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• The problem of semiparametric modelling in time series is considered. For this, partial
linear regression models are used, that is, regression models where the regression func-
tion is the sum of a linear and a nonparametric component. Two estimators for the
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models are included in the comparison.
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1. INTRODUCTION

Linear regression modelling is a nice form for linking variables because in

general the parameters have some kind of meaning or interpretation. Neverthe-

less, it is known that the main drawback of the linear regression models is their

lack of flexibility. In practice, this fact causes that some interesting relationships

can not be modelled by means of this class of models.

A way to avoid that drawback is to add to the linear regression function

a nonparametric component. The resulting model, known as a partial linear

regression (PLR) model, was introduced by Engle et al. (1986) to study the effect

of weather on electricity demand. Another interesting feature of the PLR models

is that they also avoid the “curse of dimensionality” (assuming low dimension for

the explanatory variable that enters in a nonparametric way). From a theoretical

point of view that dimension can be high, but usually is 1. Thus, we can say

that the PLR models are flexible models that, in practice, can handle multiple

variables.

Since the pioneer work of Engle et al. (1986), several papers have been

published on this class of models in the setting of i.i.d. data (see, e.g., Speckman,

1988, Robinson, 1988, or Linton, 1995) as well as for dependent data (see, e.g.,

Gao, 1995, or Aneiros-Pérez et al., 2004). In these papers, one can find asymptotic

results (consistency, asymptotic normality) on estimators for each component in

the PLR model, as well as on bandwidth selectors for those estimators, and even

on testing of hypotheses. In addition, PLR models have demonstrated their

usefulness in many field of applied sciences, such as economics, environmental

studies, medicine... (see Härdle et al., 2000, for a monograph and applications of

the PLR model). A common feature in all these publications is that they study

the same type of estimator, regardless of the data are independent or not.

In a recent paper, Aneiros-Pérez and Vilar-Fernández (2008) proposed a

new estimator for the nonparametric component in a PLR model under random

design and dependence conditions. To construct their estimator, these authors

took into account the dependence structure in the errors of the model. Specifi-

cally, this dependence structure was used to transform the PLR model with de-

pendent errors into a PLR model with uncorrelated errors (say, into a “whitened

model”). Then, the estimator of the nonparametric component was based on this

whitened model. Aneiros-Pérez and Vilar-Fernández (2008) obtained the asymp-

totic normality of both the estimator based on the original PLR model and the

estimator based on the whitened model. As a consequence, they noted that the

second estimator is asymptotically more efficient than the first estimator.

The aim of this paper is to illustrate, in practice, both the competitiveness

of the PLR model and the usefulness of the prewhitening transformation.
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Our paper is organized as follows. The PLR model is presented in Section 2,

and estimators of both linear and nonparametric components of the model are

motivated and defined. Then, a comparative study on the behavior of those

estimators is deeply carried out in Section 3. For this, three real datasets in the

context of economics and finance were analyzed. Concluding remarks are given

in Section 4.

2. MOTIVATION AND CONSTRUCTION OF THE ESTIMATORS

2.1. The partial linear regression model

The class of the PLR models assumes that the regression function is the

sum of a linear and a nonparametric component. This can be mathematically

expressed through the regression model

(2.1) Yi = XT
i β + m(Ti) + εi (i = 1, ..., n) ,

where Xi = (Xi1, ..., Xid0
)T and Ti = (Ti1, ..., Tid1

)T (d0 ≥ 1, d1 ≥ 1) are vectors

of explanatory variables, β = (β1, ..., βd0
)T is a vector of unknown real parameters,

m is an unknown smooth real function and {εi} are the random errors satisfying

(2.2) E(εi |Xi,Ti) = 0 (i = 1, ..., n) .

In this paper, we focus on estimation of m in (2.1) when both Xi and Ti are ran-

dom (random design) and, in addition, the errors εi are dependent. Specifically,

we assume that these errors follow the invertible linear process

(2.3) εi =
∞∑

j=0

cj ei−j , where c0 = 1 and ei are i.i.d. with E(ei) = 0 .

