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1. INTRODUCTION

The extremal properties of sub-sampling stationary sequences is a rapidly

developing subject and it has been a topic of active research over the last years,

mainly due to its wide applicability to the analysis of environmental and financial

processes. Sub-sampling may occur according to some deterministic pattern, or

may occur randomly. Much of the early work on this topic paid attention on

the effect of deterministic sub-sampling on the extremal properties of stationary

sequences; see Scotto [22], Hall et al. [14], Martins and Ferreira [16], Ferreira and

Matins [9], Scotto et al. [23], Hall and Scotto [13], Scotto and Ferreira [24], Scotto

and Turkman [25] and Robinson and Tawn [21]. In contrast, the effect of random

sub-sampling has not received much attention in the literature. We refer to the

work of Weissman and Cohen [28] who considered the case of i.i.d. random sub-

sampling as a particular case of some mixture models. More recently, Hall and

Hüsler [12] have obtained some generalizations of Weissman and Cohen’s results

for sequences where the sub-sampling pattern has a weak dependence structure.

One reason for the interest in extremes observed at random sampling rates

comes from the need to compare schemes for monitoring systems with breakdowns

or systems with automatic replacement of devices in case of failures. Examples

are encountered, for instance, in ocean engineering. The probabilistic description

of the wave climate in specific sites and ocean areas is an important prerequi-

site for the design and assessment of coastal and offshore structures. The wave

climate is commonly described from time series of sea-state parameters, such as

the significant wave height and the mean zero upcrossing period. These, as well

as other sea-state parameters, provide information about the sea-state that has

occurred and about the way the sea-state evolves with time. Most of the early

available data has been collected by waverider buoys (at present, however, satel-

lite data is becoming widely available and some climate descriptions are based on

this type of data). An important aspect for a correct probabilistic description of

the wave climate is to work with complete records of wave measurements. Miss-

ing values, however, are frequently encountered in time series analysis of wave

measurements, mainly when waverider buoys are used for collecting data sets.

The main reasons are damage by shipping, freak waves which appeared out of a

calm sea and a failure on the reading device. Similar problems arise in environ-

mental studies. For example, extreme value analysis is of particular interest in

assessing the impact of high air pollution levels, because air quality guidelines

are formulated in terms of the high level of permitted emissions. This method-

ology has been used in the analysis of levels of ozone (Smith, [26], Nui, [18], and

Tobias and Scotto, [27]) and nitrogen dioxide (Coles and Pan, [7]). Ozone data

is usually collected from sampling stations integrated within a local automatic

network for the control of atmospheric pollution in a specific area. In this case,

missing observations appear when the equipment is not working properly or it is

out of service.
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As the title of the paper suggest, the aim of this work is to extend the

results known for deterministic sub-sampled processes to random-generated sub-

sampling processes. In particular, we investigate the maximum limiting distri-

bution and its corresponding extremal index, when the underlying process is

represented as a moving average driven by heavy-tailed innovations and the sub-

sampling process is strongly mixing. Our results both exemplify some of the

findings of Hall and Hüsler [12] and offer more precise details for this particular

class of models.

The examples given in the previous paragraphs illustrate the need to ac-

count for non-i.i.d. patterns of missing-values since, in general, when an equip-

ment is out of order its recovery time may be considerably long. In this paper

we also pay special attention to discrete-valued sequences. Motivation to include

discrete data models comes from the need to account for the discrete nature of

certain data sets, often counts of events, objects or individuals. Examples of

applications can be found in the analysis of time series of count data that are

generated from stock transactions (Quoreshi, [20]), where each transaction refers

to a trade between a buyer and a seller in a volume of stocks for a given price, and

also in experimental biology (Zhou and Basawa, [29]), social science (McCabe and

Martin, [17]), international tourism demand (Nordström, [19], Garcia-Ferrer and

Queralt, [10], Brännäs et al. [4], and Brännäs and Nordström, [5]), and queueing

systems (Ahn et al. [1]).

The rest of the paper is organized as follows: Section 2 provides a back-

ground description of basic theoretical results related to conventional and non-

negative integer-valued moving averages with regularly varying tails. Moreover,

a suitable representation for the randomly sub-sampled process is described.

In Section 3 we obtain the limiting distribution of the maximum term of the

sub-sampled moving average sequence and the expression of its extremal index.

Finally, in Section 4 the results are applied to conventional and discrete autore-

gressive processes.

