.1 16.2 16.9 17.8 19.7 18.1 19.3

ForecastPRO 11.5 10.7 11.8 13.0 11.9 12.0 13.0 12.7 13.0 13.0 13.9 13.3 15.3 15.4 16.4 18.2 16.8 18.3

THETA 11.2 10.7 11.8 12.4 12.2 12.2 13.6 12.7 13.2 13.4 13.5 13.2 15.4 15.3 16.5 17.9 17.0 18.5

RBF 13.7 12.3 13.7 14.3 12.3 12.5 14.6 13.5 14.2 14.5 14.1 14.1 16.1 15.8 17.3 18.3 16.8 17.8

ForecastX 11.6 11.2 12.6 14.0 12.4 12.0 13.0 12.8 13.1 13.4 13.9 14.0 15.8 16.6 17.8 19.4 18.1 18.8

Boot.EXPOS 11.6 11.5 12.0 13.6 13.7 14.2 15.4 14.1 14.4 14.4 14.4 13.6 16.0 15.7 16.9 18.9 18.3 19.7

Table 7: Root mean squared error: 1428 monthly series.

Method
Forecasting horizon Average

1 2 3 4 5 6 8 12 15 18 1–18

Naive2 1144 1367 1466 1643 1363 1201 1453 1329 1766 1673 1448

B-J automatic 864 942 934 1061 1006 1100 1107 1208 1454 1563 1185

ForecastPRO 812 905 913 1068 1032 990 1157 1135 1411 1463 1146

THETA 810 936 1067 1181 1130 979 1170 1138 1445 1487 1168

RBF 984 1636 1468 1850 1503 1000 1355 1197 1764 1651 1459

ForecastX 794 977 920 1087 1008 966 1175 1169 1457 1510 1163

Boot.EXPOS 840 988 1214 1627 1370 1540 1702 1149 1580 1828 1405

In a first look the results have a reasonable classification among the six

methods in study. But if the results are separated into classification 1, 2, 3 and 4

(Table 1) the scenario gets better. Results for the above six methods and for

the Boot.EXPOS procedure are given in Tables 8, 9, 10 and 11, corresponding to

each classification.

The performance of the various methods depends upon the length of the

forecasting horizon. Our method presents sMAPE among the values of the se-

lected methods (Table 6), particularly it has a very good performance when the

time series model classification is 4 (Table 11). When the time series model is the

Holt–Winters additive (classification 3) Table 10 shows a reasonable behavior.

Regarding the other classification (1 and 2) Tables 8 and 9 show poor results.
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It is evident that the procedure is best succeeded when the time series is seasonal

and trendy. For time series in classifications 1 and 2, the authors thought that the

classical EXPOS methods could produce accurate forecasts but in fact a simula-

tion computational study has revealed the opposite. For some of these time series

whenever stationarity was achieved the Boot.EXPOS forecasts were better values.

Table 8: Average symmetric MAPE: 1.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 16.2 16.2 17.9 20.5 18.5 18.4 20.8 20.4 19.2 19.3 20.4 19.4 21.5 22.2 23.5 26.3 22.7 26.0

B-J automatic 12.3 12.9 15.3 16.8 16.3 16.3 17.4 18.0 18.3 17.0 18.4 17.1 20.4 20.5 22.6 23.4 21.5 24.7

ForecastPRO 12.1 12.4 14.5 16.1 15.3 15.9 16.6 17.8 17.2 16.5 17.8 16.4 20.0 19.8 21.7 23.0 20.7 23.8

THETA 12.0 12.8 15.0 15.9 15.8 15.8 17.7 17.9 16.8 16.5 17.3 16.1 19.9 19.6 21.3 22.6 19.9 23.5

RBF 14.9 14.8 16.8 18.3 16.2 16.8 18.7 18.7 17.2 17.3 17.6 17.0 20.4 20.0 22.3 23.5 20.4 22.8

ForecastX 11.1 12.9 14.3 16.2 15.3 15.9 16.6 17.7 16.6 16.4 17.2 16.5 19.4 19.6 21.9 23.2 20.7 23.3

Boot.EXPOS 14.8 14.8 15.5 17.6 16.5 15.9 17.2 17.2 16.8 17.0 19.2 17.4 20.1 21.2 21.7 24.4 21.8 24.4

Table 9: Average symmetric MAPE: 2.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 1.4 2.0 2.7 3.8 3.9 4.3 4.9 5.2 5.4 5.9 6.5 7.2 7.7 7.6 8.6 9.1 9.5 10.1

