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Abstract:

• In this paper the relation between goodness-of-fit testing and the optimal selection of
the sample fraction for tail estimation, for instance using Hill’s estimator, is examined.
We consider this problem under a general kernel goodness-of-fit test statistic for as-
sessing whether a sample is consistent with the Pareto-type model. The derivation of
the class of kernel goodness-of-fit statistics is based on the close link between the strict
Pareto and the exponential distribution, and puts some of the available goodness-of-
fit procedures for the latter in a broader perspective. Two important special cases of
the kernel statistic, the Jackson and the Lewis statistic, will be discussed in greater
depth. The relationship between the limiting distribution of the Lewis statistic and
the bias-component of the asymptotic mean squared error of the Hill estimator is
exploited to construct a new tail sample fraction selection criterion for the latter.
The methodology is illustrated on a case study.
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1. INTRODUCTION

Extreme value theory focuses on characteristics related to the tail of a

distribution function such as indices describing tail decay, extreme quantiles and

small tail probabilities. In the process of making inferences about the far tail

of a distribution function, it is necessary to extend the empirical distribution

function beyond the available data. This is typically done by only considering

the upper k order statistics, which then entails the issue of how to select a good,

or, if possible, an optimal, k-value. Many proposals to tackle this issue have been

made in the literature, see for instance Drees and Kaufmann (1998), Danielsson

et al. (2001), Guillou and Hall (2001), and Beirlant et al. (2002). In this paper we

use recently introduced kernel goodness-of-fit statistics for Pareto-type behavior

as a basis for proposing a new procedure for selecting k.

Consider random variables X1, ..., Xn independent and identically distrib-

uted (i.i.d.) according to some distribution function F and let X1,n ≤ ... ≤ Xn,n

denote the corresponding ascending order statistics. If for sequences of constants

(an > 0)n and (bn)n

lim
n→∞

P

(

Xn,n− bn

an
≤ x

)

= lim
n→∞

Fn(bn + anx) = G(x)(1.1)

at all continuity points of G, for G some non-degenerate distribution function,

then G has to be of the generalized extreme value (GEV) type:

Gγ(x) =







exp
(

−(1 + γx)−1/γ
)

, 1 + γx > 0, γ 6= 0 ,

exp
(

− exp(−x)
)

, x ∈ R, γ = 0 .
(1.2)

Note that the behavior of this distribution function is governed by the single

parameter γ, called the extreme value index. If F satisfies (1.1)–(1.2), then it

is said to belong to the max-domain of attraction of Gγ , denoted F ∈ D(Gγ).

An important subclass of the max-domain of attraction of the GEV distribution

is the class of the Pareto-type models. These are characterized by heavy tailed

distribution functions with infinite right endpoints, having γ > 0.

For Pareto-type distributions the first order condition (1.1) can be ex-

pressed in an equivalent way in terms of the survival function 1− F :

1− F (x) = x−1/γ ℓF (x) , x > 0 ,(1.3)

where ℓF denotes a slowly varying function at infinity, i.e.

ℓF (λx)

ℓF (x)
→ 1 as x → ∞ for all λ > 0 .(1.4)
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In terms of the tail quantile function U , defined as U(x) = inf{y : F (y)≥ 1−1/x},
x > 1, we then have that

U(x) = xγ ℓU (x) ,(1.5)

where ℓU again denotes a slowly varying function at infinity (Gnedenko, 1943).

Pareto-type tails are systematically used in certain branches of non-life insurance,

as well as in finance (stock returns), telecommunication (file sizes, waiting times),

geology (diamond values, earthquake magnitudes), and many others. In the

analysis of heavy tailed distributions the estimation of γ, and the subsequent

estimation of extreme quantiles, assume a central position. Several estimators

for γ have been proposed in the literature, and their asymptotic distributions

established, usually under a second order condition on the tail behavior (see e.g.

Beirlant et al., 2004, and de Haan and Ferreira, 2006). This condition specifies

the rate of convergence of ratios of the form ℓ(λx)/ℓ(x), with ℓ a slowly varying

function, to their limit (see Bingham et al., 1987).

Second order condition (Rℓ). A slowly varying function ℓ satisfies a

second order condition if there exists a real constant ρ ≤ 0 and a rate function b

satisfying b(x) → 0 as x → ∞, such that for all λ ≥ 1, as x → ∞,

ℓ(λx)

ℓ(x)
− 1 ∼ b(x)

λρ − 1

ρ
.