In general, estimators proposed in the statistical literature to estimate m in (2.1)

do not have into account the dependence structure in the errors. However, it

seems natural to think that incorporate such information in the construction of

the estimator can be helpful. Aneiros-Pérez and Vilar-Fernández (2008) proposed

to use that dependence structure in the following way. Let us denote c(L)=∑∞
j=0 cj Lj , where L is the lag operator, and

(2.4) a(L) = c(L)−1 = a0 −
∞∑

j=1

aj Lj with a0 = 1 .
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Applying a(L) to the PLR model (2.1) and rewriting the corresponding equation,

we obtain the new PLR model

(2.5) Y i = XT
i β + m(Ti) + ei (i = 1, ..., n) ,

where Y i = Yi −
∑∞

j=1 aj

(
Yi−j −XT

i−j β −m(Ti−j)
)

= Yi −
∑∞

j=1 aj εi−j . As we

see, the regression function in the PLR models (2.1) and (2.5) is the same, but

in (2.5) the errors are i.i.d. Now, it should be noted that an estimator for m

based on the PLR model (2.5) takes into account the dependence structure of the

errors εi (through Y i). From now on, we will name “original PLR model” and

“whitened PLR model” to the models (2.1) and (2.5), respectively.

2.2. The estimators

Aneiros-Pérez and Vilar-Fernández (2008) studied and compared (from an

asymptotic point of view) two estimators for m(t), one (say m̂(t)) based on the

original PLR model (2.1) and the other (say m̂(t)) based on the whitened PLR

model (2.5). Specifically, these authors proved that, under suitable conditions,

the asymptotic distribution of these estimators (properly normalized) is Gaussian.

In summary, from that result one can observe that both estimators asymptotically

have the same bias but different variances, the variance of m̂(t) relative to the

variance m̂(t) being σ2
ε/σ2

e =
∑∞

j=0 c2
j ≥ 1 (the equality holding if and only if {εi}

is i.i.d.). Thus, we have that the estimator based on the whitened PLR model

is asymptotically more efficient than the estimator based on the original PLR

model.

Now, we motivate and construct both estimators m̂(t) and m̂(t). We begin

with m̂(t). Let us assume that we have a root-n consistent estimator for β (say

β̂h0
). Then, from the original PLR model (2.1) we can write

Yi − XT
i β̂h0

≈ m(Ti) + εi (i = 1, ..., n) ,

and, assuming that m is a smooth function, we proceed to estimate m(t) by

means of the nonparametric estimate

(2.6) m̂h0,h1
(t) =

n∑

j=1

wh1,j(t)
(
Yj − XT

j β̂h0

)
,

where wh1,j(t) are weight functions depending on t and the design points Ti, and

both h0 and h1 are smoothing parameters or bandwidths that typically appear in

any setting of nonparametric or semiparametric estimation. The weight functions

considered in Aneiros-Pérez and Vilar-Fernández (2008) were local p-order poly-

nomial type weights (for local polynomial estimation see, e.g., Fan and Gijbels,

1996, or Francisco-Fernández and Vilar-Fernández, 2001).
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As we see, the estimator (2.6) is based on the original PLR model (2.1),

but similar steps could be used to construct an estimator for m(t) based on

the whitened PLR model (2.5). Because in practice the response variable Y i in

(2.5) is unknown (depends on ai, β and m), the first step in constructing such

an estimator should be to propose a “reasonable” approximation for Y i. In this

way, Aneiros-Pérez and Vilar-Fernández (2008) proposed to use the residuals

ε̂i = Yi−XT
i β̂h0

−m̂h0,h0
(Ti) of the original PLR model to construct an estimate

of AT = (a1, ..., aT )T, T being a truncation parameter large enough to avoid

problems with the bias. Specifically, this estimator for AT is constructed by

means of the ordinary least squares (OLS) method applied to the model

(2.7) ε̂i = a1 ε̂i−1 + · · · + aT ε̂i−T + residual i (i = T +1, ..., n) .

In this way, the estimator

(2.8) ÂT =
(
ε̂T
T ε̂T

)−1
ε̂T
T ε̂

is obtained, where ε̂ = (ε̂T +1, ..., ε̂n)T and ε̂T = (ε̂i,j)1≤i≤n−T
1≤j≤T

with ε̂i,j = ε̂i−j+T .

