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Abstract:

• In applied statistics it is often necessary to obtain an interval estimate for an unknown
proportion (p) based on binomial sampling. This topic is considered in almost every
introductory course. However, the usual approximation is known to be poor when
the true p is close to zero or to one. To identify alternative procedures with better
properties twenty non-iterative methods for computing a (central) two-sided interval
estimate for p were selected and compared in terms of coverage probability and ex-
pected length. From this study a clear classification of those methods has emerged.
An important conclusion is that the interval based on asymptotic normality, but af-
ter the arcsine transformation and a continuity correction, and the Add 4 method
of Agresti and Coull (1998) yield very reliable results, the choice between the two
depending on the desired degree of conservativeness.
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1. INTRODUCTION

In many practical situations it is important to compute a two-sided interval

estimate for a population proportion (e.g. acceptance sampling by attributes,

marketing research, survey sampling). The interval estimate may be either a

confidence interval (in the frequentist framework) or a credibility interval (in

the Bayesian framework). This is a well known topic considered in almost every

introductory course on statistics. However, most of the standard methods rely on

asymptotic approximations and the validity of the approximations is not always

stated or differs from author to author (Leemis and Trivedi, 1996, give a survey

of these “rules of thumb”). Moreover, comparisons between methods are usually

based on single cases. We found no recent text book listing the most common

methods and making a general comparison, not even in Fleiss, Levin and Paik

(2003), dedicated exclusively to rates and proportions. A good discussion but

somehow out of date can be found in Santner and Duffy (1989).

Nevertheless, several authors have addressed this subject in the last thirty

years: Ghosh (1979); Fujino (1980); Angus and Schafer (1983); Blyth and Still

(1983); Blyth (1986); Chen (1990); Copas (1992); Vollset (1993); Cohen and

Yang (1994); Newcombe (1994 and 1998); Agresti and Coull (1998); Agresti and

Caffo (2000); Brown, Cai and DasGupta (2001 and 2002); Edwardes (1998); Pan

(2002); Reiczigel (2003); Garćıa-Pérez (2005); Geyer and Meeden (2005), Puza

and O’neill (2006) and Lee (2006). Large comparative studies were presented by

Vollset (1993), Newcombe (1998), Brown, Cai and DasGupta (2001) and, to a

smaller extent, by Agresti and Coull (1998) and Pan (2002).

The present paper considers twenty simple non-iterative methods. Eleven

of these have been included in the aforementioned comparisons: eight of the sev-

enteen considered by Vollset (1993); five of the seven considered by Newcombe

(1998); the four considered by Agresti and Coull (1998); five of the twelve consid-

ered by Brown, Cai and DasGupta (2001) and the four considered by Pan (2002).

The nine (also simple) methods considered here and which were not included in

previous comparisons are: a Bayesian interval with uniform prior; two simple

corrections to the usual interval; four variants of bootstrap intervals not needing

Monte Carlo; and two intervals based on the arcsine transformation followed by

a correction. As with most of the cited recent studies it was decided not to in-

clude methods without explicit solutions and for which there is an explicit almost

equivalent method (this is the case namely of the interval obtained by inverting

the likelihood ratio test).

The results of this work are important for the applied statistician, who in a

particular situation usually wants to use the best method and that this method

is available or can easily be implemented in common statistical software, and for
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teachers of statistics who have to decide which methods to include in a given

course.

Let [L; U ] be an interval estimator of a certain parameter θ and attach to

it a level (confidence or credibility), η ∈ (0; 1). [L; U ] is a good interval estimator

of θ with level η if the probability of containing the unknown θ (the coverage

probability) is in fact η and its length is “small” (usually in a stochastic sense,

for instance, on average). Note, however, that in discrete situations, like the one

considered here, it is not possible to achieve the target coverage probability for all

possible values of the parameter. We will therefore consider two classes of accept-

able methods, those strictly conservative (for which the coverage probability is at

least η) and those correct on average (for which the mean coverage probability is

at least η) and look for small mean expected length within each class. Note also

that it is reasonable to apply the same criteria to both confidence and credibility

intervals.

Attention will be focused primarily on central intervals, that is, with ap-

proximately equal uncertainty associated to each side. This is how practitioners

usually interpret two-sided intervals and matches better with one-sided intervals

(the two-sided being the intersection of upper and lower one-sided intervals with

the appropriate precision). However non-central intervals are also considered for

comparison.

The paper is organized as follows: in Section 2 the twenty selected methods

are described. In Section 3 results regarding coverage probability and expected

length of the different intervals are presented and analyzed, first considering only

the central intervals and at second stage including two optimal non-central inter-

vals. Section 4 is devoted to concluding remarks.