In the context of estimation of γ, it is then typically assumed that the

slowly varying function ℓU in (1.5) satisfies a second order condition. Of interest

for the subsequent development of a procedure for selecting a threshold, is testing

of the hypothesis that the underlying distribution is of Pareto-type together with

a second order condition holding. Formally, this hypothesis can be stated as

H0 : F is of Pareto-type with ℓU satisfying Rℓ .(1.6)

It is well known that the log-transform of a (strict) Pareto random variable has

an exponential distribution. Our approach to testing H0 is to exploit this fact by

considering goodness-of-fit tests for exponentiality as possible test statistics. The

literature on goodness-of-fit tests for the exponential distribution is quite elabo-

rate, see e.g. Henze and Meintanis (2005) for a recent overview of this literature.

Such tests often take the form of the ratio of two estimators for the exponential

scale parameter. In a similar way, one can construct test statistics as ratios of

two estimators for the extreme value index γ.

Of course it is intuitively clear that goodness-of-fit procedures should enable

one to choose an appropriate threshold Xn−k,n for tail index estimation. Hill

(1975) already recognized this idea, see also Beirlant et al. (1996). Typically,

however, goodness-of-fit based procedures are too conservative with respect to the

null hypothesis, leading to too high values of k (or equivalently too low thresholds)
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with respect to the asymptotic mean squared error (AMSE) criterion. Based on

the limiting distribution of our kernel goodness-of-fit statistic, we propose an

estimator for the bias component of the AMSE of the Hill estimator, yielding an

alternative method to select the threshold Xn−k,n.

The remainder of this paper is organized as follows. In Section 2 we intro-

duce a general kernel goodness-of-fit statistic for assessing whether a sample is

consistent with the Pareto-type model, and state its main properties. Section 3

deals with the link between goodness-of-fit testing and the selection of the opti-

mal tail sample fraction, for instance when using the Hill estimator. In Section 4

we illustrate the methodology with a practical example.

2. A KERNEL GOODNESS-OF-FIT STATISTIC FOR PARETO-

TYPE BEHAVIOR

Consider X1, ..., Xn i.i.d. Pa(1/γ) random variables, where Pa(1/γ) denotes

the strict Pareto distribution with Pareto index 1/γ, i.e. F (x) = 1−x−1/γ , x > 1,

and the corresponding ascending order statistics X1,n ≤ ... ≤ Xn,n. Then the ra-

tios Yj,k = Xn−k+j,n/Xn−k,n, j = 1, ..., k, are jointly distributed as the order statis-

tics of a random sample of size k from the Pa(1/γ) distribution. Consequently,

Y ∗
j,k = log Yj,k behave as Exp(1/γ) order statistics, where Exp(1/γ) denotes the

exponential distribution with mean γ. In case the data originate from a Pareto-

type distribution these properties hold approximately above a sufficiently high

threshold. This close link between the Pareto-type and the exponential model

will be exploited in the derivation of goodness-of-fit tests for the former. The

literature on testing whether a sample is consistent with an exponential distribu-

tion is quite extensive, see for instance Stephens (1986) and Henze and Meintanis

(2005), and the references therein. These exponential goodness-of-fit test statis-

tics are quite often a ratio of two estimators for the exponential scale parameter

(e.g. Lewis, 1965, Jackson, 1967, de Wet and Venter, 1973). Inspired by this and

based on the above properties of Pa(1/γ) order statistics, we apply a similar ratio

to the k largest order statistics, leading to the following test statistic

1
k

∑k
j=1 K

(

j
k+1

)

Zj

Hk,n
,(2.1)

with K denoting a kernel function satisfying
∫ 1
0 K(u)du = 0, Zj = j(log Xn−j+1,n−

log Xn−j,n), and Hk,n = 1
k

∑k
j=1 Zj , the Hill estimator for γ (Hill, 1975).

In Goegebeur et al. (2007), generalizing Beirlant et al. (2006), the statistic

in (2.1) was proposed and its limiting distribution derived under the hypothe-

sis stated in (1.6), some mild regularity conditions on K, and an intermediate
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k sequence, i.e. k = kn → ∞, kn = o(n) as n → ∞. We use log+u to denote

max{log u, 1}.

