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Abstract:

• For the analysis of square contingency tables, Tomizawa and Makii (2001), and
Tomizawa, Miyamoto and Ashihara (2003) considered the measures to represent the
degree of departure from marginal homogeneity (MH). Tomizawa (1984) considered
an extended marginal homogeneity (EMH) model for square tables with ordered cate-
gories. This paper proposes a measure to represent the degree of departure from
EMH. The measure proposed is expressed by using the Cressie and Read’s (1984)
power-divergence or Patil and Taillie’s (1982) diversity index. The measure would be
useful for comparing the degree of departure from EMH in several tables. Examples
are given.
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1. INTRODUCTION

Consider an R×R square contingency table with the same row and column

classifications. Let pij denote the probability that an observation will fall in the

i-th row and j-th column of the table (i = 1, ..., R; j = 1, ..., R), and let X and Y

denote the row and column variables, respectively. The marginal homogeneity

(MH) model is defined by

Pr(X= i) = Pr(Y = i) for i = 1, ..., R ,

namely

pi · = p· i for i = 1, ..., R ,

where pi · =
∑R

k=1 pik and p· i =
∑R

k=1 pki (see, e.g., Stuart, 1955; Bhapkar, 1966;

Bishop, Fienberg and Holland, 1975, p.294).

Let

G1(i) =
i

∑

s=1

R
∑

t=i+1

pst

[

= Pr
(

X≤ i, Y ≥ i+1
)]

,

and

G2(i) =
R

∑

s=i+1

i
∑

t=1

pst

[

= Pr
(

X≥ i+1, Y ≤ i
)]

,

for i = 1, ..., R−1. By considering the difference between the cumulative marginal

probabilities, FX
i − F Y

i for i = 1, ..., R−1, where FX
i = Pr(X≤ i) and F Y

i =

Pr(Y ≤ i), we see that the MH model may also be expressed as

G1(i) = G2(i) for i = 1, ..., R−1 .

Namely, this states that the cumulative probability that an observation will fall

in row category i or below and column category i + 1 or above is equal to the

cumulative probability that the observation falls in column category i or below

and row category i + 1 or above for i = 1, ..., R−1.

Tomizawa (1984, 1995a) considered the extended marginal homogeneity

(EMH) model defined by

p
(δ)
i · = p

(δ)
· i for i = 1, ..., R ,

where the parameter δ is unspecified and

p
(δ)
i · = δ

i−1
∑

t=1

pit +
R

∑

t=i

pit , p
(δ)
· i =

i
∑

s=1

psi + δ
R

∑

s=i+1

psi .

Consider the artificial probabilities in Table 1. We see that the EMH model

holds with δ = 2 in Table 1. The EMH model may also be expressed as

G1(i) = δ G2(i) for i = 1, ..., R−1 .
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Table 1: Artificial probabilities having the structure of EMH with δ = 2.

0.04 0.02 0.04 0.26

0.01 0.03 0.08 0.16

0.02 0.04 0.02 0.04

0.13 0.08 0.02 0.01

A special case of this model obtained by putting δ = 1 is the MH model. This

model indicates that the cumulative probability that an observation will fall in

row category i or below and column category i + 1 or above is δ times higher

than the cumulative probability that the observation falls in column category i

or below and row category i + 1 or above for i = 1, ..., R−1. The EMH model

may further be expressed as

G∗
1(i) = G∗

2(i) for i = 1, ..., R−1 ,(1.1)

where

G∗
1(i) = G1(i)/G1 , G∗

2(i) = G2(i)/G2 ,

G1 =

R−1
∑

i=1

G1(i) , G2 =

R−1
∑

i=1

G2(i) .

Namely the EMH model indicates that there is a structure of symmetry between
{

G∗
1(i)

}

and
{

G∗
2(i)

}

for i = 1, ..., R−1.

For square contingency tables with nominal categories, Tomizawa (1995b)

considered two kinds of measures to represent the degree of departure from MH,

which are expressed by using the Shannon entropy and Gini concentration.