2. DESCRIPTION OF THE METHODS

In order to establish the notation suppose that a random sample of size

n is observed on a large (possibly infinite) population and that X observations

(0 ≤ X ≤ n) belong to a certain category of interest. Let p be the unknown

proportion of the category of interest in the population and suppose that a two-

sided central interval estimate for p is wanted. Note that in order to use the

methods based on the binomial distribution the total sample size must be fixed a

priori and the variable to be observed is the number of successes. If the sampling

plan fixes the number of successes and the total sample size is variable (inverse

or negative binomial sampling) most of the methods can not be applied directly

(see e.g. Lui, 1995, or Cai and Krishnamoorthy, 2005).
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For all the intervals the nominal confidence level is fixed in advance as

100×(1−α)%, meaning that the coverage probability of the random interval

[L; U ] should be 1− α. The random variables L and U depend on X, number

of successes in the random sample, on n and on the method. Twenty methods

are described in the following five subsections and the corresponding solutions

are represented as [Li(X); Ui(X)], where i = I, ..., XX denotes the method. The

final expressions are given in Tables 1 and 2. As in Vollset (1993) it was imposed

that, for all i, 0 ≤ Li(X) and Ui(X) ≤ 1, for all X, and that Li(0) = 0 and

Ui(n) = 1 (this means that for the boundary cases the centrality property is

dropped but it is a natural choice). To be theoretically correct, but otherwise

with no practical effect, the confidence intervals do not include the left (right)

end point if Li(X) = 0 (Ui(X) = 1) but X 6= 0 (X 6= n).

2.1. Exact results

Under the previous conditions X has a Binomial(n, p) distribution. Because

this is a discrete distribution it is not possible to have a confidence interval with

exactly the specified confidence level. But an interval with a coverage probability

of at least 1− α can be obtained by solving

n
∑

j=X

(

n

j

)

Lj
I(1− LI)

n−j = α′(2.1)

and

X
∑

j=0

(

n

j

)

U j
I (1− UI)

n−j = α′′ ,(2.2)

where α′ and α′′, such that α′ +α′′ = α, are fixed in advance and do not depend

on X. If different values of α′ and α′′ are chosen for each X, for instance those

minimizing the length of the interval, the exactness, meaning a coverage proba-

bility of at least 1− α can no longer be guaranteed for every p. α′ = α′′ = α/2

corresponds to the inversion of the two sided exact binomial test and leads to

the central exact interval, usually called Clopper–Pearson interval (Clopper and

Pearson, 1934). For X= 0 and X= n the solutions of (2.1) and (2.2) are explicit:

(2.3) LI(0) = 0, UI(0) = 1 − (α/2)1/n, LI(n) = (α/2)1/n, UI(n) = 1 .

Otherwise, the solution of (2.1) and (2.2) is easy to obtain by using the relation

(see for instance Johnson and Kotz 1969, pp. 58–59, or Stevens, 1950)

n
∑

j=k

(

n

j

)

pj(1− p)n−j =

∫ p

0
fB(t) dt ,
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where fB denotes the p.d.f. of a Beta(k, n−k−1) random variable. In this way

the extremes of the interval are appropriate quantiles of that Beta distribution

(see Table 1) and can easily be obtained in most statistical packages. For instance,

in S-plus or R the appropriate commands are LI<-qbeta(alfa/2,X,n-X+1) and

UI<-qbeta(1-alfa/2,X+1,n-X). If the percentiles of the Beta distribution are

not available then the relation of those with the percentiles of the F distribution

can be used, eventually in tables (this is again mentioned in Johnson and Kotz,

1969, and e.g. in Armitage and Berry, 1987).

It is worth noting that from the papers referred in the Introduction and ad-

dressing the same issue only Blyth (1986), Agresti and Coull (1998), Newcombe

(1998), Brown, Cai and DasGupta (2001) and Garćıa-Pérez (2005) mention the

relation with the Beta distribution while some of the others consider approxima-

tions to the percentiles of the F distribution (e.g. Fujino, 1980). Vollset (1993)

proposes a very sophisticated numerical method (the “Pratt” approximation)

which turns out to be completely unnecessary.

Other exact intervals, in the sense of having coverage probability of at least

1− α, based on the binomial probabilities have been considered in the litera-

ture but are not central and do not have explicit solutions (Sterne, 1954, Crow,

1956, Clunies-Ross, 1958, see also Blyth and Still, 1983, and Reiczigel, 2003).

As mentioned in the Introduction, an interval of this type will be considered in

Subsection 3.2 for comparative purposes.

As a second alternative in the class of exact methods we consider a Bayesian

credibility interval. This method is exact in the second sense because it guar-

antees a mean coverage probability of 1− α under the specified prior distribu-

tion for p. If this prior is the uniform distribution in (0, 1) or Beta(1, 1), which

is non-informative, we have that a posteriori p follows a Beta(X+1, n−X+1)

distribution. Brown, Cai and DasGupta (2001) have chosen the Jeffreys prior,

Beta(1/2, 1/2), which is also non-informative. The results shall not differ consid-

erably, but the uniform prior seems more intuitive.

In order to obtain a central interval, equal credibility tails (α/2) are con-

sidered, except for the boundary cases, X = 0 and X = n. The explicit results are

again shown is Table 1 (Method II). The similarity between these results and the

results for the Clopper–Pearson interval is a consequence of the chosen a priori

distribution.