Theorem 2.1. Consider X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈ D(Gγ) for some γ > 0. Assume ℓU satisfies

Rℓ and let K(t) = 1
t

∫ t
0 u(v) dv for some function u satisfying

∣

∣k
∫ j/k
(j−1)/k u(t) dt

∣

∣ ≤
f
( j

k+1

)

for some positive continuous function f defined on (0, 1) such that
∫ 1
0 log+(1/w)f(w) dw < ∞ in case ρ < 0 and

∫ 1
0 w−ξf(w) dw < ∞ for some small

ξ > 0 in case ρ = 0,
∫ 1
0 |K(w)|2+δ dw <∞ for some δ > 0 and 1√

k

∑k
j=1K

( j
k+1

)

→ 0

as k →∞. Then as k, n → ∞, k/n → 0 and
√

k b(n/k) → c,

√
k

Hk,n

1

k

k
∑

j=1

K

(

j

k+1

)

Zj
L−→ N

(

c

γ

∫ 1

0
K(u)u−ρ du,

∫ 1

0
K2(u) du

)

.

Using this theorem, the decision rule for testing the hypothesis (1.6) at the

significance level α is to reject H0 if

√
k

∣

∣

∣

∣

∣

1

k Hk,n

k
∑

j=1

K

(

j

k+1

)

Zj − b(n/k)

γ

∫ 1

0
K(u)u−ρdu

∣

∣

∣

∣

∣

>

> Φ−1

(

1 − α

2

)

√

∫ 1

0
K2(u) du ,

where Φ−1 denotes the standard normal quantile function. However, for practical

application this rule is not very helpful as it depends on the unknown function b

as well as on the parameters γ and ρ. A way out of this is to choose k relatively

small, i.e. small enough to guarantee that
√

k b(n/k) ≈ 0, which then leads to the

rule to reject H0 if

√
k

Hk,n

∣

∣

∣

∣

∣

1

k

k
∑

j=1

K

(

j

k + 1

)

Zj

∣

∣

∣

∣

∣

> Φ−1

(

1 − α

2

)

√

∫ 1

0
K2(u) du .

For a detailed description of the fundamental properties of the goodness-

of-fit statistic and for an evaluation of its small sample performance through a

simulation study, we refer to Goegebeur et al. (2007). We will now describe two

important special cases of this kernel-type goodness-of-fit statistic, the Jackson

(Jackson, 1967) and the Lewis (Lewis, 1965) statistics, in more detail.

2.1. Jackson kernel function

We modify the Jackson statistic (Jackson, 1967), originally proposed as a

goodness-of-fit statistic for testing exponentiality, in such a way that it measures



Kernel Goodness-of-Fit Statistics and Pareto-Tail Estimation 57

the linearity of the k largest observations on the Pareto quantile plot. Consider

X1,, ..., Xn i.i.d. Exp(δ) random variables. The Jackson statistic is given by

TJ =

∑n
j=1 tj,nXj,n
∑n

j=1 Xj
(2.2)

where tj,n = δE(Xj,n) =
∑j

i=1(n − i + 1)−1. The numerator is clearly a sum of

cross products of order statistics and their expected values. The denominator

is introduced to eliminate the dependence on the nuisance parameter δ. The

Jackson statistic can hence be considered as a ‘correlation like’ statistic based

on the exponential quantile plot. The limiting distribution of the appropri-

ately normalized Jackson statistic was derived by Jackson (1976), in particular
√

n(TJ − 2)
D→ N(0, 1), as n → ∞. For our purposes it is more convenient to

express (2.2) in terms of the standardized spacings Vj = (n−j+1)(Xj,n−Xj−1,n),

j = 1, ..., n. From the Rényi representation these are known to be i.i.d. Exp(δ)

random variables. Rearranging terms of (2.2), it can be shown that

TJ =

∑n
j=1 Cj,n Vj
∑n

j=1 Vj

where C1,n = 1 and Cj,n = 1 + tj−1,n, j = 2, ..., n.

We will now adjust the Jackson statistic in such a way that it measures the

linearity of the k upper order statistics on the Pareto quantile plot. Consider a

random sample X1, ..., Xn of Pareto-type distributed random variables. Applica-

tion of the Jackson statistic to Y ∗
j,k, j = 1, ..., k, yields, after suitable normalization

and rearranging terms,

T J
k,n =

√
k

1
k

∑k
j=1 KJ

(

j
k+1

)

Zj

Hk,n

where KJ(u) = −1 − log u, see also Beirlant et al. (2006). The kernel function

KJ satisfies the conditions of Theorem 2.1 with u(s) = −2 − log s, and hence

we can state the following proposition.