Tomizawa and Makii (2001) considered a generalization of Tomizawa measures,

which is expressed by using the Cressie and Read’s (1984) power-divergence

(or Patil and Taillie’s (1982) diversity index). For square contingency tables

with ordered categories, Tomizawa, Miyamoto and Ashihara (2003) considered a

measure to represent the degree of departure from MH.

When the MH model does not hold, these measures would be useful for

measuring the degree of departure from MH. When the EMH model does not

hold, we are now interested in measuring the degree of departure from EMH

(instead of that from MH).

The purpose of this paper is to propose a power-divergence type mea-

sure which represents the degree of departure from EMH for square contingency

tables with ordered categories. In Section 2 we propose such a measure which is

expressed as a function of
{

G∗
1(i)

}

and
{

G∗
2(i)

}

. It would be useful for comparing

the degree of departure from EMH in several tables with ordered categories.
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2. MEASURE OF DEPARTURE FROM EXTENDED MARGINAL

HOMOGENEITY

Assume that G1 > 0, G2 > 0 and G1(i) + G2(i) > 0 for i = 1, ..., R−1. Let

Ci =
G∗

1(i) + G∗
2(i)

2
for i = 1, ..., R−1 .

Note that
∑R−1

i=1 Ci = 1. To represent the degree of departure from EMH, consider

a measure defined by

Γ
(λ)
EM =

λ(λ+1)

2(2λ−1)

[

I(λ)
(

{

G∗
1(i)

}

;
{

Ci

}

)

+ I(λ)
(

{

G∗
2(i)

}

;
{

Ci

}

)]

for λ >−1 ,

where

I(λ)
(

{ai}; {bi}
)

=
1

λ(λ+1)

R−1
∑

i=1

ai

[

( ai

bi

)λ
− 1

]

,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus,

Γ
(0)
EM =

1

2 log 2

[

I(0)
(

{

G∗
1(i)

}

;
{

Ci

}

)

+ I(0)
(

{

G∗
2(i)

}

;
{

Ci

}

)]

,(2.1)

where

I(0)
(

{ai}; {bi}
)

=

R−1
∑

i=1

ai log
( ai

bi

)

.

The I(λ)
(

{ai}; {bi}
)

is the power-divergence between {ai} and {bi}, and especially

I(0)
(

{ai}; {bi}
)

is the Kullback–Leibler information (KL) between them. For more

details of the power-divergence I(λ)(·; ·), see Cressie and Read (1984), and Read

and Cressie (1988, p.15). Note that a real value λ is chosen by user.

Let

Gc
1(i) =

G∗
1(i)

G∗
1(i)+ G∗

2(i)

, Gc
2(i) =

G∗
2(i)

G∗
1(i)+ G∗

2(i)

for i = 1, ..., R−1 .

Note that
{

Gc
1(i)+ Gc

2(i) = 1
}

. The EMH model can be expressed as

Gc
1(i) = Gc

2(i)

(

=
1

2

)

for i = 1, ..., R−1 .

Then the measure Γ
(λ)
EM may be expressed as

Γ
(λ)
EM =

λ(λ+1)

2λ−1

R−1
∑

i=1

Ci I
(λ)
i

(

{

Gc
1(i), G

c
2(i)

}

;

{

1

2
,

1

2

})

for λ > −1 ,(2.2)
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where

I
(λ)
i (·; ·) =

1

λ(λ+1)

[

Gc
1(i)

{

(Gc
1(i)

1/2

)λ

− 1

}

+ Gc
2(i)

{

(Gc
2(i)

1/2

)λ

− 1

}]

,

and the value at λ = 0 is taken to be the limit as λ→ 0. Thus,

Γ
(0)
EM =

1

log 2

R−1
∑

i=1

Ci I
(0)
i

(

{

Gc
1(i), G

c
2(i)

}

;

{

1

2
,

1

2

})

,

where

I
(0)
i (·; ·) = Gc

1(i) log

(Gc
1(i)

1/2

)

+ Gc
2(i) log

(Gc
2(i)

1/2

)

.

Therefore, Γ
(λ)
EM in equation (2.2) would represent, essentially, the weighted sum

of the power-divergence I
(λ)
i

({

Gc
1(i), G

c
2(i)

}

;
{

1/2, 1/2
})

.