2. PRELIMINARIES

For the purpose of this work we shall consider stationary sequences X =

(Xn)n∈N0
of the form

Xn =
∞
∑

j=0

βj ∗ Zn−j ,(2.1)

where Z = (Zn)n∈Z is an i.i.d. sequence of random variables (rv’s) with distribu-

tion function FZ belonging to the domain of attraction of the Fréchet distribution
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with parameter α > 0, (hereafter FZ ∈ D(Φα)):

(2.2) P (|Z1|> x) = x−αL(x) , x > 0 ,

where L is slowly varying at infinity and

(2.3) lim
x→∞

P (Z1 > x)

P (|Z1|> x)
= p , lim

x→∞

P (Z1 <−x)

P (|Z1|> x)
= q ,

for some p+q = 1 with 0≤ p≤ 1. We further assume that the coefficients (βj)j∈N0

are such that

∞
∑

j=0

|βj |
δ < ∞ , δ < min(α, 1) .(2.4)

Throughout the paper we consider two different cases:

(a) The ∗-operator denotes multiplication and Z is an i.i.d. sequence of

continuous rv’s. In this case X represents a conventional (i.e., continuous-valued)

moving average model.

(b) The ∗-operator denotes binomial thinning, say ◦, and Z represents an

i.i.d. sequence of non-negative integer-valued rv’s; that is

β ◦ Z =
Z
∑

s=1

Bs(β) , β ∈ [0, 1] ,

where (Bs(β)) forms an i.i.d. sequence of Bernoulli rv’s satisfying P [Bs(β)=1] = β.

In this case X represents a discrete analogue of case (a). It is important to stress

the fact that discreteness of the process X is ensured by the ◦-operator since

this operator incorporates the discrete nature of the variates and acts as the

analogue of the standard multiplication used in the continuous-valued moving

average model. Note that thinning is a random operation which reflects the be-

havior of many natural phenomenons. For instance, if Zn represents the number

of individuals of a certain specie at time n, β ◦Zn will represents the number of

survivors at the next time instant with β representing the probability of surviv-

ing. The concept of thinning is well known in classical probability theory and

has been in use in the Bienaymé–Galton–Watson branching processes literature

as well as in the theory of stopped-sum distributions.

We further consider within the discrete case the general class of models

consisting of all stationary sequences defined by (2.1) in which all thinning oper-

ations involved are independent, for each n. Nevertheless, dependence is allowed

to occur between the thinning operators βj ◦Zn and βi ◦Zn, j 6= i (which belong

to Xn+j and Xn+i respectively). We therefore obtain a rich class of discrete

models which share some properties with the conventional case. For particular

examples and estimation procedures see Brännäs and Hall [3].
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The tail properties of Xn have been studied by Davis and Resnick [8] for

the conventional case and by Hall [11] for the discrete case. The result below

summarises the tail behavior of the random variables W = β ∗ Z and Xn, when

FZ ∈ D(Φα).

Theorem 2.1. Let Z be a random variable with FZ ∈ D(Φα), α > 0.

1. For both meanings of the ∗-operator, FW ∈ D(Φα) and

(a) for the conventional case

lim
n→∞

1 − FW (n)

1 − FZ(n)
= p(β+)α + q(β−)α ,

with β+ = max(β, 0) and β−= max(−β, 0);

(b) for the discrete case

lim
n→∞

1 − FW (n)

1 − FZ(n)
= βα .

2. If FZ ∈ D(Φα) then, for both meanings of the ∗-operator, FX ∈ D(Φα),

and for all τ > 0 and some sequence of constants (un)

lim
n→∞

n
(

1−FZ(un)
)

= τ ′ =⇒ lim
n→∞

n
(

1−FX(un)
)

= τ ,

with

τ ′ =
τ

∑∞
j=0 p(β+

j )α + q(β−
j )α

.(2.5)

for the conventional case and

τ ′ =
τ

∑∞
j=0 βα

j

,(2.6)

for the discrete case.

The result above implies that every random variables Zn contributes to

the tail P (X > x). This contribution depends on the size of the weight βj for

both meanings of the ∗-operator, as well as on the sign of the weight βj in the

conventional case.

Now we define the randomly sub-sampled sequence Y = (Yn)n∈N0
obtained

from X and induced through a strictly increasing function g(n) : N0 → N0 as

follows:

Yn = Xg(n) , n ≥ 0 .