In the Bayesian framework the optimal exact interval (that is of minimal

length) is the HPD interval, but this again is non-central and has no explicit

solution, and will be considered only in Subsection 3.2.
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Table 1: Explicit limits of the intervals for Methods I to X.

i Li(X) Ui(X)
(Method) (Lower limit) (Upper limit)

I (a) 0 if X= 0, (α/2)1/n if X= n, 1− (α/2)1/n if X= 0, 1 if X= n,

BX,n−X+1;α/2 if 0 <X< n BX+1,n−X;1−α/2 if 0 <X< n

II (a) 0 if X= 0, α1/(n+1) if X= n, 1 − α1/(n+1) if X= 0, 1 if X= n,

BX+1,n−X+1;α/2 if 0 <X< n BX+1,n−X+1;1−α/2 if 0 <X< n

III (b)
2X+c2−c

√

c2 +4X(1−X/n)

2(n+c2)

2X+c2+c
√

c2 +4X(1−X/n)

2(n+c2)

IV (b) 0 if X= 0, 1 if X= n,
otherwise otherwise

2X+c2−1−c
√

c2−(2+1/n)+4X(1−X/n+1/n)

2(n+c2)

2X+c2+1+c
√

c2+(2−1/n)+4X(1−X/n−1/n)

2(n+c2)

V (b) max

{

X
n − c

√

X
n2

(

1− X
n

)

; 0

}

min

{

X
n + c

√

X
n2

(

1− X
n

)

; 1

}

VI (b) max

{

X
n − c

√

X
n2

(

1− X
n

)

− 1
2n ; 0

}

min

{

X
n + c

√

X
n2

(

1− X
n

)

+ 1
2n ; 1

}

VII (b) 0 if X= 0, (α/2)1/n if X= n, 1− (α/2)1/n if X= 0, 1 if X= n,

otherwise otherwise

max

{

X
n − c

√

X
n2

(

1− X
n

)

; 0

}

min

{

X
n + c

√

X
n2

(

1− X
n

)

; 1

}

VIII (b) 0 if X= 0, (α/2)1/n if X= n, 1− (α/2)1/n if X= 0, 1 if X= n,

otherwise otherwise

max

{

X
n − c

√

X
n2

(

1− X
n

)

− 1
2n ; 0

}

min

{

X
n + c

√

X
n2

(

1− X
n

)

+ 1
2n ; 1

}

IX (b) 0 if X= 0, (α/2)1/n if X= n, 1 − (α/2)1/n if X= 0, 1 if X= n,

otherwise otherwise

max

{

X+c2/2
n+c2 −c

√

X
n2

(

1− X
n

)

; 0

}

min

{

X+c2/2
n+c2 + c

√

X
n2

(

1− X
n

)

; 1

}

X (b) 0 if X= 0, (α/2)1/n if X= n, 1 − (α/2)1/n if X= 0, 1 if X= n,

otherwise otherwise

max

{

X+c2/2
n+c2 −c

√

X
n2

(

1−X
n

)

− 1
2n ; 0

}

min

{

X+c2/2
n+c2 +c

√

X
n2

(

1−X
n

)

+ 1
2n ; 1

}

(a) Bθ1,θ2;γ is the γ percentile of the Beta(θ1, θ2) distribution.
(b) c = z1−α/2 where zγ is the γ percentile of the N (0, 1) distribution.
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Table 2: Explicit limits of the intervals for Methods XI to XX.

i Li(X) Ui(X)
(Method) (Lower limit) (Upper limit)

XI (a) 0 if X= 0, (α/2)1/n if X= n, 1− (α/2)1/n if X= 0, 1 if X= n,

otherwise
Binn,X/n;α/2

n
otherwise

Binn,X/n;1−α/2

n

XII (a) 0 if X= 0, (α/2)1/n if X= n, 1− (α/2)1/n if X= 0, 1 if X= n,

otherwise max

{

Binn,X/n;α/2

n − 1
2n ; 0

}

otherwise min

{

Binn,X/n;1−α/2

n + 1
2n ; 1

}

XIII (a)(b) 0 if X= 0, (α/2)1/n if X= n, 1− (α/2)1/n if X= 0, 1 if X= n,

otherwise
Binn,X/n;α′

n
otherwise

Binn,X/n;α′′

n

XIV (a)(b) 0 if X= 0, (α/2)1/n if X= n, 1− (α/2)1/n if X= 0, 1 if X= n,

otherwise max

{

Binn,X/n;α′

n − 1
2n ; 0

}

otherwise min

{

Binn,X/n;α′′

n + 1
2n ; 1

}

XV (c) 0 if X= 0, 1 if X= n,

otherwise sin2

(

arcsin
√

X
n − c

2
√

n

)

otherwise sin2

(

arcsin
√

X
n + c

2
√

n

)

XVI (c) 0 if X= 0, otherwise 1 if X= n, otherwise

otherwise sin2

(

arcsin
√

X−0.5
n − c

2
√

n

)

otherwise sin2

(

arcsin
√

X+0.5
n + c

2
√

n

)

XVII (c) 0 if X= 0, 1 if X= n,
otherwise otherwise

sin2

(

arcsin
√

3/8+X−0.5
n+3/4 − c

2
√

n+1/2

)

sin2

(

arcsin
√

3/8+X+0.5
n+3/4 + c

2
√

n+1/2

)

XVIII (c) max

{

X+2
n+4 −c

√

X+2
(n+4)2

(

1− X+2
n+4

)