Now, using ÂT together with β̂h0
and m̂h0,h0

, we define

(2.9) Ŷ T ,i = Yi−
T∑

j=1

âj

(
Yi−j −XT

i−j β̂h0
−m̂h0,h0

(Ti−j)
)

(i = T+1, ..., n) .

Finally, from (2.5) and (2.9), we can write

Ŷ T ,i − XT
i β̂h0

≈ m(Ti) + εi (i = T +1, ..., n) ,

and, as in (2.6), we construct the estimator

(2.10) m̂T ,h0,h1
(t) =

n∑

i=T +1

wh1,i(t)
(

Ŷ T ,i − XT
i β̂h0

)
.

In summary, the steps taken to construct the estimator (2.10) are:

Step 1: Construct a root-n consistent estimator β̂h0
for β.

Step 2: Construct the residuals ε̂i.

Step 3: Use ε̂i (i = T +1, ..., n) to construct an estimator âj for aj

(j = 1, ..., T ).

Step 4: Use âj (j = 1, ..., T ), β̂h0
and m̂h0,h0

to construct an approximation

Ŷ T ,i for Y i (i = T +1, ..., n).

Step 5: Use β̂h0
and Ŷ T ,i to construct the estimator (2.10).
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Finally, we motivate the root-n consistent estimator β̂h0
for β used in

Aneiros-Pérez and Vilar-Fernández (2008). If we subtract E(Yi |Ti) on both

sides of equality (2.1), we get the linear regression model

(2.11) Yi − E(Yi |Ti) =
(
Xi − E(Xi |Ti)

)T
β + εi (i = 1, ..., n) .

Then, replacing the response and explanatory variables in (2.11) (that is, Yi −

E(Yi |Ti) and Xi − E(Xi |Ti), respectively) by the corresponding residuals

obtained when Y and X are nonparametrically adjusted for T, we can write

(in matricial form)

(2.12) Ỹh0
≈ X̃T

h0
β + εi (i = 1, ..., n) ,

where, for both the n-dimensional vector A = Y and the (n×d0)-matrix A = X,

and for any real number h0 > 0, we have denoted Ãh0
= (I − Wh0

)A with

Wh0
=

(
wh0,j(Ti)

)
i,j

. Now, using OLS in (2.12), one obtains

β̂h0
=

(
X̃T

h0
X̃h0

)−1
X̃T

h0
Ỹh0

.

At this time, four facts should be clear. First, we dispose of two estimators for m

in (2.1): m̂h0,h1
(t) and m̂T ,h0,h1

(t). Second, m̂h0,h1
(t) does not take into account

the dependence structure in the errors of the PLR model (2.1). Third, m̂T ,h0,h1
(t)

takes into account the dependence structure in the errors of the PLR model

(2.1). Fourth, Aneiros-Pérez and Vilar-Fernández (2008) proved that m̂T ,h0,h1
(t)

is asymptotically more efficient than m̂h0,h1
(t).

3. APPLICATIONS TO REAL DATA

The main goal of this section is to compare the behavior of the estima-

tors m̂h0,h1
(t) and m̂T ,h0,h1

(t) when they are applied to real data. In addition,

in order to make more general the study and not only confined to the PLR

model, in a first attempt we will consider a set of regression models together with

their conventional estimators. Then, the accuracy of these models/estimators will

be compared with that of the PLR model/estimators m̂h0,h1
(t) and m̂T ,h0,h1

(t).

In a second attempt, we will take into account the fact that the prewhitening

transformation (2.4) can also be applied to that set of regression models. Thus,

we will include in the study the estimators based on the corresponding whitened

regression models. Then, when the study is completed, we will have shown both

the competitiveness of the PLR model and the usefulness of the prewhitening

transformation.
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Three real datasets will be analyzed, all related to the field of economics

and finance. Specifically, the first example deals with market shares and prices

of two dentifrices, while the second dataset is related to the building industry.

Finally, in the third study we consider relationships between stock indices.