Proposition 2.1. Assume X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈ D(Gγ) for some γ > 0 and ℓU satisfying Rℓ.

Then as k, n → ∞, k/n → 0 and
√

k b(n/k) → c,

√
k

Hk,n

1

k

k
∑

j=1

KJ

(

j

k + 1

)

Zj
L−→ N

(

c ρ

γ(1− ρ)2
, 1

)

.

Note that the normal limit is not necessarily centered at zero, i.e. the

statistic may exhibit some bias. The centering depends, besides γ, on the slowly

varying function ℓU through the parameters ρ and c.
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2.2. Lewis kernel function

As a second example we study the Lewis goodness-of-fit statistic. Consider

a sample X1, ..., Xn of i.i.d. Exp(δ) random variables. The Lewis statistic is given

by

TL =

∑n
j=1

j
n+1 Vn−j+1

∑n
j=1 Xj

,

and
√

n(TL− 1/2)
L→ N(0, 1/12), as n → ∞ (Lewis, 1965). In case of a random

sample X1, ..., Xn of Pareto-type random variables, we can apply the Lewis statis-

tic to Y ∗
j,k, j = 1, ..., k, yielding, after appropriate normalization and rearranging

terms,

T L
k,n =

√
k

1
k

∑k
j=1 KL

(

j
k+1

)

Zj

Hk,n
,

with KL(u) = u − 0.5. The function KL satisfies the conditions of Theorem 2.1

with u(s) = 2s − 0.5, leading to the following proposition:

Proposition 2.2. Assume X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈ D(Gγ) for some γ > 0 and ℓU satisfying Rℓ.

Then as k, n → ∞, k/n → 0 and
√

k b(n/k) → c,

√
k

Hk,n

1

k

k
∑

j=1

KL

(

j

k + 1

)

Zj
L→ N

(

− c ρ

2 γ (1−ρ)(2−ρ)
,

1

12

)

.

Note that for the same value of c, the absolute value of the asymptotic bias

of the Lewis statistic is smaller than the absolute bias of the Jackson statistic.

2.3. Bias-correction

As mentioned above, the bias of the kernel statistics may make it difficult

to evaluate the nature of the tail behavior. It is, however, possible to derive, for

a given kernel function K, a bias-corrected kernel function, denoted KBC(·; ρ),

i.e. a kernel satisfying
∫ 1
0 KBC(u; ρ)u−ρ du = 0. To obtain such a bias-corrected

kernel, note that both the numerator and the denominator of the general kernel

statistic (2.1) are weighted averages of the Zj , j = 1, ..., k. Within the framework

of Pareto-type tails and assuming condition Rℓ on ℓU holds, with ρ < 0, Beirlant

et al. (1999) derived the following approximate representation for log-spacings of

successive order statistics

Zj ∼ γ + bn,k

(

j

k + 1

)−ρ

+ εj , j = 1, ..., k ,(2.3)
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where bn,k = b(n/k) and εj , j =1, ..., k, are zero centered error terms, or, equiva-

lently

Zj − bn,k

(

j

k + 1

)−ρ

∼ γ + εj , j = 1, ..., k .

This then motivates the following bias-corrected statistic

√
k

1
k

∑k
j=1 K

(

j
k+1

)

(

Zj − b̂LS,k(ρ)
(

j
k+1

)−ρ
)

γ̂LS,k(ρ)
,(2.4)

with γ̂LS,k(ρ) and b̂LS,k(ρ) the least squares estimators for respectively γ and bn,k

obtained from (2.3), taking ρ as fixed:

γ̂LS,k(ρ) =
1

k

k
∑

j=1

Zj −
b̂LS,k(ρ)

1−ρ
,(2.5)

b̂LS,k(ρ) =
(1−ρ)2 (1− 2ρ)

ρ2

1

k

k
∑

j=1

(

(

j

k + 1

)−ρ

− 1

1−ρ

)

Zj .(2.6)

After some additional straightforward manipulations on (2.4), we obtain the bias-

corrected kernel function:

KBC(u; ρ) = K(u) − (1−ρ)2 (1− 2ρ)

ρ2

(

u−ρ− 1

1−ρ

)
∫ 1

0
K(v)v−ρ dv .(2.7)

It is easy to verify that for kernel functions K satisfying the conditions of Theo-

rem 2.1, KBC will also satisfy these conditions with
∫ 1
0 KBC(u; ρ)u−ρ du = 0,

hence leading to an asymptotic normal distribution with null mean value, stated

in the next theorem (Goegebeur et al., 2007).