Moreover, Γ
(λ)
EM may be expressed as

Γ
(λ)
EM = 1 − λ 2λ

2λ−1

R−1
∑

i=1

Ci H
(λ)
i

(

{

Gc
1(i), G

c
2(i)

}

)

for λ > −1 ,(2.3)

where

H
(λ)
i (·) =

1

λ

[

1 −
(

Gc
1(i)

)λ+1−
(

Gc
2(i)

)λ+1
]

,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus,

Γ
(0)
EM = 1 − 1

log 2

R−1
∑

i=1

Ci H
(0)
i

(

{

Gc
1(i), G

c
2(i)

}

)

,

where

H
(0)
i (·) = −Gc

1(i) log Gc
1(i) − Gc

2(i) log Gc
2(i) .

Note that H
(λ)
i

({

Gc
1(i), G

c
2(i)

})

is Patil and Taillie’s (1982) diversity index for
{

Gc
1(i), G

c
2(i)

}

, which includes the Shannon entropy (when λ = 0) and the Gini con-

centration (when λ = 1) in special cases. Therefore, Γ
(λ)
EM in equation (2.3) would

represent essentially the weighted sum of the diversity index H
(λ)
i

({

Gc
1(i), G

c
2(i)

})

.

Noting that I
(λ)
i

({

Gc
1(i), G

c
2(i)

}

;
{

1/2, 1/2
})

≥ 0 and H
(λ)
i

({

Gc
1(i), G

c
2(i)

})

≥ 0,

we see that the measure Γ
(λ)
EM must lie between 0 and 1. Also, for each λ (>−1),

(i) there is a structure of EMH in the R×R table if and only if Γ
(λ)
EM = 0,

and

(ii) the degree of departure from EMH is the largest in the sense that

Gc
1(i)= 0 (then Gc

2(i)= 1) or Gc
2(i)= 0 (then Gc

1(i)= 1) [namely, G∗
1(i)= 0

(then G∗
2(i) > 0) or G∗

2(i) = 0 (then G∗
1(i) > 0)] for i = 1, ..., R−1;

if and only if Γ
(λ)
EM = 1.
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Note that Γ
(λ)
EM = 1 indicates that G∗

1(i)/G∗
2(i) = ∞ for some i and G∗

1(i)/G∗
2(i) = 0

for the other i, and therefore it seems appropriate to consider that then the degree

of departure from EMH (i.e., from G∗
1(i)/G∗

2(i) = 1 for i = 1, ..., R− 1) is largest.

In addition, according to the weighted sum of the power-divergence or the weighted

sum of the Patil and Taillie’s diversity index, the degree increases as the value of

Γ
(λ)
EM increases.

3. APPROXIMATE CONFIDENCE INTERVAL FOR MEASURE

Let nij denote the observed frequency in the i-th row and j-th column

of the table (i = 1, ..., R; j = 1, ..., R). Assuming that a multinomial distribution

applies to the R×R table, we shall consider an approximate standard error and

large-sample confidence interval for Γ
(λ)
EM using the delta method, descriptions of

which are given by Bishop et al. (1975, Sec. 14.6) and Agresti (1990, Sec. 12.1).

The sample version of Γ
(λ)
EM, i.e., Γ̂

(λ)
EM, is given by Γ

(λ)
EM with {pij} replaced by {p̂ij},

where p̂ij = nij/n and n =
∑∑

nij . Using the delta method,
√

n
(

Γ̂
(λ)
EM− Γ

(λ)
EM

)

has asymptotically (as n→∞) a normal distribution with mean zero and variance,

σ2
[

Γ
(λ)
EM

]

=
R−1
∑

k=1

R
∑

l=k+1

[

pkl

(

ω
(λ)
1(kl)

)2
+ plk

(

ω
(λ)
2(kl)

)2
]

,

where for λ >−1, λ 6= 0; t = 1, 2,

ω
(λ)
t(kl) =

2λ

2 (2λ−1)Gt

[

l−1
∑

i=k

∆
(λ)
t(i) − (l−k)

R−1
∑

i=1

G∗
t(i) ∆

(λ)
t(i)

]

,

∆
(λ)
1(i) =

(

Gc
1(i)