3.1. Models

In the three datasets we will study, we have a response variable (say Y )

and two explanatory variables (say X and T ). Thus, we will consider four classes

of regression models linking Y with X and/or T . Now, we quickly present each

one of these classes and give a short motivation of them:

Linear models. Maybe, the first class that comes to mind is that of the clas-

sical linear regression models. These models allow easy interpretation of the

effect of each explanatory variable on the response variable. Nevertheless,

it is known than its main handicap is the lack of flexibility.

Nonparametric models. In order to avoid the handicap named in the previ-

ous kind of models, the second class to be considered is that of nonparamet-

ric models. A problem of this class is the known as“curse of dimensionality”,

which is based on the fact that, when the number d of real explanatory

variables is greater than 1, large sample sizes are required to obtain good

estimates (these sample sizes increase exponentially with d). In view of this

problem, we will restrict to the class of nonparametric models with only a

real explanatory variable.

Partial linear models. This class was presented in a general setting in

Section 2. In this practical study, we will consider PLR models that include

one real variable in a linear form and another one in a nonparametric form

(that is, d0 = d1 = 1 in (2.1)). Note that this class overcomes the curse of

dimensionality.

Additive models. The last class is composed by the additive models with

two explanatory variables, that is, nonparametric models whose regression

function is the sum of two nonparametric components. It is interesting to

observe that, as the previous class, this class avoids the curse of dimension-

ality (in fact, this is achieved in both classes by means of the same method:

to express the regression function as the sum of two components).

The wide range of models named above can be seen in Table 1.
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Table 1: Regression models.

Models Notation

Linear models

Y = α + Xβ + ε L1
Y = α + Tβ + ε L2
Y = α + Xβ1 + Tβ2 + ε L3

Nonparametric models

Y = m(X) + ε NP1
Y = m(T ) + ε NP2

Partial linear models

Y = Xβ + m(T ) + ε PL1
Y = Tβ + m(X) + ε PL2

Additive model

Y = µ + m1(X) + m2(T ) + ε ADD

3.2. Estimators

Now we indicate, for each regression model in Table 1, the kind of estimator

considered. OLS estimators were used to estimate the parameters corresponding

to the linear models, while the local linear polynomial estimator was considered

to estimate the regression function in the nonparametric models. Both the para-

metric and the nonparametric component in the PLR models were estimated by

means of the estimators presented in Section 2. Finally, for the additive model,

a backfitting algorithm was considered (see Hastie and Tibshirani, 1990). In the

last two classes of models, the weight functions were local linear polynomial type

weights (as for the nonparametric case).

3.3. Choosing the parameters of the estimates

In practice, as usual in both nonparametric and semiparametric settings,

it is necessary to choose some parameters related to the estimates. Specifically,

we refer to the kernel and the bandwidths. In addition, for the cases where the

prewhitening transformation is considered, we must give a value for the truncation

parameter T .

On the one hand, the Epanechnikov Kernel K(u) = 0.75(1− u)2 I[−1,1](u)

and the truncation parameter T = 2 were used in the estimates. On the other

hand, the bandwidths were chosen by means of the cross-validation procedure.
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In short, this bandwidth selector proposes to choose the value ĥCV that minimizes

to the function

CV (h) = n−1
n∑

i=1

(
Yi − r̂ i

h(Xi, Ti)
)2

ω(Ti) ,

where r̂ i
h(·, ·) denotes the estimator of the regression function (of each model

considered) constructed without using the i-th observation, and ω(·) is a weight

function included to avoid boundary effects. Note that for both the PLR and the

additive models h is a vector (say h = (h0, h1)
T and h = (h1, h2)

T, respectively).

The good (asymptotic) properties of the cross-validation selector are based on

the fact that CV (h) is (asymptotically) equivalent (except for a constant) to

the average squared error (see Aneiros-Pérez and Quintela-del-Ŕıo 2001 for some

results on this selector in the setting of PLR models).

3.4. Measure of accuracy

To compare the accuracy of the different models/estimators, we considered

the Relative Cross-Validation (RCV)

RCV =
CV

(
ĥCV

)

Var{Yi}
,

where Var{Yi} denotes the variance corresponding to the sample of responses.

Observe that RCV gives a global measure of the accuracy of each model/estimator.