Theorem 2.2. Consider X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈D(Gγ) for some γ > 0, and with ℓU satisfying

Rℓ, fixed ρ < 0. If K satisfies the conditions of Theorem 2.1, then if k, n → ∞,

k/n → 0 and
√

k b(n/k) → c,

√
k

γ̂LS,k(ρ)

1

k

k
∑

j=1

KBC

(

j

k+1
; ρ

)

Zj
L−→ N

(

0 ,

∫ 1

0
K2

BC(u; ρ) du

)

.

The bias-correcting effect of the above described operation can be readily

seen from the limiting distribution: whatever c the normal limit is centered at

zero. In case of the bias-corrected Lewis kernel function, denoted KBCL, obtained

by plugging KL into (2.7),
∫ 1
0 K2

BCL(u; ρ) du = 0 if ρ =−1, leading to a degenerate

distribution at zero. When dealing with this kernel function we exclude the value

ρ = −1.
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3. SELECTION OF THE NUMBER OF UPPER ORDER STATIS-

TICS FOR TAIL INDEX ESTIMATION

In this section we discuss the use of the kernel goodness-of-fit statistic for

selecting the optimal threshold in tail index estimation. The discussion will be

focused on the Hill estimator, but the idea can of course be equally well applied to

other estimators for γ > 0. The basic idea is to exploit the relationship between

the bias component of the asymptotic mean squared error of the Hill estimator,

denoted AMSE (Hk,n), and the kernel goodness-of-fit statistics introduced above.

It is well known that for the Hill estimator

AMSE (Hk,n) =
γ2

k
+

(

bn,k

1−ρ

)2

= γ2

[

1

k
+

(

bn,k

γ(1−ρ)

)2
]

.

From Theorem 2.1, we have for the general kernel goodness-of-fit statistic, for

k, n large and k/n small,

1
k

∑k
j=1 K

(

j
k+1

)

Zj

Hk,n
∼ bn,k

γ

∫ 1

0
K(u)u−ρ du ,

and hence, provided
∫ 1
0 K(u)u−ρ du 6= 0,

bn,k

γ(1−ρ)
∼

1
k

∑k
j=1 K

(

j
k+1

)

Zj

(1−ρ)Hk,n

∫ 1
0 K(u)u−ρ du

,(3.1)

leading to the following approximation to AMSE (Hk,n)

ÂMSE (Hk,n) = γ2











1

k
+





1
k

∑k
j=1 K

(

j
k+1

)

Zj

(1−ρ)Hk,n

∫ 1
0 K(u)u−ρ du





2










.

The optimal choice of k is then approximated by

k̂opt = arg min











1

k
+





1
k

∑k
j=1 K

(

j
k+1

)

Zj

(1−ρ)Hk,n

∫ 1
0 K(u)u−ρ du





2










.(3.2)

Note that the squared goodness-of-fit statistic is to be complemented by a penalty

1/k in order to prevent choosing too small values of k. Also the role of ρ is

important: typically, the smaller |ρ| the heavier the ρ-factor with the test statistic

leading to small values of k.

In the remainder of this section we will concentrate on the Lewis goodness-

of-fit statistic, but of course similar results can be easily obtained for other kernel

functions. For the Lewis statistic, KL(u) = u− 0.5, and hence,
∫ 1
0 K(u)u−ρ du =
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|ρ|/
[

2(1−ρ)(2−ρ)
]

, which leads to minimizing

1

k
+

[

2(2−ρ)

|ρ|
√

k
T L

k,n

]2

(3.3)

with respect to k.

