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1. INTRODUCTION

Nonhomogenous diffusions are useful for modeling term structure of interest

rates in finance and other fields. Asymptotic properties such as weak consistency,

asymptotic normality and convergence of moments of maximum likelihood esti-

mator (MLE) and Bayes estimators (BEs) of the drift parameter in the nonlinear

nonhomogeneous Itô stochastic differential equations having nonstationary solu-

tions were first studied by Kutoyants (1978) for the small noise asymptotics case

and Kutoyants (1984) for the general case which includes both small noise and

long time asymptotics. The approach was through Ibragimov and Khasminskii

(1981). Later on, strong consistency and asymptotic normality for large sample

case were studied by Borkar and Bagchi (1982), Mishra and Prakasa Rao (1985a)

and Levanony, Shwartz and Zeitouni (1994) using the martingale approach un-

der stronger regularity conditions. Asymptotic normality of BEs was studied by

Mishra (1989) and Harison (1992) as a consequence of Bernstein-von Mises theo-

rem. Slightly weaker assumptions than those used in Kutoyants (1984) were used

by Yoshida (1990) to obtain the asymptotic behaviour of M -estimator. For first

order theory in general nonergodic stochastic models through the LAMN (de-

fined below) approach, see Basawa and Scott (1983). See the monograph Bishwal

(2007) for recent results on likelihood asymptotics and Bayesian asymptotics for

drift estimation of finite and infinite dimensional stochastic differential equations.

All the above results are on first order asymptotics. Beyond the first order

asymptotics in consistency, Florens and Pham (1999) obtained large deviations

for MLE and a minimum contrast estimator for the Ornstein–Uhlenbeck process.

For the nonlinear stationary homogeneous diffusions a large deviations upper

bound for the MLE and Bayes estimators was obtained by Bishwal (1999). For

the nonhomogeneous diffusions, Levanony (1994) obtained the conditional large

deviations upper and lower bounds for the MLE through the martingale approach

following Dupuis and Kushner (1989). He obtained unconditional large deviations

lower bounds following Bahadur et al. (1980). We obtain unconditional large

deviations upper bounds following Ibragimov and Khasminskii (1981).

Beyond the first order results in asymptotic normality, Berry–Esseen type

bounds in the linear homogeneous case were obtained by Mishra and Prakasa Rao

(1985b) which were sharpened to the Ornstein–Uhlenbeck process by Bose (1986),

Bishwal and Bose (1995) and Bishwal (2000a) respectively in order. Sharp Berry–

Esseen bound for the Bayes estimators and minimum contrast estimator were

obtained in Bishwal (2000b) and Bishwal (2005) respectively. In the above works

on Ornstein–Uhlenbeck process, stationarity was not assumed. For nonlinear

stationary ergodic diffusion, Edgeworth expansion of the distribution of the MLE

was obtained by Yoshida (1997) and that for M -estimator by Sakamoto and

Yoshida (1998) through the Malliavin calculus approach. As far as we know,
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no result is known on the rate of convergence to normality of the MLE in the

nonergodic case. We obtain a Berry–Esseen type bound for the MLE following

Michel and Pfanzagl (1971). Finally Berry–Esseen results are illustrated for a

nonhomogeneous Ornstein–Uhlenbeck process.

2. MODEL, ASSUMPTIONS AND PRELIMINARIES

Let (Ω,F , {Ft}t≥0P ) be a stochastic basis satisfying the usual hypotheses

on which is defined a diffusion process {Xt, t ≥ 0} satisfying the Itô stochastic

differential equation

(2.1) dXt = f(θ, t,Xt) dt+ dWt , t ≥ 0, X0 = 0

where {Wt, t≥ 0} is a standard Wiener process, f(θ, t, x) is a known real valued

function continuous on Θ× [0, T ]×R where Θ is a closed interval of the real

line and the parameter θ is unknown, which is to be estimated on the basis of

observation of the process {Xt, 0≤ t≤ T} =: XT
0 . Let θ0 be the true value of the

parameter which lies inside the parameter space Θ.