; 0

}

min

{

X+2
n+4 + c

√

X+2
(n+4)2

(

1− X+2
n+4

)

; 1

}

XIX (d) max

{

X
n − t′

√

X
n2

(

1− X
n

)

; 0

}

min

{

X
n + t′

√

X
n2

(

1− X
n

)

; 1

}

XX (d) max

{

X+2
n+4 − t′′

√

X+2
(n+4)2

(

1− X+2
n+4

)

; 0

}

min

{

X+2
n+4 + t′′

√

X+2
(n+4)2

(

1− X+2
n+4

)

; 1

}

(a) Binn,θ;γ is the γ percentile of the Bin(n, θ) distribution.
(b) α′ and α′′ are given by equations (2.5) and (2.6) in the text, respectively.
(c) c = z1−α/2 where zγ is the γ percentile of the N (0, 1) distribution.
(d) t′ and t′′ are percentiles (1−α/2) of t-distributions with degrees of freedom given by

equations (2.8) and (2.9) in the text, respectively.
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2.2. Normal approximations

The most referred methods are based on the approximation of the Bino-

mial(n, p) by the N
(

np, np(1−p)
)

distribution, that is on

X − np
√

np (1− p)
=

X
n − p
√

p(1−p)
n

d−→ N (0, 1)

and

(2.4) P



−z1−α/2 ≤
X
n − p
√

p(1−p)
n

≤ z1−α/2



 ≃ 1− α ,

where zγ denotes the γ percentile of the N (0, 1) distribution.

From (2.4) one can obtain, solving a second degree equation, the score

or Wilson (1927) interval (Method III in Table 1). Note that LIII (X) > 0 and

UIII (X) < 1 for every 0 < X < n and that LIII (0) = 0 and UIII (n) = 1.

A modification of the score method is obtained by introducing a continuity

correction (cc) of ±1/(2n) in the numerator of the central expression of (2.4),

which is expected to improve the approximation (Method IV in Table 1). For the

boundary cases one obtains LIV (0) > 0 and UIV (n) < 1, which are corrected in

the obvious way.

Most of the elementary text books do not present the previous methods,

considering instead a second approximation in expression (2.4),

P



−c ≤
X
n − p

√

X
n2

(

1− X
n

)

≤ c



 ≃ 1− α ,

leading to the Wald interval (Method V in Table 1). Method VI is similar but

with continuity correction.

Noting that, when X = 0 or X = n, the Wald interval has zero length,

something an applied statistician will be reluctant to present, it is wise to consider

replacing it, just in these two cases, by the exact Clopper–Pearson expressions

(2.3). This is denoted Method VII (without continuity correction). Method VIII

is just the same but with continuity correction. Vollset (1993) also considered

these two modifications of the Wald interval.

Another possibility for correcting the Wald interval (mentioned for instance

by Brown, Cai and DasGupta, 2002) is to recenter it at the center of the score

interval, which is given by (X + c2/2)/(n + c2), see Table 1. This modification is

considered here together with the previous one, both without and with continuity

correction (Methods IX and X, respectively).
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2.3. Bootstrap methods

It was considered interesting to include in this study some bootstrap meth-

ods because, in this particular situation, it is not necessary to use a Monte Carlo

approximation, and also because this example is not usually mentioned in the

bootstrap literature (the only reference found was Hjorth, 1994, pp. 110–111, and

not with the options taken here).

The non-parametric bootstrap method introduced by Efron (1979), con-

sists on making inferences about a population using solely the empirical distri-

bution of the observed sample. In the present context, as the sample consists on

X successes and n −X failures, the empirical distribution function is given by

Fn(y) =















0, y < 0

1− X

n
, 0≤ y < 1

1, y ≥ 1

,

that is, the distribution function of a Bernoulli
(

X
n

)

random variable. Considering

the estimator of p, p̂ =X/n, we obtain the bootstrap distribution of this estimator

by noting that the bootstrap distribution of np̂ is the distribution of the number

of successes on a random sample of size n from a Bernoulli
(

X
n

)

population, that

is, Binomial
(

n, X
n

)

.

Given this distribution several methods can be used to obtain two-sided

confidence intervals for the parameter of interest, p. One of those methods is the

Percentile Method, which in this case consists on taking the percentiles α/2 and

1− α/2 of the bootstrap distribution of p̂, leading to Method XI in Table 2.

Since the parameter p varies continuously in [0, 1] and the quantities given

by LXI (X) and UXI (X) vary discontinuously by 1/n it makes sense to introduce

here a kind of continuity correction. This is called Method XII (see Table 2).

The Percentile Method is usually considered to have some drawbacks, and

several corrections have been proposed for it. One is the BCP (Bias Corrected

Percentile, see e.g. Shao and Tu 1995) which consists on replacing the previous

percentiles (α/2 and 1−α/2) by other percentiles accounting for the asymmetry

of the bootstrap distribution. Thus, α/2 is replaced by

α′ = Φ

(

zα/2 + 2×Φ−1

(

KB

(

X

n

))

)

(2.5)

and 1− α/2 by

α′′ = Φ

(

z1−α/2 + 2×Φ−1

(

KB

(

X

n

))

)

,(2.6)
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where KB denotes the bootstrap distribution function. Due to the discrete nature

of this distribution a further correction must be applied and the one used was

KB

(

X

n

)

=
[

FBin(n, X
n )(X) + FBin(n, X

n )(X−1)
]/

2 .