Practical implementations based on (3.2) or (3.3) require of course an esti-

mate for the unknown parameter ρ. Gomes et al. (2002) proposed ratios involving

different powers of statistics M
(r)
k,n, with

M
(r)
k,n =

1

k

k
∑

j=1

(

log Xn−j+1,n − log Xn−k,n

)r

to derive estimators for ρ. In a similar fashion, we propose an estimator for ρ

using a ratio of two kernel goodness-of-fit statistics. Define

Ti =
1

k

k
∑

j=1

Ki

(

j

k + 1

)

Zj , i = 1, 2 ,

where the indices 1 and 2 refer to the Jackson and Lewis goodness-of-fit statistics,

for instance. From Proposition 2.1 and Proposition 2.2, we have, in probability,

T1 ∼ bn,k
ρ

(1−ρ)2
,

T2 ∼ −bn,k
ρ

2(1−ρ)(2 − ρ)
,

and hence
T1

T2
∼ −2(2 − ρ)

1−ρ
,

which can be solved for ρ, yielding

ρ̂k =
4T2 + T1

2T2 + T1
.(3.4)

The asymptotic properties of this estimator will be discussed elsewhere.

As an alternative goodness-of-fit based procedure, the optimal k could be

derived from comparing observed and fitted values on the Pareto quantile plot,

for instance minimizing a weighted Cramér–von Mises statistic

1

H2
k,n

1

k

k
∑

j=1

j

k− j +1

(

log
Xn−j+1,n

Xn−k,n
+ Hk,n log

j

k+1

)2

.(3.5)

Criteria of this type were considered in, for instance, Beirlant et al. (1996), and

Dupuis and Victoria-Feser (2003). Unlike the goodness-of-fit based threshold se-

lection procedure described above, this prediction error criterion does not require

the estimation of the nuisance parameter ρ, but even asymptotically it will not

minimize the AMSE.
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The Lewis based AMSE criterion and the prediction error criterion will

now be compared on the basis of a small sample simulation study. For the Lewis

based AMSE criterion we consider three cases: ρ fixed at −1, correct specification

of ρ and the case where ρ is replaced by (3.4). We simulated 500 samples of size

n = 500 from the Burr(η, τ, λ) distribution, with distribution function given by

F (x) = 1−
(

η

η + xτ

)λ

, x > 0, η, τ, λ > 0 ,

for which γ = 1/(λτ) and ρ = −1/λ. In Table 1, we summarize the results of

the simulation study by the empirical mean squared errors (MSE) of Hk̂opt,n
.

For both procedures considered, the γ estimates deteriorate with increasing values

of ρ. Clearly, the Lewis based AMSE approximation outperforms the prediction

error criterion. Moreover, the gains in MSE tend to increase in ρ. Note that,

although the Lewis based approximation of the AMSE requires an estimate for ρ,

the results are quite insensitive with respect to the specification of ρ.

Table 1: Empirical MSE of H
k̂opt,n

.

Distribution γ ρ
Lewis based AMSE criterion Prediction error

criterionρ = −1 correct ρ ρ̂

Burr(1, 2, 0.5) 1 −2 0.0103 0.0100 0.0109 0.0109

Burr(1, 1, 1) 1 −1 0.0275 0.0275 0.0288 0.0359

Burr(1, 0.5, 2) 1 −0.5 0.1178 0.1018 0.1199 0.1996

Burr(1, 0.25, 4) 1 −0.25 0.6869 0.5156 0.7195 1.1239

Burr(1, 4, 0.5) 0.5 −2 0.0029 0.0025 0.0030 0.0027

Burr(1, 2, 1) 0.5 −1 0.0069 0.0069 0.0072 0.0089

Burr(1, 1, 2) 0.5 −0.5 0.0299 0.0271 0.0308 0.0464

Burr(1, 0.5, 4) 0.5 −0.25 0.1771 0.1316 0.1741 0.2756

Besides this prediction error criterion we will also compare our goodness-of-

fit based approach with some other criteria recently proposed. The computational

complexity of some of these is such that they are not easy to implement for

comparison purposes. Beirlant et al. (2002) performed an extensive simulation

study and we will refer to some of their results, along with those from Beirlant

et al. (1996) and Matthys and Beirlant (2003).

To summarize, the procedures that will be compared are:

• Method 1: the Lewis based criterion given by (3.3),

• Method 2: the prediction error criterion given by (3.5),

• Method 3: Beirlant et al. (2002),
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• Method 4: Danielsson et al. (2001),

• Method 5: Drees and Kaufmann (1998),

• Method 6: Guillou and Hall (2001).