Let P T
θ be the measure generated by the process XT

0 on the space (CT , BT )

of continuous functions on [0, T ] with the associated Borel σ-algebra BT associ-

ated to the sup-norm topology of CT . Let ET
θ be the expectation with respect to

the measure P T
θ . Suppose P T

θ is absolutely continuous with respect to P T
θ0

. Then

it is well known that (see Liptser and Shiryayev (1977, p. 239)

(2.2)

LT (θ) :=
dP T

θ

dP T
θ0

(XT
0 )

= exp

{
∫ T

0

[

f(θ, s,Xs) − f(θ0, s,Xs)
]

dWs

− 1

2

∫ T

0

[

f(θ, s,Xs) − f(θ0, s,Xs)
]2
ds

}

.

is the Radon–Nikodym derivative (likelihood) of P T
θ with respect to P T

θ0
. The

MLE θT of θ based on XT
0 is defined as

θT := arg max
θ∈Θ

LT (θ) .

Throughout the paper prime denotes derivative with respect to θ. Let us denote

the log-likelihood function by lt(θ) ≡ logLT (θ), and let l′t(θ) ≡ UT (θ), l′′T (θ)≡
HT (θ) and l′′′T (θ) ≡ QT (θ).

If LT (θ) is continuous in θ, it can be shown that there exists a measurable

MLE by using Lemma 3.3 in Schmetterer (1974). Hereafter, we assume the exis-

tence of such a measurable MLE. We assume the following regularity conditions

on f(θ, t, x).
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(A1) Pθ1
6= Pθ2

for θ1 6= θ2 in Θ.

(A2) {Xt} is the unique strong solution of (2.1) with

(2.3) Pθ

(
∫ T

0
f2(θ, t,Xt) dt <∞

)

= 1 for all θ ∈ Θ, T <∞ .

The condition (2.3) ensures that P T
θ ≪P T

W for all θ where P T
W is

the standard Wiener measure and likelihood function is given by

(2.4)
dP T

θ

dP T
W

= exp

{
∫ T

0
f(θ, t,Xt) dXt −

1

2

∫ T

0
f2(θ, t,Xt) dt

}

.

(A3) (i) f(θ, t, x) is differentiable in t and x.

The log-likelihood with respect to P T
W can be written as

(2.5) log
dP T

θ

dP T
W

=

∫ T

0
f(θ, t,Xt) dXt −

1

2

∫ T

0
f2(θ, t,Xt) dt .

(ii) The integrals in (2.4) and (2.5) can be differentiated twice

under the integral sign with respect to θ.

Let IT (θ) :=
∫ T
0 f

′2(θ, t,Xt) dt and YT (θ) :=
∫ T
0 f

′′2(θ, t,Xt) dt.

(iii) l′′T is continuous in a neighborhood Vθ of θ for every θ ∈ Θ

and
nT = nT (θ) := Eθ(IT (θ)) <∞ , Eθ(YT (θ)) <∞

with nT → ∞ as T → ∞ and there exists a constant C0 such

that for any θ, θ1, θ2 ∈ Θ

Eθ(IT (θ2))

nT (θ1)
< C0 .

(iv)
IT (θ)

nT

Pθ→ 1 as T → ∞.

(A4) Suppose there exists γ ≥ 2 and C > 0 such that for all θ ∈ Θ

Eθ exp

{

−1

3

∫ T

0

[

f
(

θ+un
−1/2
T ,t,Xt)−f(θ,t,Xt)

]2
dt

}

≤ exp
(

−C|u|γ
)

.

(A5) Suppose that there exists mT = mT (θ) ↑∞ as T → ∞ such that

(i)
IT (θ)

mT

Pθ→η(θ) as T→∞ where Pθ

(

η(θ)>0
)

>0 andE(η−1(θ))<∞.

(ii)
YT (θ)

mT

Pθ→ξ(θ) as T → ∞.

Some of regularity conditions (A1)–(A5) can be found in the literature,

for example, Borkar and Bagchi (1982) and Levanony et al. (1994). However

both proved strong consistency and Levanony et al. (1994) proved asymptotic

normality. We need stronger regularity condition (A4) in order to prove large

deviations.
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Let us introduce the Bayes estimator. Let Λ be a prior probability measure

on (Θ,B) where B is the σ-algebra of Borel subsets of Θ. Suppose that Λ has a

density λ(·) with respect to the Lebesgue measure on R, which is continuous and

positive on Θ and possesses a polynomial majorant in Θ.