3.5. The dentifrice data

The first dataset analyzed consists of weekly market shares of Crest and

Colgate dentifrice, together with the price of Crest dentifrice, during the period

January 1, 1958 to April 30, 1963 (276 data). This dataset was used in Wichern

and Jones (1977) to asses the impact of market disturbances, and can be found

on the website http://www.alianzaeditorial.es (Book title: Análisis de Series

Temporales; Author: Peña, D., Section: Ejercicios prácticos). The graphics of

these time series are shown in Figure 1.

From Figure 1, we clearly observe the presence of trend in the three series.

These trends were eliminated by differentiating. Then, using the transformed

data, we seek in Table 1 an adequate regression model to link the data corre-

sponding to the market share of Crest dentifrice (Y ) with those of market share

of Colgate dentifrice (X) and price of Crest dentifrice (T ).
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Figure 1: The market shares of Crest (left) and Colgate (middle) dentifrice,
and the price of Crest dentifrice (right).

The RCV’s of the models/estimates considered, as well as comparisons

between them, are displayed in Table 2. From the third column in this table, we

can say that the prewhitening transformation has proved useful in all the models.

In addition, the fourth column indicates that the best model is the PLR model

that includes the effect of market share of Colgate dentifrice and price of Crest

dentifrice in a linear and a nonparametric way, respectively (that is, the PLR

model PL1).

Table 2: Values of the criterion error and ratios (aoriginal model, bwhitened model).

Model RCV RCVb/RCVa RCV/minRCV

L1
a0.8347
b0.8313

0.9959
1.0370
1.0328

L2
0.9793
0.9748

0.9953
1.2167
1.2110

L3
0.8161
0.8108

0.9935
1.0139
1.0073

NP1
0.8359
0.8308

0.9939
1.0385
1.0321

NP2
0.9802
0.9751

0.9948
1.2177
1.2114

PL1
0.8090
0.8049

0.9950
1.0050
1.0000

PL2
0.8118
0.8077

0.9949
1.0086
1.0034

ADD
0.8219
0.8147

0.9912
1.0211
1.0121
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Finally, we give some information on the estimates of the parameter β and

the function m in the best model (PL1). The estimates of β using the conventional

and the prewhitened-based estimators were −0.4146 and −0.4220, respectively.

The corresponding estimates of m are shown in Figure 2 (from now on, in the

graphics corresponding to the estimates of m, “Estimator 1” and “Estimator 2”

are referred to as m̂h0,h1
and m̂T ,h0,h1

, respectively).
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Figure 2: Estimates of the nonparametric component m
in the PLR model PL1.

3.6. The building industry data

The building industry data is the second example we analyze. We have

monthly observations corresponding to the number of buildings started, quan-

tity of cement produced and number of buildings completed in Galicia (an au-

tonomous community located in northwestern Spain) during the period January

1987 to December 2000 (168 data). These time series are available on the website

http://www.ige.eu. Figure 3 displays these data.

Our goal is to get a model to analyze the effect of both the quantity of

cement produced (X) and the number of buildings completed (T ) on the number

of buildings started (Y ). Because, as in the previous example, our time series

contain trend (see Figure 3) and therefore they are not stationary, we have worked

with the differenced data.
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Figure 3: Number of buildings started (left), quantity of cement produced (middle)
and number of buildings completed (right) in Galicia.

Table 3 shows interesting information on the accuracy of the models con-

sidered, as well as on the behavior of the different estimators. From this table, we

note that the prewhitening transformation does not always improve the original

model (see column 3), but there are improvements for the best two models (PL1

and ADD). Finally, the prewhitened-based estimator applied on the PLR model

PL1 gives the best accuracy (see column 4).

Table 3: Values of the criterion error and ratios (aoriginal model, bwhitened model).

Model RCV RCVb/RCVa RCV/minRCV

L1
a0.9613
b0.9616

1.0003
1.0704
1.0707

L2
0.9872
0.9879

1.0007
1.0992
1.0999

L3
0.9488
0.9458

0.9969
1.0564
1.0531

NP1
0.9409
0.9472

1.0067
1.0476
1.0547

NP2
0.9610
0.9492

0.9877
1.0700
1.0569

PL1
0.9071
0.8981

0.9901
1.0100
1.0000

PL2
0.9170
0.9176

1.0006
1.0210
1.0216

ADD
0.9055
0.9001

0.9940
1.0082
1.0022
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Focusing on the PLR model PL1, we have that the estimates of β using

the conventional and the prewhitened-based estimators were 21.91 and 21.16,

respectively. The corresponding estimates of m are shown in Figure 4.
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Figure 4: Estimates of the nonparametric component m
in the PLR model PL1.