)λ
+ λ

{

(

Gc
1(i)

)λ−
(

Gc
2(i)

)λ
}

Gc
2(i) ,

∆
(λ)
2(i) =

(

Gc
2(i)

)λ
+ λ

{

(

Gc
2(i)

)λ−
(

Gc
1(i)

)λ
}

Gc
1(i) ;

and for λ = 0; t = 1, 2,

ω
(0)
t(kl) =

1

2 (log 2)Gt

[

l−1
∑

i=k

log
(

Gc
t(i)

)

− (l−k)
R−1
∑

i=1

G∗
t(i) log

(

Gc
t(i)

)

]

.

We note that the asymptotic distribution of
√

n
(

Γ̂
(λ)
EM − Γ

(λ)
EM

)

is not applicable

when Γ
(λ)
EM = 0 and Γ

(λ)
EM = 1 because then σ2

[

Γ
(λ)
EM

]

= 0. Let σ̂2
[

Γ
(λ)
EM

]

denote

σ2
[

Γ
(λ)
EM

]

with {pij} replaced by {p̂ij}. Then σ̂
[

Γ
(λ)
EM

]

/
√

n is an estimated ap-

proximate standard error for Γ̂
(λ)
EM, and Γ̂

(λ)
EM± zp/2 σ̂

[

Γ
(λ)
EM

]

/
√

n is an approximate

100(1−p) percent confidence interval for Γ
(λ)
EM, where zp/2 is the percentage point

from the standard normal distribution corresponding to a two-tail probability

equal to p.
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4. EXAMPLES

Consider the data in Table 2, taken from Tominaga (1979, p.53). These

data describe the cross-classification of father’s and son’s occupational status

categories in Japan which were examined in 1955, 1965 and 1975.

Table 2: Occupational status for Japanese father-son pairs;
from Tominaga (1979, p.53).

Father’s
status

Son’s status
Total

(1) (2) (3) (4) (5) (6) (7) (8)

(a) Examined in 1955

(1) 36 4 14 7 8 2 3 8 82
(2) 20 20 27 24 11 11 2 11 126
(3) 9 6 23 12 9 5 3 16 83
(4) 15 14 39 81 17 16 11 15 208
(5) 6 7 22 13 72 20 6 13 159
(6) 3 2 5 12 18 19 9 7 75
(7) 5 3 10 11 21 15 38 25 128
(8) 39 30 76 80 69 52 45 614 1005

Total 133 86 216 240 225 140 117 709 1866

(b) Examined in 1965

(1) 27 10 16 3 6 6 1 2 71
(2) 15 38 30 20 8 4 3 7 125
(3) 13 17 32 17 7 16 6 5 113
(4) 12 36 40 132 22 30 13 6 291
(5) 8 22 38 41 91 42 22 9 273
(6) 2 2 7 12 13 16 3 2 57
(7) 3 2 11 11 13 26 30 6 102
(8) 38 44 95 101 132 114 60 309 893

Total 118 171 269 337 292 254 138 346 1925

(c) Examined in 1975

(1) 44 18 28 8 6 8 1 5 118
(2) 15 50 45 20 18 17 4 7 176
(3) 18 25 47 30 24 18 5 7 174
(4) 16 27 53 77 40 29 9 6 257
(5) 18 25 42 31 122 43 17 13 311
(6) 12 15 21 15 36 33 3 8 143
(7) 3 5 8 7 26 21 9 3 82
(8) 44 65 114 92 184 195 58 325 1077

Total 170 230 358 280 456 364 106 374 2338

Note: Status (1) is Professional, (2) Managers, (3) Clerical, (4) Sales, (5) Skilled manual,

(6) Semiskilled manual, (7) Unskilled manual and (8) Farmers.
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Since the confidence intervals for Γ
(λ)
EM applied to the data in Tables 2a, 2b

and 2c do not include zero for all λ (see Table 3), these would indicate that there

is not a structure of EMH in each table.

Table 3: Estimate of Γ
(λ)
EM, estimated approximate standard error for Γ̂

(λ)
EM, and ap-

proximate 95% confidence interval for Γ
(λ)
EM, applied to Tables 2a, 2b and 2c.