The performance of these procedures is evaluated on the basis of a small

sample simulation study. In this simulation we use, next to the Burr(η, τ, λ)

distribution introduced above, the following distributions:

1. The Fréchet(α) distribution,

F (x) = exp(−x−α) , x > 0, α > 0 ,

with γ = 1/α and ρ = −1. We set α = 2.

2. The |Tν | distribution,

F (x) =

∫ x

0

2 Γ
(

ν+1
2

)

√
νπ Γ

(

ν
2

)

(

1 +
y2

ν

)− ν+1

2

dy , x > 0, ν > 0 ,

with γ = 1/ν and ρ = −2/ν. We took ν = 6.

3. The loggamma(λ, α) distribution,

F (x) =

∫ x

1

λα

Γ(α)
(log y)α−1 y−λ−1 dy , x > 1, λ, α > 0 ,

with γ = 1/λ and ρ = 0. We set λ = 1 and α = 2.

For each of the above models, 500 datasets of size n = 500 are simulated. The

results of the simulation are summarized in Table 2 where we show the empirical

mean squared error of Hk̂opt,n
for the different methods and distributions consid-

ered. As is clear from Table 2 no single criterion performs uniformly best. The

Lewis based approximation is clearly competitive and maintains itself in the first

half of the methods considered.

Table 2: Empirical MSE of H
k̂opt,n

.

Method Fréchet(2) Burr(1, 0.5, 2) |T6| loggamma(1, 2)

1 0.0047 0.1178 0.0148 0.0873

2 0.0054 0.1996 0.0242 0.1105

3 0.0052 0.0930 0.0110 0.0602

4 0.0109 0.1459 0.0176 0.0904

5 0.0041 0.1239 0.0129 0.0784

6 0.0049 0.1452 0.0190 0.0689
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4. Case study: diamond data

Our case study can be situated in a geostatistical context and concerns

the valuation of diamonds. The profitability of a mining exploration largely

depends on the occurrence of precious stones, and consequently, accurate mod-

eling of the tail of the diamond value distribution is of crucial importance. The

data set considered here contains the value (in USD) of a sample of 1914 dia-

monds obtained from a kimberlite deposit. These data are publicly available at

http://ucs.kuleuven.be/Wiley/Data/diamond.txt. Figure 1 (a) shows the

exponential quantile plot for the variable value; Figure 1 (b) is the correspond-

ing mean excess plot. The convex shape of the exponential quantile plot and

the means excess function that is decreasing when considered as a function of k

indicate sub-exponential tail behavior. To assess the hypothesis of Pareto-type

behavior we also construct the Pareto quantile plot, see Figure 1 (c). The Pareto

quantile plot is clearly approximately linear in the largest observations indicating

a good fit of the value distribution by a Pareto-type model. The mean excess

function of the log-transformed data, which is in fact the Hill estimator, given in

Figure 1 (d), confirms this in the sense that it clearly shows a constant slope at

the smaller log k values.
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Figure 1: Diamond data: (a) exponential quantile plot, (b) mean excess plot,
(c) Pareto quantile plot and (d) Hk,n as a function of log k.
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In Figure 2 we show the four goodness-of-fit statistics together with the

critical values of pointwise 5% hypothesis tests, as derived from the limiting

distributions of the test statistics. For the ease of comparison we show the statis-

tics in standardized format, i.e. we show T J
k,n,

√
12 T L

k,n, (1− ρ̂)/|ρ̂|T BCJ
k,n and

(2−ρ̂)/|1+ρ̂|
√

12 T BCL
k,n , where the scaling factors follow from the asymptotic vari-

ance expression
∫ 1
0 K2(u) du, and where T BCJ

k,n and T BCL
k,n denote the bias-corrected

Jackson and Lewis statistic, respectively, obtained by plugging KJ and KL in

(2.7). Globally, up to approximately k = 380, all statistics fail to reject H0 of

Pareto-type behavior with Rℓ on ℓU . The bias-corrected Lewis statistic shows two

exceptions to this overall pattern, namely at the positions k = 53 and k = 128.

These positions are indicated on the Pareto quantile plot given in Figure 3.
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Figure 2: Diamond data: (a) T J

k,n, (b)
√

12 TL

k,n, (c) (1− ρ̂)/|ρ̂| T BCJ

k,n ,

(d) (2− ρ̂)/|1+ ρ̂|
√

12 T BCL

k,n as a function of k.