3.7. The stock data

Finally, we present an analysis on stock data. Specifically, our time se-

ries collect Banca Commerciale Index (Milan), FT-SE 100 Index (London) and

General Index (Madrid) for each month during the period January 1988 to De-

cember 2000 (156 data). These data, which can be obtained on the website

http://www.ec.europa.eu/eurostat, are shown in Figure 5.

From a first analysis of the data, we found the presence of both hetero-

scedasticity and trend. Thus, the data have been transformed using logarithms

and then differentiated to achieve stationarity. Now, using the transformed data,

we are interested in the construction of an adequate regression model to link the

Banca Commerciale Index (Y ) with the FT-SE 100 Index (X) and the General

Index (T ).
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Figure 5: Banca Commerciale Index (left), FT-SE 100 Index (middle)
and General Index (right).

The RCV’s obtained for the different models considered, as well as compar-

isons between them, are given in Table 4. Some conclusions can be obtained from

this table. First, only in the models L1 and NP2 the prewhitening transformation

does not improve the original model (see column 3). Second, the best model is

the PLR model that includes the effect of FT-SE 100 Index and General Index

in a linear and a nonparametric way, respectively (that is, the PLR model PL1).

Third, the prewhitened-based estimator applied on this PLR model gives the best

accuracy.

Table 4: Values of the criterion error and ratios (aoriginal model, bwhitened model).

Model RCV RCVb/RCVa RCV/minRCV

L1
a0.7027
b0.7041

1.0019
1.0226
1.0246

L2
0.9859
0.9843

0.9984
1.4347
1.4324

L3
0.7129
0.7119

0.9986
1.0374
1.0360

NP1
0.7058
0.7044

0.9980
1.0271
1.0251

NP2
0.9768
0.9797

1.0029
1.4215
1.4257

PL1
0.6911
0.6872

0.9944
1.0057
1.0000

PL2
0.7004
0.6994

0.9986
1.0192
1.0178

ADD
0.7040
0.6978

0.9912
1.0245
1.0155
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We complete the analysis showing the estimates of the parameter β and

the function m in the best model (PL1). The estimates of β using the conven-

tional and the prewhitened-based estimators were 0.4713 and 0.4666, respectively.

The corresponding estimates of m are displayed in Figure 6.
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Figure 6: Estimates of the nonparametric component m
in the PLR model PL1.

4. CONCLUDING REMARKS

In this paper, partial linear regression modelling in time series was dealt

from a practical point of view. For this, we divided the paper into two parts.

In the first part, some theory was shown. Specifically, we motivated and pre-

sented the PLR model. Then, we carefully constructed the estimator proposed in

Aneiros-Pérez and Vilar-Fernández (2008), which is based on a whitened version

of the original PLR model. By this motive, the estimator takes into account the

dependence structure in the random errors (this fact is crucial for its good asymp-

totic behavior). The second part contains the main contribution of our work.

It analyzes several real time series concerning economics and finance. Specifically,

these time series were modelled by means of a wide range of regression models,

including PLR models. Then, the corresponding regression functions were esti-

mated. For this, both conventional and whitened-model based estimators were

used. Finally, the performance of the corresponding estimators was measured.
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In all the time series studied, the PLR model (estimated using the estimator

proposed in Aneiros-Pérez and Vilar-Fernández, 2008) gave the best results.

We are aware that the improvement on the point-estimates is small. In fact,

from the theoretical results, it is expected that a greater improvement is obtained

on comparing confidence intervals (as noted in Subsection 2.2, the asymptotic dif-

ference between the conventional and the whitened-model based estimators is in

their variances). Nevertheless, it should be noted that to construct confidence

intervals one needs to estimate those variances, and the variability of the corre-

sponding estimators could mask the theoretical result. For this reason, we have

preferred to compare the point-estimates.
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