Let p(θ|XT
0 ) be the posterior density of θ given XT

0 . By Bayes theorem

p(θ|XT
0 ) is given by

p(θ|XT
0 ) =

LT (θ)λ(θ)
∫

Θ LT (θ)λ(θ) dθ
.

Let l(·, ·): Θ×Θ → R be a loss function as defined in Ibragimov and Khasminskii

(1981) which satisfies the following conditions:

(B1) ψ(u, v) = ψ(u−v).

(B2) ψ(u) is defined and nonnegative on R, ψ(0) = 0 and ψ(u) is contin-

uous at u = 0 but is not identically equal to 0.

(B3) ψ is symmetric, i.e., ψ(u) = ψ(−u).

(B4) {u : ψ(u) < c} are convex sets and are bounded for all c > 0 suffi-

ciently small.

(B5) There exists numbers γ > 0, h0 ≥ 0 such that for h ≥ h0

sup
{

ψ(u) : |u| ≤ hγ
}

≤ inf
{

ψ(u) : |u| ≥ h
}

.

Clearly, all power loss functions of the form |u− v|r, r > 0, satisfy the con-

dition (B1)–(B5). In particular, quadratic loss function |u − v|2 satisfies these

conditions.

A Bayes estimator
∼
θT of θ with respect to the loss function ψ(θ, φ) and

prior density λ(θ) is one which minimizes the posterior risk and is given by

∼
θT := arg min

φ∈Θ

∫

Θ
l(φ, θ) p(θ|XT

0 ) dθ .

In particular, for the quadratic loss function ψ(u, v) = |u− v|2, the Bayes esti-

mator
∼
θT becomes the posterior mean given by

∼
θT =

∫

Θ φ p(φ|XT
0 ) du

∫

Θ p(φ|XT
0 ) dφ

.

Let us consider the likelihood ratio process

ZT (u) :=
dP

θ+un
−1/2

T

dPθ
(XT

0 ) .
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By (2.2) with gt(u) := f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt), we have

ZT (u) = exp

{
∫ T

0

[

f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt)
]

dWt

− 1

2

∫ T

0

[

f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt)
]2
dt

}

= exp

{
∫ T

0
gt(u) dWt −

1

2

∫ T

0
g2
t (u) dt

}

.

We define the LAMN condition below:

Definition (Le Cam and Yang (1990), Jeganathan (1982, 1995)). Let

En =
(

Ωn,Fn, (P
n
θ , θ ∈Θ)

)

, n≥ 1, be a sequence of statistical experiments, where

Θ is an open subset of R. We denote by

Λn
ηθ

= log

(

dPn
η

dPn
θ

)

the log-likelihood between η and θ at stage n.

We say that the sequence En satisfies the local asymptotically quadratic

(LAQ) condition at a point θ ∈Θ if there are random variables ∆n and Γn defined

on (Ωn,Fn), Γn > 0 a.s. [Pn
θ ] and a positive numerical sequence φn ↓ 0 such that

for each bounded sequence of numbers un,

Λn
θ+φnun,θ −

(

un∆n − 1

2
u2

nΓn

) P n
θ→ 0

and

(∆n,Γn) → (∆,Γ) in Pn
θ -distribution

where ∆ and Γ are random variables on a measurable space (Ω,F , P ) with Γ> 0

a.s. (P ) and

EP exp
(

u∆ − 1

2
u2Γ

)

= 1 .

The sequence of experiments is called locally asymptotically Brownian functional

(LABF) if ∆ =
∫ 1
0 Fs dWs and Γ =

∫ 1
0 F

2
s ds with W a standard Brownian motion

and F a predictable process with respect to some filtration in F . It is called

locally asymptotically mixed normal (LAMN) if ∆ = Γ1/2W1 with W1 standard

normal variable independent of Γ and locally asymptotically normal (LAN) if,

in addition, Γ is nonrandom.