B-J automatic 1.3 1.7 2.3 3.4 3.5 3.7 4.3 4.6 4.7 5.2 5.6 6.2 6.6 6.6 7.5 8.2 8.5 9.0

ForecastPRO 1.3 1.7 2.1 3.2 3.2 3.6 4.0 4.4 4.5 5.0 5.6 5.9 6.5 6.3 7.5 8.1 8.6 9.3

THETA 1.3 1.7 2.3 3.3 3.3 3.6 4.2 4.4 4.6 5.1 5.8 6.3 6.7 6.7 7.8 8.2 8.6 9.2

RBF 3.0 3.3 3.7 4.3 3.9 4.1 4.7 4.9 4.8 5.4 6.0 6.2 6.6 6.4 7.3 7.6 7.7 8.3

ForecastX 1.3 1.7 2.3 3.4 3.5 3.8 4.5 4.8 5.0 5.5 6.0 6.6 7.1 7.2 8.2 8.8 9.3 9.9

Boot.EXPOS 4.6 5.0 5.8 6.9 6.2 7.7 7.6 7.8 8.3 7.6 8.3 9.2 10.6 10.5 12.0 11.7 11.6 12.3

Table 10: Average symmetric MAPE: 3.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 12.8 13.3 13.9 16.0 13.7 12.7 14.8 13.8 15.4 15.7 16.7 14.0 16.8 15.7 17.6 17.3 17.4 18.3

B-J automatic 11.0 11.4 10.5 12.6 11.4 10.7 12.3 11.6 13.2 12.7 13.8 12.7 14.3 14.1 15.7 15.8 15.2 16.2

ForecastPRO 10.5 10.6 10.4 12.4 11.0 10.7 11.9 11.3 13.3 12.9 13.7 12.0 13.6 13.4 14.8 15.6 14.8 15.9

THETA 10.5 10.6 10.7 12.2 11.6 11.0 12.5 11.4 14.1 12.7 14.1 12.2 13.6 13.3 15.0 15.2 15.3 16.7

RBF 12.8 12.5 12.3 13.5 11.1 11.2 14.3 12.3 14.7 14.8 15.3 13.6 16.1 15.1 16.6 17.0 16.1 17.1

ForecastX 10.7 10.9 10.4 12.7 11.4 10.4 12.3 11.6 13.2 12.9 14.3 12.9 14.5 14.0 15.9 15.6 16.3 16.7

Boot.EXPOS 9.5 10.3 10.9 12.8 14.6 15.4 17.9 15.7 16.4 13.6 13.4 12.0 13.9 12.2 15.5 16.8 17.7 19.2

Table 11: Average symmetric MAPE: 4.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 23.7 18.1 23.0 22.8 19.3 18.5 19.6 19.3 19.7 19.4 19.8 20.1 22.5 24.0 23.7 27.7 25.0 24.8

B-J automatic 19.8 16.9 18.9 20.0 16.2 15.6 17.3 15.3 14.8 15.9 17.3 17.4 20.3 22.6 21.6 26.8 23.6 23.5

ForecastPRO 17.9 14.6 16.5 16.7 14.9 14.8 16.2 14.7 14.4 15.0 15.8 16.3 18.1 19.0 18.8 22.5 20.2 21.2

THETA 16.8 14.4 15.8 15.1 15.0 15.2 16.7 14.4 14.6 16.5 14.5 15.8 18.5 18.6 19.0 21.9 21.1 21.6

RBF 19.6 15.4 18.3 17.6 15.2 15.2 17.4 15.4 16.7 17.2 15.2 16.6 18.3 18.6 19.7 21.5 19.7 19.8

ForecastX 18.6 15.4 19.1 19.4 16.1 15.0 15.8 14.6 14.8 16.2 15.6 17.2 19.0 22.0 21.9 25.6 22.8 22.2

Boot.EXPOS 16.2 14.0 13.6 14.2 15.7 16.5 17.2 13.4 14.2 18.1 13.5 13.7 17.0 15.5 15.2 18.9 20.0 19.7
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6. CLOSING COMMENTS

An automatic procedure based on EXPOS and bootstrap methodology is

presented. Our methodology was applied to the M3 competition data. Accuracy

measures such as sMAPE, RMSE were calculated and compared with the mea-

sures obtained for the best six competition methods. The method revealed a very

good performance for series with seasonal and trendy components. Short length

time series showed difficulties in the forecasting procedure. In fact Billah et al.

(2006) decide to separate the short series in order to obtain... plausible results

with satisfactory level of statistical reliability.

Some research is in progress for improving the results obtained, as well as

for considering new methods for the initial fitting.
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