Values of λ
Estimated
measure

Standard
error

Confidence
interval

(a) For Table 2a

−0.5 0.017 0.004 (0.009, 0.024)
0 0.028 0.006 (0.016, 0.040)
0.5 0.035 0.008 (0.019, 0.050)
1.0 0.038 0.009 (0.021, 0.055)
1.5 0.039 0.009 (0.022, 0.056)
2.0 0.038 0.009 (0.021, 0.055)
2.5 0.036 0.008 (0.020, 0.052)

(b) For Table 2b

−0.5 0.043 0.006 (0.031, 0.055)
0 0.070 0.009 (0.051, 0.088)
0.5 0.085 0.011 (0.063, 0.107)
1.0 0.093 0.012 (0.069, 0.116)
1.5 0.095 0.012 (0.071, 0.118)
2.0 0.093 0.012 (0.069, 0.116)
2.5 0.088 0.012 (0.066, 0.111)

(c) For Table 2c

−0.5 0.053 0.007 (0.040, 0.066)
0 0.086 0.010 (0.066, 0.106)
0.5 0.105 0.012 (0.081, 0.129)
1.0 0.114 0.013 (0.089, 0.139)
1.5 0.116 0.013 (0.091, 0.142)
2.0 0.114 0.013 (0.089, 0.139)
2.5 0.109 0.012 (0.084, 0.133)

When the degrees of departure from EMH in Tables 2a, 2b and 2c are

compared using the confidence interval for Γ
(λ)
EM, it is greater in Tables 2b and 2c

than in Table 2a. However, the comparison between Tables 2b and 2c may be

impossible, because the values in the confidence interval for Table 2b are not

always greater than the values in the confidence interval for Table 2c.

We shall investigate the degree of departure from EMH in more details.

For instance, when λ = 1, the estimated measure Γ̂
(1)
EM equals 0.038 for Table 2a,

0.093 for Table 2b, and 0.114 for Table 2c (see Table 3). Thus,

(i) for Table 2a, the degree of departure from EMH is estimated to be

3.8 percent of the maximum degree of departure from EMH,
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(ii) for Table 2b, it is estimated to be 9.3 percent of the maximum degree

of departure from EMH,

and

(iii) for Table 2c, it is estimated to be 11.4 percent of the maximum degree

of departure from EMH.

Note: Let W (λ) (−∞ < λ < ∞) denote the power-divergence statistic

for testing goodness-of-fit of the EMH model with R−2 degrees of freedom.

[See Appendix for W (λ), and see Cressie and Read (1984) and Read and Cressie

(1988, p.15) for details of the power-divergence test statistic.] In particular,

W (0) and W (1) are the likelihood ratio and Pearson’s chi-squared statistics, re-

spectively. Table 4 gives the values of W (λ) applied to the data in Tables 2a, 2b,

and 2c. These data fit the EMH model very poorly.

Table 4: The values of power-divergence statistic W (λ) (with 6 degrees of freedom) for
testing goodness-of-fit of the EMH model, applied to Tables 2a, 2b and 2c.

Values of λ For Table 2a For Table 2b For Table 2c

−0.5 118.52 300.36 333.41
0 116.76 231.58 280.73
0.5 117.38 200.39 252.56
1.0 120.39 186.77 239.04
1.5 125.95 183.14 235.42
2.0 134.42 186.48 239.54
2.5 146.33 195.69 250.66

5. CONCLUDING REMARKS

The measure Γ
(λ)
EM always ranges between 0 and 1 independent of the di-

mension R and sample size n. Therefore, Γ
(λ)
EM may be useful for comparing the

degree of departure from EMH in several tables.

Consider the artificial data in Table 5. Table 6 gives the values of W (λ)

(with 2 degrees of freedom) for testing goodness-of-fit of the EMH model applied

to these data. Compare the values of W (λ) for Tables 5a and 5b. From W (λ)

with any fixed λ, we see that the EMH model fits the data in Table 5a worse

than the data in Table 5b (see Table 6). In contrast, for any fixed λ (>−1), the

value of Γ̂
(λ)
EM is less for Table 5a than for Table 5b (see Table 7). In terms of

Ĝ1(i)/Ĝ2(i), i = 1, 2, 3 (see Table 5), it seems natural to conclude that the degree

of departure from EMH is less for Table 5a than for Table 5b. Therefore Γ̂
(λ)
EM
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Table 5: Artificial data.