Let Φ(.) denote the standard normal distribution function and C denote a

generic positive constant. We shall use the following lemmas to prove our main

results. The first lemma is a revised version of Theorem 19 of Ibragimov and

Khasminskii (1981, p. 372) from Kallianpur and Selukar (1993, p. 330).
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Lemma 2.1. Let ζ(t) be a real valued random function defined on a closed

subset F of the Euclidean space R
k. We shall assume that the random process

ζ(t) is measurable and separable. Assume that the following condition is ful-

filled: there exist numbers m ≥ r > k and a function H(x) : R
k→ R

1 bounded

on compact sets such that for all x, h ∈ F , x+h ∈ F ,

E |ζ(x)|m ≤ H(x) ,

E
∣

∣ζ(x+h) − ζ(x)
∣

∣

m ≤ H(x) |h|r .

Then with probability one the realizations of ζ(t) are continuous functions of F .

Moreover, set

w(δ, ζ, L) = sup
x,y∈F

|x|,|y|≤L
|x−y|≤δ

∣

∣ζ(x) − ζ(y)
∣

∣ ,

then

E
(

w(h; ζ, L)
)

≤ B0

(

sup
|x|<L

H(x)
)1/m

Lk h(r−k)/m log(h−1)

where B0 = 64k
(

1 − 2−(r−k)m
)−1

+
(

2(m−r)/m − 1
)−1

.

Lemma 2.2 (Ibragimov and Khasminskii (1981, p. 45)). Let Zǫ,θ(u) be the

likelihood ratio function corresponding to the points θ+ φ(ǫ)u and θ where φ(ǫ)

denotes a normalizing factor such that |φ(ǫ)| → 0 as ǫ→ 0. Thus Zǫ,θ is defined

on the set Uǫ = (φ(ǫ))−1(Θ − θ). Let Zθ
ǫ,0(u) possesses the following properties:

given a compact set K⊂ Θ there exist numbers M1 > 0 and m1 ≥ 0 and functions

gK
ǫ (y) = gǫ(y) correspond such that

(1) For some α > 0 and all θ ∈ K,

sup
|u1|≤R
|u2|≤R

|u2 − u1|−α E
(ǫ)
θ

∣

∣Z
1/2
ǫ,θ (u2) − Z

1/2
ǫ,θ (u1)

∣

∣

2 ≤ M1 (1+Rm1) .

(2) For all θ ∈ K and u ∈ Uǫ, E
(ǫ)
θ Z

1/2
ǫ,θ (u) ≤ e−gǫ(u).

(3) gǫ(u) is a monotonically increasing to ∞ function of y

lim
y→∞
ǫ→0

yNe−gǫ(y) = 0 .

Let {
∼
θǫ} be a family of Bayes estimators with respect to the prior density q,

which is continuous and positive on K and possesses in Θ a polynomial majorant

and a loss function ωǫ(u, v) := ψ
(

(φ(ǫ))−1(u−v)
)

where ψ satisfies (B1)–(B5).

Then for all N ,

lim
h→∞
ǫ→0

hN sup
θǫK

P
(ǫ)
θ

{

∣

∣(φ(ǫ))−1(
∼
θǫ− θ)

∣

∣ > h
}

= 0 .
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If in addition, ψ(u) = τ(|u|), then for all ǫ sufficiently small, 0 < ǫ < ǫ0,

sup
θ∈K

P
(ǫ)
θ

{

∣

∣(φ(ǫ))−1 (
∼
θǫ− θ)

∣

∣ > h
}

≤ B0 e
−b0gǫ(h) .

Lemma 2.3. Under the assumptions (A1)–(A4),

(a) sup
θ∈Θ

ET
θ

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]2
≤ C2

0

4
(u2− u1)

2 ;

(b) sup
θ∈Θ

ET
θ

[

Z
1/2
T (u)

]

≤ C exp(−C|u|γ) .

Proof: Observe that

(2.6)

ET
θ

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]2
=

= ET
θ

[

ZT (u1)
]

+ ET
θ

[

ZT (u2)
]

− 2ET
θ

[

Z
1/2
T (u1)Z

1/2
T (u2)

]

≤ 2 − 2ET
θ

[

Z
1/2
T (u1)Z

1/2
T (u2)

]

.