In addition, let U = (Un)n∈N0
be a Bernoulli stationary sequence independent of

X having marginal distribution with parameter γ (0≤ γ ≤ 1). The Un s are used

as indicator variables that signal which observations are sampled whereas the g(·)
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function gives the sampled time, that is the increasing sequence of ns for which

Un = 1. As an example take

U1 = 1, U2 = 0, U3 = 1, U4 = 0, U5 = 0, U6 = 1, U7 = 1, ... ,

providing

g(1) = 1, g(2) = 3, g(3) = 6, g(4) = 7, ... .

The sequences U considered in this paper will either be i.i.d. or strongly mixing.

The study of the extremal properties of stationary sequences is frequently

based on the verification of appropriate dependence conditions which assure that

the limiting distribution of the maximum term is of the same type as the limiting

distribution of the maximum of i.i.d. rv’s with the same marginal distribution F .

For stationary sequences, usual conditions used in the literature are Leadbetter’s

D(un) condition (Leadbetter et al. [15]) and condition D(k)(un), k ∈N, (Chernick

et al. [6]). For completeness and reader’s convenience the definition of conditions

D(un) and D(k)(un) are given below.

Definition 2.1. The condition D(un) is said to hold for a stationary se-

quence (Xn)n∈N with marginal distribution F , if for any integers i1 < ... < ip <

j1 < ... < jq < n such that j1− ip ≥ ln we have
∣

∣

∣
Fi1,...,ip,j1,...,jq

(un, ..., un) − Fi1,...,ip(un, ..., un)Fj1,...,jq
(un, ..., un)

∣

∣

∣
≤ αn,ln

with αn,ln → 0 for some sequence (ln), ln = o(n).

Definition 2.2. The condition D(k)(un), k ≥ 1, holds for a stationary

sequence (Xn)n∈N if there exist sequences (sn) and (ln) of integers, and (un) of

reals, such that sn → ∞, sn αn,ln → 0, sn ln
n

→ 0, and

(2.7) lim
n→∞

nP
(

X1 > un ≥M2,k , Mk+1,rn
> un

)

= 0 ,

where rn =
[

n
sn

]

and

Mi,j =

{

−∞ i > j ,

maxi≤t≤j Xt i ≤ j .

The main result is due to Chernick et al. [6], in which the extremal index

is computed by knowledge of the joint distribution of k consecutive terms.

Theorem 2.2 (Chernick et al. [6]). Suppose that for some k ≥ 1 the con-

ditions D(un) and D(k)(un) hold for un = un(τ), ∀τ > 0. Then, the extremal

index of (Xn)n∈N exists and is equal to θ iff

P
(

M2,k ≤ un |X1 > un

)

→ θ, as n → ∞, ∀ τ > 0 .
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A convenient way to apply the above result may be through the following:

Theorem 2.3 (Chernick et al. [6]). Suppose (Xn)n∈N and (X
(m)
n )n∈N, m≥1,

are stationary sequences defined on the same probability space such that for some

sequence of constants {un}

lim
ǫ→0

lim sup
n→∞

nP
(

(1− ǫ)un < X1 ≤ (1+ ǫ)un

)

= 0 ,

lim
m→∞

lim sup
n→∞

nP
(

|X1− X
(m)
1 | > ǫun

)

= 0 , ǫ > 0 .

Then

1. If condition D(un) holds for (X
(m)
n )n∈N, for each m, then it holds for

(Xn)n∈N as well.

2. If (X
(m)
n )n∈N has extremal index θ(m), (Xk)n∈N has extremal index θ

iff
lim

m→∞
θ(m) = θ .

3. EXTREMAL BEHAVIOR

The main task of this section is to derive the extremal behavior of the

sub-sampled Y process. The main result is formalized through the following

theorem.

Theorem 3.1. Let X be a moving average process defined as previously.

Assume that (|βj |)j≥0 forms a decreasing sequence. Consider the sub-sampled se-

quence Y obtained by random sub-sampling according to an auxiliary stationary

sequence U. Furthermore, assume that FZ ∈D(Φα) satisfying limn→∞ n(1−FZ(un))

= τ ′ with τ ′ defined as in (2.5) for the conventional case, and defined as in (2.6)

for the discrete case. Then, the distribution of Yk satisfies

lim
n→∞

n
(

1− FY (un)
)

= τ ′ ,

and it holds that:

1. The sequence Y has extremal index

θC =

∑∞
j=1 P

(

g(2) − g(1) = j
) (

∑j−1
i=0 p(β+

i )α + q(β−
i )α

)