(a) n = 2829

(1) (2) (3) (4) Total

(1) 187 330 70 20 607
(2) 30 178 60 40 308
(3) 50 100 898 60 1108
(4) 70 20 10 706 806

Total 337 628 1038 826 2829

Note:
Ĝ1(1)

Ĝ2(1)

= 2.80,
Ĝ1(2)

Ĝ2(2)

= 0.79,
Ĝ1(3)

Ĝ2(3)

= 1.20 .

(b) n = 2654

(1) (2) (3) (4) Total

(1) 687 80 10 5 782
(2) 5 178 5 12 200
(3) 5 25 898 13 941
(4) 10 8 7 706 731

Total 707 291 920 736 2654

Note:
Ĝ1(1)

Ĝ2(1)

= 4.75,
Ĝ1(2)

Ĝ2(2)

= 0.67,
Ĝ1(3)

Ĝ2(3)

= 1.20 .

(b) n = 429

(1) (2) (3) (4) Total

(1) 68 80 10 5 163
(2) 5 17 5 12 39
(3) 5 25 89 13 132
(4) 10 8 7 70 95

Total 88 130 111 100 429

Note:
Ĝ1(1)

Ĝ2(1)

= 4.75,
Ĝ1(2)

Ĝ2(2)

= 0.67,
Ĝ1(3)

Ĝ2(3)

= 1.20 .

may be preferable to W (λ) for comparing the degree of departure from EMH

in several tables. It may seem, to many readers, that W (λ)/n (for a given λ)

is also a reasonable measure for representing the degree of departure from EMH.

However, it does not seem to us that W (λ)/n is a reasonable measure. For exam-

ple, consider the artificial data in Tables 5b and 5c. The values of W (λ)/n are,

for example, when λ = 0 (λ = 1), W (0)/n = 0.024 (W (1)/n = 0.022) for Table 5b,

and W (0)/n = 0.147 (W (1)/n = 0.138) for Table 5c. Therefore the value of W (λ)/n

is less for Table 5b than for Table 5c. On the other side, for any fixed λ (>−1),
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the value of Γ̂
(λ)
EM for Table 5b is theoretically identical to that for Table 5c (see

Table 7). In addition, Ĝ1(i)/Ĝ2(i), i = 1, 2, 3, for Table 5b is identical to that

for Table 5c (see Table 5). So it seems natural to conclude that the degree of

departure from EMH for Table 5b is equal to that for Table 5c. Therefore Γ̂
(λ)
EM

may also be preferable to W (λ)/n for comparing the degree of departure from

EMH in several tables.

Table 6: The values of W (λ) (with 2 degrees of freedom) for testing goodness-of-fit
of the EMH model, applied to Tables 5a, 5b and 5c.

Values of λ For Table 5a For Table 5b For Table 5c

−0.5 194.43 69.35 69.35
0 182.76 63.25 63.25
0.5 175.25 60.04 60.04
1.0 171.21 59.04 59.04
1.5 170.17 59.93 59.93
2.0 171.89 62.61 62.61
2.5 176.28 67.17 67.17

Table 7: The values of Γ̂
(λ)
EM applied to Tables 5a, 5b and 5c.

Values of λ For Table 5a For Table 5b For Table 5c

−0.5 0.034 0.076 0.076
0 0.057 0.125 0.125
0.5 0.071 0.153 0.153
1.0 0.078 0.167 0.167
1.5 0.080 0.171 0.171
2.0 0.078 0.167 0.167
2.5 0.074 0.159 0.159

Since the EMH model is expressed as equation (1.1), we are interested in

measuring how far
{

G∗
1(i)

}

and
{

G∗
2(i)

}

are distant from those with an EMH

structure when the EMH model does not hold. The measure Γ
(λ)
EM is a function

of
{

G∗
1(i)

}

and
{

G∗
2(i)

}

. Since equation (1.1), it seems natural that the measure

is expressed as a function of
{

G∗
1(i)

}

and
{

G∗
2(i)

}

.