From Gikhman and Skorohod (1972, p. 82), for all u, we have

(2.7) ET
θ

[

ZT (u)
]

= ET
θ

[

exp

{
∫ T

0
gt(u) dWt −

1

2

∫ T

0
g2
t (u) dt

}

]

≤ 1 .

Let

(2.8)

θ1 := θ + u1n
−1/2
T , θ2 := θ + u2n

−1/2
T ,

δt := f(θ2, t,Xt) − f(θ1, t,Xt) ,

J(θ1, θ2) := Eθ1

(

IT (θ2)
)

,

VT := exp

{

1

2

∫ T

0
δt dWt −

1

4

∫ T

0
δ2t dt

}

=

(

dP T
θ2

dP T
θ1

)1/2

.

By Itô formula, VT can be represented as

(2.9) VT = 1 − 1

8

∫ T

0
Vt δ

2
t dt +

1

2

∫ T

0
Vt δt dWt .

The random process
{

V 2
t ,Ft, P

T
θ , 0 ≤ t ≤ T

}

is a martingale and from the
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Ft-measurability of δt for each t ∈ [0, T ],

(2.10)

ET
θ1

∫ T

0
V 2

t δ
2
t dt = ET

θ1

∫ T

0
ET

θ1
(V 2

t |Ft) δ
2
t dt

= ET
θ1
V 2

T

∫ T

0
δ2t dt

=

∫

V 2
T

(
∫ T

0
δ2t dt

)

dPθ1

=

∫
(
∫ T

0
δ2t dt

)

dP T
θ2

= ET
θ2

(
∫ T

0
δ2t dt

)

= ET
θ2

∫ T

0

∣

∣f(θ2, t,Xt) − f(θ1, t,Xt)
∣

∣

2
dt

(2.11)

= ET
θ2

∫ T

0

(
∫ θ2

θ1

f ′(y, t,Xt) dy

)2

dt (by (A1))

≤ (θ2 − θ1)E
T
θ2

∫ T

0

∫ θ2

θ1

f ′
2

(y, t,Xt) dy dt

= (θ2 − θ1)

∫ θ2

θ1

J(θ2, y) dy < ∞ .

Hence ET
θ1

∫ T
0 Vt δt dWt = 0. Therefore, using |ab| ≤ a2+b2

2 , we obtain from (2.10)

(2.12)

ET
θ1

(VT ) = 1 − 1

8

∫ T

0
ET

θ1
(δtVt .δt) dt

≥ 1 − 1

16

∫ T

0
ET

θ1
δ2t dt −

1

16

∫ T

0
ET

θ1
V 2

t δ
2
t dt

= 1 − 1

16
ET

θ1

∫ T

0
δ2t dt −

1

16
ET

θ2

∫ T

0
δ2t dt (by (2.11)) .

Now

(2.13)

ET
θ

[

Z
1/2
T (u1)Z

1/2
T (u2)

]

= ET
θ





dP T

θ+u1n
−1/2

T

dP T
θ





1/2 



dP T

θ+u2n
−1/2

T

dP T
θ





1/2

=

∫

[

dP T
θ1

dP T
θ

]1/2 [

dP T
θ2

dP T
θ

]1/2

dP T
θ

=

∫

[

dP T
θ2

dP T
θ1

]1/2

dP T
θ1

= ET
θ1

(VT ) .
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Substituting (2.13) into (2.6) and using (2.12), we obtain

Eθ

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]2
≤

≤ 2 − 2Eθ1
(VT )

≤ 1

8
Eθ1

∫ T

0
δ2t dt +

1

8
Eθ2

∫ T

0
δ2t dt

≤ 1

8
(θ2 − θ1)

∫ θ2

θ1

[

J(θ1, y) + J(θ2, y)
]

dy

(by using arguments similar to (2.10))

≤ 1

4
(θ2 − θ1)

2 sup
θ,y

J(θ, y)

=
(u2 − u1)

2

4nT
sup
θ,y

J(θ, y)

≤ C0

4
(u2 − u1)

2 (by (A3)(iii)) .