Note that if the bootstrap distribution is symmetric (which happens when X/n ≃
0.5) then KB(X/n) ≃ 0.5, α′ ≃ α/2 and α′′ ≃ 1− α/2, and there is practically

no correction to the raw percentile method. Method XIII refers to the boot-

strap BCP method and Method XIV is similar but with the continuity correction

introduced above.

In Methods XI to XIV the zero length intervals for X = 0 and X = n

have been replaced by the exact Clopper–Pearson expressions (as it was done

for Methods VII to X).

2.4. Normal approximations after a transformation

The next methods considered are based on the approximate normal distri-

bution after the variance stabilizing transformation, that is on

arcsin

√

X

n

d−→ N
(

arcsin
√

p,
1

4n

)

.

Solving for p and correcting for inconsistencies in the extremes one obtains

Method XV in Table 2. Introducing a continuity correction leads to Method XVI.

A refinement of this method using a correction due to Anscombe (1948) is also

considered (Method XVII).

2.5. Other approximations

This subsection introduces the last three methods consisting on very recent

suggestions.

Agresti and Coull (1998) noting that the score interval has very good pro-

perties (confirmed in the comparative studies of Vollset 1993, Newcombe 1998,

and again in the next section of this paper), that it is centered around

(2.7) p̃(c) =
X + c2/2

n + c2
,

and that for 95% confidence c2 ≃ 4, suggested a simple, yet effective, method:
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add 4 observations to the sample, two successes and two failures, and then use

the Wald formula (Method V). This method will be referred as Add 4 or Method

XVIII. They also propose the use of p̃(2) as point estimator and call it the Wilson

point estimator, since Wilson (1927) was the first statistician recommending it

(as a curiosity note that p̃(
√

2) is also an old estimator, the Laplace estimator).

Pan (2002) proposes a further modification, both on the Wald interval and

the Add 4 interval, which consists on using percentiles of a suitable t-distribu-

tion instead of the normal. The modification of the Wald interval is denoted

Method XIX whereas the one for the Add 4 interval is referred as Method XX.

Let V (p, n) = p(1−p)/n be the variance of p̂. By introducing a scaled chi-square

distribution and matching its first two moments with those of V (p̂, n), Pan (2002)

concludes that for the Wald-t interval the appropriate degrees of freedom are

given by

(2.8) ν =
2 V (p̂, n)2

Ω(p̂, n)
,

and that for the Add 4-t those are given by

(2.9) ν =
2 V
(

p̃(2), n+4
)2

Ω
(

p̃(2), n+4
) ,

where

Ω(p, n) =
p−p2

n3
+

p + (6n−7)p2 + 4(n−1)(n−3)p3− 2(n−1)(2n−3)p4

n5

− 2
p + (2n−3)p2 − 2(n−1)p3

n4
.

3. COMPARISON OF THE METHODS

3.1. Central intervals

In order to evaluate and compare the performance of the twenty methods

presented in Section 2, the coverage probability and the corresponding expected

length have been computed for 5000 values of p, equally spaced in [0.0001, 0.5],

for every 10 ≤ n ≤ 1000 and for α = 0.05, 0.01.

The coverage probability, function of p, n and the method, i = I, ...,XX,

is given by

(3.1) CP
(

p, n, i
)

=
n
∑

j=0

(

n

j

)

pj(1− p)n−j I[Li(j),Ui(j)](p) ,
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where I[a,b](p) denotes the indicator function of the interval [a, b], i.e. I[a,b](p) = 1,

if p ∈ [a, b], and I[a,b](p) = 0, if p /∈ [a, b]. The expected length is

(3.2) EL
(

p, n, i
)

=
n
∑

j=0

(

n

j

)

pj(1− p)n−j
(

Li(j) − Ui(j)
)

.

The above computations were performed in R (code available upon request). The

results are exact, within machine accuracy, and shall therefore not be interpreted

as Monte Carlo results (from the papers cited before the only one giving Monte

Carlo results is Garćıa-Pérez, 2005).

Figures 1 and 2 show plots of the coverage probability for two non ex-

treme cases, n = 50 and n = 500, with α = 0.05. The plots for other values of

n and for α = 0.01 are qualitatively similar to these two. The non-smooth as-

pect is expected due to the presence of the indicator function in expression (3.1).

In fact, the coverage probability, as a function of p, has as many discontinuity

points as the number of distinct values of Li and Ui, about 2n in (0, 1). Between

the discontinuity points CP(p, n, i) is a polynomial of degree n.

Since it is impossible to analyze the several thousands of plots that could

be produced, the results for the coverage probability were summarized in terms

of observed minimum and mean on p for each n, and then plotted as a function

of n. These plots are shown in Figures 3, 4, 5 and 6.

Considering the criteria described in Section 1, a possible classification of

the methods is the following:

1st. Group – Strictly conservative methods, i.e. methods for which the

minimum coverage probability is, for all n ≥ 10 and for

all p, greater or equal to 1− α − 0.005 (nominal coverage

probability rounded to two decimal places):

i : min
p

CP
(

p, n, i
)

≥ 1− α − 0.005 , ∀n≥10 .