For the measure Γ
(λ)
EM, the analyst may be interested in which value of λ

is preferred for a given table. However, it seems difficult to discuss this. It seems

to be important and safe that for comparing the degrees of departure from EMH

in several tables, the analyst calculates the values of Γ̂
(λ)
EM for various values of λ

and discusses the degree of departure from EMH in terms of them (rather than

calculating Γ̂
(λ)
EM for only one specified value of λ).
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Table 8: Artificial data.

(a) n = 1895 (sample size)

374 602 170 64
18 255 139 71
4 23 42 55
2 6 17 53

(b) n = 5397

81 444 632 726
646 178 498 6
787 288 68 762
72 105 17 87

Consider the artificial data in Tables 8a and 8b. Then we see from Table 9

that the value of Γ̂
(0)
EM is less for Table 8a than for Table 8b, but the value of Γ̂

(1)
EM

is greater for Table 8a than for Table 8b. However, the differences are very slight

in these cases. So, for these cases, we may conclude (by using Γ̂
(λ)
EM) that the

departure from EMH for Table 8a is similar to that for Table 8b. But generally,

for the comparison between two tables, it would be possible to conclude for which

of two tables the departure from the EMH is greater if Γ̂
(λ)
EM (for every λ) is always

greater (or always less) for one table than for the other table.

Table 9: The values of Γ̂
(λ)
EM applied to Tables 8a and 8b.

Values of λ For Table 8a For Table 8b

−0.5∗ 0.040 0.042
0∗ 0.066 0.068
0.5∗ 0.081 0.082
1.0 0.089 0.088
1.5 0.091 0.090
2.0 0.089 0.088
2.5 0.084 0.084

∗ indicates that Γ̂
(λ)
EM is less for Table 8a than for Table 8b.

By the way, it is easily seen that the measure Γ
(0)
EM with equation (2.1) can

be expressed as

Γ
(0)
EM =

1

2 log 2
min
{Di}

[

I(0)
(

{

G∗
1(i)

}

;
{

Di

}

)

+ I(0)
(

{

G∗
2(i)

}

;
{

Di

}

)

]

,(5.1)

where
∑R−1

i=1 Di = 1 and Di > 0. Therefore we point out that Ci in Γ
(λ)
EM is the

value of Di such that the sum of two KL distances
(

i.e., the KL distance between
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{

G∗
1(i)

}

and
{

Di

}

with an EMH structure and the KL distance between
{

G∗
2(i)

}

and
{

Di

})

is a minimum. [Note that the readers may also be interested in

equation (5.1) with I(0)(·; ·) replaced by the power-divergence I(λ)(·; ·); however,

it is difficult to obtain the value of Di such that the corresponding two power-

divergence is a minimum, and also difficult to obtain the maximum value of such

a measure.]

Finally, we observe that

(i) the measure should be applied to contingency tables with ordered

categories because it is not invariant under the same arbitrary per-

mutations of row and column categories except the reverse order,

(ii) Γ
(λ)
EM should be used when there is not a structure of EMH in square

tables,

(iii) Γ̂
(λ)
EM cannot be used for testing goodness-of-fit of the EMH model

(though W (λ) can be used),

and

(iv) the value of Γ
(1)
EM is theoretically equal to the value of Γ

(2)
EM.

APPENDIX

The power-divergence statistic for testing goodness-of-fit of the EMH model

is given by

W (λ) = 2n I(λ)
(

{

p̂ij

}

;
{

p̂ML
ij

}

)

for −∞< λ <∞ ,

where

I(λ)(·; ·) =
1

λ(λ+1)

R
∑

i=1

R
∑

j=1

p̂ij

[

(

p̂ij

p̂ML
ij

)λ

− 1

]

, p̂ij =
nij

n
,

and p̂ML
ij is the maximum likelihood estimate of pij under the EMH model, where

the values at λ =−1 and λ = 0 are taken to be the limit as λ→−1 and λ→ 0,

respectively. The number of degrees of freedom is R−2.
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