∑∞
j=0 p(β+

j )α + q(β−
j )α

,(3.1)

for the conventional case, with β+
j and β−

j defined as in Theorem 2.1,

and

θD =

∑∞
j=1 P

(

g(2) − g(1) = j
)

∑j−1
i=0 βα

i
∑∞

j=0 βα
j

,(3.2)

for the discrete case.
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2. Moreover the limiting distribution of the maximum Mn(Y ) = max
1≤g(k)≤n

{Yk}

is given by

lim
n→∞

P
(

Mn(Y )≤ un

)

= exp{−θ∗x−α} ,

where θ∗ equals θC for the conventional case and θD for the discrete

case.

Proof: By Theorem 2.3, to prove (3.1) we first obtain the extremal index

of the the auxiliary finite-order sub-sampled moving average sequence

Y
(m)
k =

m
∑

j=0

βj ∗ Zg(k)−j ,

for fixed m > 0. We also temporarily take βj = 0 for j > m. Note that the

local dependence D(m+1)(un) condition trivially holds for Y(m) = (Y
(m)
k ). For

simplicity in notation we define M
(m)
2,m+1 = max2≤k≤m+1 Y

(m)
k , and

µ
(m)
m+1(un) = P

(

Y
(m)
1 > un ≥ M

(m)
2,m+1

)

.

By Theorem 2.2 we have that the extremal index of the sequence Y(m), for both

meanings of the ∗-operator, is given by

θ(m) = lim
n→∞

n µ
(m)
m+1(un)

nP
(

Y
(m)
1 > un

)

.

Moreover by arguments as in Chernick et al. ([6], Prop. 2.1)

lim
n→∞

n µ
(m)
m+1(un) = lim

n→∞
n

m
∑

j=0

P
(

M
(m)
2,m+1≤ un , βj ∗Zg(1)−j > un

)

= lim
n→∞

n

m
∑

j=0

[

P
(

βj ∗Zg(1)−j > un

)

− P
(

M
(m)
2,m+1 > un , βj ∗Zg(1)−j > un

)

]

.

Now

lim
n→∞

nP
(

M
(m)
2,m+1 > un , βj ∗Zg(1)−j > un

)

=

= lim
n→∞











nP

(

M
(m)
2,m+1 > un , βj ∗Zg(1)−j > un ,

∨

0≤i′≤m

2≤t≤m+1

βi′ ∗Zg(t)−i′ > un

)

+ nP

(

M
(m)
2,m+1 > un , βj ∗Zg(1)−j > un ,

∨

0≤i′≤m

2≤t≤m+1

βi′ ∗Zg(t)−i′ ≤ un

)











= lim
n→∞

nP

(

βj ∗Zg(1)−j > un ,
∨

0≤i′≤m

2≤t≤m+1

βi′ ∗Zg(t)−i′ > un

)

,
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since as in Chernick et al. ([6], p. 842) and with the convention that βj = 0 for

j > m it follows that

lim
n→∞

nP

(

M
(m)
2,m+1≤ un , βj ∗Zg(1)−j > un ,

∨

0≤i′≤m

2≤t≤m+1

βi′ ∗Zg(t)−i′ > un

)

= 0 .

This makes explicit the precise way in which a single large Z asymptotically dom-

inates the behavior of the maximum of the sequence Y(m). For the conventional

case, it follows that

lim
n→∞

n µ
(m)
m+1(un) = lim

n→∞
n

m
∑

j=0

P

(

βj ∗Zg(1)−j > un ,
∨

0≤i′≤m

2≤t≤m+1

βi′ ∗Zg(t)−i′ ≤ un

)

= lim
n→∞

n
m
∑

j=0

P

(

βj ∗Z1 > un ,
∨

2≤t≤m+1

βg(t)−g(1)+j ∗Z1≤ un

)

= lim
n→∞

n
m
∑

j=0



P

(

∨

2≤t≤m+1

β+
g(t)−g(1)+j

∗Z1≤ un)

+ P

(

∨

2≤t≤m+1

β−

g(t)−g(1)+j
∗Z1≤ un

)

− P

(

∨

1≤t≤m+1

β+
g(t)−g(1)+j

∗Z1≤ un

)

− P

(

∨

1≤t≤m+1

β−

g(t)−g(1)+j
∗Z1≤ un

)





= lim
n→∞

n

m
∑

j=0

[

P
(

β+
g(2)−g(1)+j

∗Z1≤ un

)

+ P
(

β−

g(2)−g(1)+j
∗Z1≤ un

)

− P
(

β+
j ∗Z1≤ un

)

− P
(

β−
j ∗Z1≤ un

)

]

,

since (|βj |)j∈N0
forms a decreasing sequence with βj = 0 for j ≥ m+1. Condi-

tioning on V = g(2) − g(1) we obtain

lim
n→∞

n µ
(m)
m+1(un) =

m
∑

j=0

P
(

g(2)−g(1) = j
)

(

j−1
∑

i=0

p(β+
i )α + q(β−

i )α

)

.