2nd. Group – Methods not strictly conservative but correct on average,

i.e. with mean coverage probability, for all n ≥ 10, greater

or equal to 1− α − 0.005:

i :

∫ 1

0
CP
(

p, n, i
)

dp ≥ 1− α − 0.005, ∀n≥10 .

3rd. Group – Methods which are neither strictly conservative nor correct

on average.
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Figure 1: Coverage probability for each method as a function of p
for n = 50 and α = 0.05.
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Figure 2: Coverage probability for each method as a function of p
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Figure 3: Minimum coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 95% confidence.
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Figure 4: Mean coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 95% confidence.
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Figure 5: Minimum coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 99% confidence.
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Figure 6: Mean coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 99% confidence.
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Table 3 summarizes the classification. 2% exceptions were allowed for clas-

sifying a method in the first group. The methods in the first group are shown by

increasing order of mean coverage probability whereas those in the second group

are shown by decreasing order of the minimum of the coverage probabilities over-

all n and p (shown into brackets). The composition of the groups depends slightly

on the minimum value of n considered in this evaluation (n ≥ 10). If the crite-

rion was much less stringent, for instance n ≥ 200 then: for 95% confidence Boot

BCP cc and Arcsin cc would move to the first group and Wald cc and Boot P

would enter the second group; for 99% confidence Add 4 would move to the first

group and Boot P would enter the second group.

Table 3: Classification of the methods: strictly conservative (1st group);
average correct (2nd group) (overall minimum of the coverage
probabilities). Methods shown in boldface have not been con-
sidered in other comparative studies in the literature.

Group 95% confidence 99% confidence

1st I – Clopper Pearson XX – Add 4-t
IV – Score cc XVII – Arcsin cc Anscombe

XVII – Arcsin cc Anscombe I – Clopper Pearson

2nd XVI – Arcsin cc (93%) XVIII – Add 4 (98%)
XX – Add 4-t (93%) IV – Score cc (97%)
XVIII – Add 4 (92%) XIV – Boot. BCP cc (96%)
XIV – Boot. BCP cc (90%) XII – Boot. P cc (95%)

XII – Boot. P cc (88%) XIII – Boot. BCP (94%)
VIII – Wald-I cc (87%) VIII – Wald-I cc (93%)
XIII – Boot. BCP (85%) II – Bayesian uniform prior (90%)
III – Score (84%) III – Score (89%)
II – Bayesian uniform prior (79%) XVI – Arcsin cc (76%)
X – Wald-I rec. cc (64%) X – Wald-I rec. cc (32%)

It is worth noting that seven out of the thirteen methods classified in the

first and second groups were not considered in the largest comparative studies in

the literature (Vollset 1993, Newcombe 1998, Agresti and Coull 1998, Pan 2002).

Note that Method II is exact on average due to the coincidence between the

prior distribution admitted and the distribution of p actually used to compute

the mean coverage probability. The performance of this method is not so good

due to the rather small value of the minimum coverage probability. If we had

chosen the Jeffreys prior instead this aspect would have improved a little: 87%

for 95% confidence (placing it between Methods VIII and XIV) and 96% for 99%

confidence (between Methods IV and XIV).

It is also remarkable that some of the intervals maintain their good behavior

for n as low as 10, in spite of being based on asymptotic results. It is the case
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namely of the score intervals (with and without continuity correction) and the

ones based on the arcsine transformation.

Another interesting feature revealed by these results is that an apparently

small modification may have a great impact in the performance of a method. For

instance, the Wald method was completely disqualified in the vast majority of

the papers mentioned in the introduction, however a simple modification at the

boundary values and the simultaneous use of the continuity correction leads to

an acceptable method, with better performance than the score or the Bayesian

intervals. Figure 7 shows three plots illustrating this aspect for some values of n

and α referred as “unlucky” by Brown, Cai and DasGupta (2001, 2002).

n = 18 (95%) n = 50 (95%) n = 30 (99%)
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Figure 7: Coverage probability of the Wald interval (Method V, dashed)
and the Wald interval with a modification at the boundary and
continuity correction (Method VIII, solid) for some “unlucky”
values of n and α.

Not surprisingly it is observed that the methods with continuity correc-

tion are always better in terms of coverage probability than the corresponding

ones without that correction. It is also possible to verify that the bootstrap BCP

method is slightly better than the percentile method and that both of these meth-

ods outperform the Wald methods. The results also show that the t correction

of the Wald method proposed by Pan (2002) does not achieve its aim and it is in

fact less effective than the usual continuity correction.

After this analysis of the coverage probabilities it is important to compare

the expected lengths of the intervals. This comparison makes sense only within

each group and only for the first and the second groups. Taking as reference

Method I (Clopper–Pearson or exact) the ratio between the expected length of

the intervals obtained using the other methods in the first group and the expected

length by Method I was computed. The same was done with the first four methods

in the second group (considering that the remaining, in spite of being correct

on average, have an undesirable behavior in terms of the minimum coverage
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probability). Figure 8 shows the corresponding plots for n = 100. The plots for

other values of n are qualitatively similar, but with the differences between the

methods decreasing with n, especially at medium values of p.
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Figure 8: Ratio between the expected length of the conservative intervals
and the expected length of the Clopper–Pearson interval (top)
for n = 100. Ratio between the expected length of the first
four top average correct intervals and the expected length of
the Clopper–Pearson interval (bottom) for n = 100.