Clearly, at these positions the Pareto quantile plot makes vertical jumps.

Beyond k = 380 the uncorrected statistics diverge and move outside the accep-

tance region, while the bias-corrected statistics fluctuate heavily and show por-

tions of reasonable length both inside and outside the acceptance region, and

hence give a more nuanced picture of the distributional behavior. A plausible ex-

planation for this pattern can be found in the Pareto quantile plot. The Pareto

quantile plot shows more or less linear segments on both the left- and right-hand
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side of the observation k = 380, although with different slopes. The uncorrected

statistics can only handle the ultimate linear part of this plot and hence beyond

this point they diverge. The bias-corrected statistics, through the inclusion of the

second order tail condition, are also able to deal with the curved part. However,

the portions inside and outside the acceptance region indicate special features of

these data. Looking back at the Pareto quantile plot we find that also deeper

in the data, i.e. at larger k-values, other linear portions with different slopes can

be distinguished. This may indicate that the diamond value distribution is a

mixture of several Pareto-type models with different Pareto indices. In fact, the

tail of the diamond value distribution is known to be influenced by factors such

as, among others, size and color (Beirlant and Goegebeur, 2003). In this analysis

we ignored this information. It is a nice feature of the bias-corrected statistics

that they indicate this change in distributional regime and give, compared to the

uncorrected statistics, a more subtle view on the tail behavior.
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Figure 3: Diamond data: Pareto quantile plot with the positions where
H0 of Pareto-type behavior is rejected.

Given that the Pareto-type model provides a plausible explanation of these

data, the analysis can be carried one step further, focusing on the estimation of

the tail index γ. In this respect, Figure 4 (a) shows the Lewis based approxima-

tion to the asymptotic mean squared error of the Hill estimator, ÂMSE (Hk,n),

obtained with ρ̂ = −2.724, as a function of k. This ρ-value is obtained from (3.4)

together with the rule of thumb proposed by Gomes et al. (2002) that the k for the

estimation of ρ can be taken as k = ⌊n0.995⌋, see also Figure 4 (e). The minimum

value of ÂMSE (Hk,n) is reached at k̂opt = 343 and H343,1914 = 0.917. Note that
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Figure 4: Diamond data: (a) ÂMSE (Hk,n) as a function of k,
(b) Pareto quantile plot, (c) residuals versus fitted responses,
(d) prediction error criterion, (e) ρ̂k as a function of k.

the k-value minimizing the asymptotic mean squared error is smaller than the

k-value beyond which goodness-of-fit tests consistently reject the null hypothesis

given in (1.6). Alternatively, based on Figure 4 (e), we could also have taken

ρ̂ = −1, which would result in k̂opt = 336 and H336,1914 = 0.912, results that are

in line with those obtained with the former ρ-value. In Figure 4 (b) we indicate

the 343th largest observation on the Pareto quantile plot of the variable value

together with a straight line through this point and with slope Hk̂opt,n
. Clearly,



68 Yuri Goegebeur, Jan Beirlant and Tertius de Wet

the straight line summarizes the upper right portion of the Pareto quantile plot

quite well, see also the Figure 4 (c) showing the residuals resulting from this line

fit. Finally, in Figure 4 (d), we show the prediction error criterion (3.5) as a

function of k. The prediction error reaches its minimum deeper in the data, at

k = 379 and H379,1914 = 0.940, results that are comparable with the minimization

of the asymptotic mean squared error.

5. CONCLUSION

In this paper we examined the relationship between Pareto-type goodness-

of-fit testing and the selection of the upper sample fraction when estimating the

tail index, for instance using Hill’s estimator. To this end we considered the class

of kernel statistics introduced in Goegebeur et al. (2007). Typically, goodness-

of-fit tests are too conservative with respect to the null hypothesis, entailing too

high k-values (or too small thresholds) relative to the minimum AMSE criterion,

which led us to follow another route, exploiting the relationship between the

kernel statistic and the bias component of the AMSE of the Hill estimator. The

procedure was evaluated on a small sample simulation study and showed to be

competitive with some of the better performing currently available algorithms.

As a nice side result, we obtained a new estimator for the second order parameter

ρ, of which the in-depth investigation is a topic of current research.
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