Following Davis and Resnick [8] the tail behavior of Y
(m)
k is given as follows:

lim
n→∞

P
(

Y
(m)
k > un

)

P
(

Z1 > un

) =
m
∑

j=0

p(β+
j )α + q(β−

j )α ,
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yielding

θ(m) =

∑m
j=1 P

(

g(2)−g(1) = j
)(

∑j−1
i=0 p(β+

i )α + q(β−
i )α

)

∑m
j=0 p(β+

j )α + q(β−
j )α

.

Finally as an application of Lemma 3.1 in Hall and Hüsler ([12], p. 547), condition

D(un) holds for the sub-sampled sequence Y, and hence by Theorem 2.3 the

extremal index θC is

θC = lim
m→∞

θ(m) .

The discrete case follows as an application of the results given in Hall [11] and

Hall et al. [14].

4. EXAMPLES

We now illustrate the effect of random sub-sampling on the extremal index

of an AR(1) process

Xk = β ∗Xk−1 + Zk ,

considering two different cases:

(a) the conventional case with β ∈ (−1, 0) and the sequence of innovations

Z satisfying (2.2) and (2.3);

(b) the discrete case with Z being a sequence of non-negative integer-

valued rv’s.

This type of autoregressive sequence is known as INteger-valued AutoRegressive

process of order one (INAR(1) in short) process and has been considered by

several authors in the literature; see Aly and Bouzar [2] for details. It is worth

noting that in the former case, Hall and Hüsler’s results can not be applied since

condition D′′(un) does not hold. In contrast, the AR(1) model with β ∈ (0, 1)

satisfies D′′(un) condition.

Furthermore, for the sequence U two different cases will be considered:

• Independent and identically distributed failure instants: in this case

U forms an i.i.d. sequence with P (Uk =1) = γ = 1−P (Uk = 0), providing

P
(

g(2)−g(1) = j
)

= γ(1− γ)j−1 , j = 1, 2, ... ;

• Failures via a Markov Chain: within this framework U forms a station-

ary Markov sequence defined by










P
(

Uk = 1 | Uk−1 = 1
)

= η ,

P
(

Uk = 1 | Uk−1 = 0
)

= ν .
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This model defines a system where the probability of failure depends

only on whether there occurred or not a failure just before. Given any

values of η, ν ∈ [0, 1] it is easy to obtain that

P (U1 = 1) =
ν

1− η + ν
.

Note that for a fixed value of κ = ν
1−η+ν

∈ [0, 1], the parameters ν and η

are not entirely arbitrary since if κ > 1/2 then η ∈ [2 − 1/κ, 1]. The

sequence U is regenerative with finite mean duration of renewal epochs

and hence it is strongly mixing. Moreover

P
(

g(2)−g(1) = j
)

=

{

η j = 1 ,

(1− ν)j−2 (1− η)ν j ≥ 2 .

4.1. Conventional case with negative parameter

In this case, the sub-sampled sequence Y generated through the i.i.d. se-

quence U has extremal index

θC =
1 − β 2α

1 − (1−γ)β 2α
.(4.1)

When γ = 1, (i.e., no sub-sampling), the extremal index in (4.1) becomes θC =

1− β 2α which may be derived from the results given in Davis and Resnick [8].

Moreover, if the sub-sampled sequence Y is generated through the stationary

Markov sequence U, the extremal index becomes

θC =
1 − β 2α

[

1 − (ν−η) (1−β 2α)
]

1 − (1−ν)β 2α
.

4.2. Discrete case

In the discrete case, the extremal index of the sub-sampled sequence Y

generated through the i.i.d. sequence U, takes the form

θD =
1 − βα

1 − (1− γ)βα
;

whereas for the stationary Markov sequence, the extremal index is given by

θC =
1 − βα

[

1 − (ν−η) (1−βα)
]

1 − (1−ν)βα
.
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