For the first group (top plots of Figure 8) the conclusion is that the Arcsine

method with Anscombe’s continuity correction is almost equivalent to the exact

Clopper–Pearson interval in terms of length (and degree of conservativeness)

but the Add 4-t is unnecessarily wide (or conservative).
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In the second group (bottom plots of Figure 8) the conclusions are not

so straightforward because there are more methods involved. However, for 95%

confidence, it is possible to conclude that Method XVI (Arcsin cc) dominates

Method XIV (Boot. BCP cc), having both better coverage and length. Method

XVIII (Add 4) almost dominates Method XX (Add 4-t), it has better length

but slightly smaller coverage probability. The choice between the dominating

two methods is not so easy and depends on prior knowledge of the true p, if p

is not small or large, Method XVIII is better because it leads to smaller length,

if, on the contrary, p is either small or large, Method XVI is better. What is

“small” or “large” depends on n and may not be easy to choose but after all

it is not so important because any of these methods will produce a reasonable

and safe interval whatever the value of p. For 99% confidence the conclusion is

that Method XVIII (Add 4) dominates Method IV (Score cc) because of better

length and coverage probability. The other two may lead to smaller lengths but

at the cost of undesirably small minimum coverage probability. The best choice

appears, therefore, to be the Add 4 method.

3.2. Non-central intervals

If one feels comfortable with the concept of a non-central interval then

there are only two methods to choose from: the exact method according to the

two criteria (minimum coverage probability of at least 1− α or mean coverage

probability equal to 1− α) and minimizing length.

To meet the first criterion and minimize the length of the interval one has to

invert the test H0 : p = p0 versus H1 : p 6= p0 with size α, choosing for each p0 the

acceptance region, An(p0)≤X≤Bn(p0), with smallest length. Then, given X,

the confidence region is the set of those p0 for which X is in the corresponding

acceptance region. This is not an easy task and in fact many authors have ad-

dressed it (Sterne, 1954, Crow, 1956, Clunies-Ross, 1958, Blyth and Still, 1983,

Casella, 1986, Reiczigel, 2003, see also the discussion in Santner and Duffy, 1989).

The method we have implemented is based on Sterne’s proposal (the accep-

tance interval for p = p0 is made by including the most probable value of X,

then the next most probable, ..., until the sum of their probabilities is greater

than 1− α) with a slight modification. This modification is needed because al-

though the acceptance region is always an interval the inverted region for p is not.

We simply fill in the holes when they appear, which reduces to compute the in-

terval by

LSt(X) = min
{

p : An(p) ≤X ≤ Bn(p)
}

and

USt(X) = max
{

p : An(p) ≤X ≤ Bn(p)
}

.
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The slight modification has a very small practical effect: when compared with

the intervals given in Table 2 of Blyth and Still (1983) for n ≤ 30 there is only

one different.

Figure 9 represents the results corresponding to Figures 1 and 2. It is clear

that the Sterne interval is closer to the desired coverage than the Clopper–Pearson

interval (it is less conservative but its coverage is still always over 1− α as it

should). This translates into smaller mean coverage probability (see Figure 10).
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Figure 9: Coverage probability for the two exact frequentist intervals
(non-central and central) as a function of p for n = 50 and
n = 500 (α = 0.05).

Figure 11 reproduces the top two plots of Figure 8 with the curve corre-

sponding to the Sterne interval. It does not come as a surprise that this interval

has smaller expected length than the Clopper–Pearson interval except for values

of p very close to the boundary.
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Figure 10: Mean coverage probability for the two exact frequentist intervals
(non-central and central) as a function of n (10 ≤ n ≤ 1000) for
95% and 99% confidence.
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When considering the second criterion (or mean coverage probability equal

to 1 − α) minimal length is achieved at ease by computing an HPD credibility

interval. Given X, the HPD interval for the a posteriori Beta(X + 1, n − X + 1)

distribution can be determined in the following way: for every possible value of

the left credibility tail, 0 ≤ α′ ≤ α, define

L(X, α′) = BX+1,n−X+1;α′ and U(X, α′) = BX+1,n−X+1;1−(α−α′)

and determine α′(X) such that U(X, α′) − L(X, α′) is minimum and denote it

α′(X). The interval is given by LHPD(X) = L(X, α′(X)) and UHPD(X) =

U(X, α′(X)). Note that, as mentioned in Subsection 2.1, we have α′(0) = 0,

LHPD(0) = 0, UHPD(0) = 1 − α1/(n+1); and α′(n) = α, LHPD(n) = α1/(n+1),

UHPD(n) = 1.
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Figure 12: Coverage probability for the two Bayesian intervals with uni-
form prior (HPD and equal credibility tails) as a function of p
for n = 50 and n = 500 (α = 0.05).



Interval Estimators for a Binomial Proportion 191

Figure 12 represents the results corresponding to Figures 1 and 2. For both

intervals the coverage fluctuates around the target value but the HPD does not

have the downward spikes lose to the boundaries. This is also evident from the

minimum coverage probability plots (see Figure 13).
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Figure 13: Minimum coverage probability for the two Bayesian intervals
with uniform prior (HPD and equal credibility tails) as a func-
tion of n (10 ≤ n ≤ 1000) for 95% and 99% confidence.

Figure 14 reproduces the bottom two plots of Figure 8 with the curves

corresponding to the two Bayesian intervals. As expected the HPD interval has

smaller expected length than the other intervals except for values of p very close

to the boundary (only for 99% confidence).

We have thus verified the optimality of the two exact procedures. What the

statistician must decide is whether the reduction in expected length (of approxi-

mately 2% or 3% in the strictly conservative case and of approximately 5% or 7%

in the average correct case) is worth the complications involved in the computa-

tions and the somehow different interpretation associated to non-central intervals.
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Figure 14: Ratio between the expected length of the first four top aver-
age correct central intervals and the expected length of the
Clopper–Pearson interval for n = 100 (solid thin lines) together
with the same ratio for the central Bayesian interval (dashed
thick lines) and for the HPD interval (solid thick lines).

4. CONCLUDING REMARKS

The results reported in this paper have brought new insight into the appar-

ently easy problem of determining an interval estimate for a binomial proportion.

Although there is not a unique uniformly best choice, it is now easier to answer

the two questions posed in the introduction and related, respectively, to applica-

tions and teaching.

4.1. Applications

When considering the computation of an interval estimate for a binomial

proportion the first decision the applied statistician must take is related to the

balance between degree of conservativeness and efficiency (equivalent in this case

to the length of the intervals). Let us consider the two extreme options and only

the class of central intervals:

(i) If strict conservativeness is mandatory than he or she must choose the

Clopper–Pearson interval, or, almost equivalently, the arcsine interval

with Anscombe’s correction.
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(ii) If strict conservativeness is not a major concern then length must be,

subject to being at least correct on average. It is also wise to limit

the “damage” measured by the overall minimum of the coverage

probabilities and the recommendation is to choose, in the case of

95% confidence, either the Arcsin cc method or the Add 4 method.

For 99% confidence the recommended method is the Add 4.

The score interval with continuity correction remains a valid choice, except

that it may be too wide if the true p is close to 0 or to 1.

4.2. Teaching

In addition to the concerns of the applied statistician the teacher of statis-

tics must also take into account the nature of the course and this may complicate

the decision.

In a course for future statisticians the recommendations given in the pre-

vious subsection apply. The various methods should be taught and thoroughly

discussed.

For elementary courses, typically less mathematically oriented and often

unique, simplicity and lack of time for in depth discussions are a major concern.

The Add 4 method of Agresti and Coull (1998) appears as a good choice, its

properties are good and it is easy to compute. If, maybe for other reasons, one

wants to stick to the Wald method then at least the continuity correction and

the boundary modification should always be included.

4.3. Software

Four major statistical packages (SAS 9.1.3, S-Plus 8, SPSS 15 and R 2.6)

were analyzed concerning the availability and correct implementation of interval

estimates for the binomial parameter.

SAS provides, through PROC FREQ, the Wald interval, with and without

continuity correction, and the exact Clopper–Pearson interval obtained with the

percentiles of the F distribution.

In S-Plus there are two commands related to binomial proportions. The

prop.test command gives the normal based hypotheses tests and the score

intervals, with and without continuity correction. However, when using the conti-

nuity correction and when X = 0 or X = n, the intervals given by this command
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are wrong, leading to L(0) > 0 or L(n) < 1. Another undesirable feature of

this command is that it never applies the continuity correction when X = n/2,

even when this option is set to TRUE. These apparently small details may have a

strong visual impact and determine the classification of the method (see Figure 9).

The binom.test command gives only the exact hypothesis test but could be

easily modified in order to provide the exact Clopper–Pearson interval.

SPSS provides the asymptotic and the exact tests for binomial proportions

but no confidence intervals (unlike other situations for which both the test and

the confidence interval are provided, e.g. t test for the mean). Separately, there

is a document describing how to compute the equal-tailed Jeffreys prior intervals

(which are represented in bar charts).

The R software has commands with the same names as those of S-Plus

(prop.test and binom.test), but the first makes the boundary correction and

the second also gives the exact Clopper–Pearson interval. However the prop.test

has the same problem with the continuity correction when X= n/2 (see Figure 15

and also Figure 1 of Geyer and Meeden, 2005).
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Figure 15: Effect of forcing no continuity correction for X = n/2 on the
coverage probability of the Score cc interval (95% confidence).
Correct implementation of the method (solid line) and imple-
mentation with the command prop.test of R and S-Plus
(dashed line). The dashed-dotted line represents the results
for prop.test of S-Plus at the extremes (no boundary cor-
rection when X = 0 or X = n).

In summary, the analyzed statistical packages do not treat the subject

uniformly. This is perhaps a reflection of the recent spread of publications in the

area. We hope that in the near future a consensus is reached and that it will be

reflected in the software. This paper aims at contributing in that direction.
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