This completes the proof of (a).

Let us now prove (b). By Hölder inequality,

(2.14)

Eθ

[

Z
1/2
T (u)

]

=

= Eθ

[

exp

{

1

2

∫ T

0
gt(u) dWt −

1

4

∫ T

0
g2
t (u) dt

}

]

= Eθ

[

exp

{

1

2

∫ T

0
gt(u) dWt −

1

6

∫ T

0

(

gt(u)
)2
dt

}

exp

{

− 1

12

∫ T

0

(

gt(u)
)2
dt

}

]

≤







Eθ

[

exp

{

1

2

∫ T

0
gt(u) dWt −

1

6

∫ T

0

(

gt(u)
)2
dt

}

]4/3






3/4

×







Eθ

[

exp

{

− 1

12

∫ T

0

(

gt(u)
)2
dt

}

]4






1/4

≤
[

Eθ exp

{

2

3

∫ T

0
gt(u) dWt −

2

9

∫ T

0

(

g2
t (u)

)

dt

}

]3/4

×
[

Eθ exp

{

−1

3

∫ T

0

(

gt(u)
)2
dt

}

]1/4

.

Assumption (A5) implies that

(2.15)

E exp

{

−1

3

∫ T

0

(

gt(u)
)2
dt

}

=

= E exp

{

−1

3

∫ T

0

[

f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt)
2
]2
dt

}

≤ exp
(

−C |u|γ
)

.
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On the other hand, from Gikhman and Skorohod (1972, p. 82)

(2.16) Eθ

[

exp

{
∫ T

0

2

3
gt(u) dWt −

1

2

∫ T

0

(2

3
gt(u)

)2
dt

}

]

≤ 1 .

Combination of (2.14)–(2.16) completes the proof of (b).

Lemma 2.4 (Michel and Pfanzagl (1971)). Let Y and Z be two random

variables on some probability space with P (Z > 0) = 1. Then for all ǫ > 0, we

have

sup
x∈R

∣

∣

∣

∣

P

{

Y

Z
≤ x

}

− Φ(x)

∣

∣

∣

∣

= sup
x∈R

∣

∣

∣
P
{

Y ≤ x
}

− Φ(x)
∣

∣

∣
+ P

{

|Z−1|> ǫ
}

+ ǫ .

The following is the generalization of the above lemma from non-random η

to random η.

Lemma 2.5 (Oblakova (1989)). Let Y, Z and η be three random variables

on some probability space with P (Z > 0) = 1, and η is a positive random variable

with P
{

0<η2 <∞
}

= 1, E(η−1)<∞. Then for all ǫ > 0, we have

sup
x∈R

∣

∣

∣

∣

P

{

Y

Z
≤ x

}

−Φ(x)

∣

∣

∣

∣

= E sup
x∈R

∣

∣

∣
P
{

Y ≤ x |G
}

−
∼
Φ(x)

∣

∣

∣
+2P

{

|Z−η|> ǫ
}

+ǫE(η−1) .

where
∼
Φ(x) = P (ζ η ≤ x |η), G = σ(η) ⊂ F0 and ζ is N (0, 1) random variable

independent of η.

3. MAIN RESULTS

We obtain the following large deviations upper bound for the MLE.

Theorem 3.1. Under the assumptions (A1)–(A4), for ρ > 0, we have

sup
θ∈Θ

P T
θ

{

n
1/2
T |θT − θ| ≥ ρ

}

≤ B exp
(

−b |ρ|γ
)

for some positive constants b and B independent of ρ and T .

Proof: Let

ST :=
{

u : θ + un
−1/2
T ∈ Θ

}

,
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(3.1)

P T
θ

{

n
1/2
T |θT − θ| > ρ

}

= P T
θ

{

|θT − θ| > ρn
−1/2
T

}

≤ P T
θ

{

sup
|u|≥ρ
u∈ST

LT

(

θ + uT−1/2
)

≥ LT (θ)

}

= P T
θ

{

sup
|u|≥ρ

LT

(

θ + uT−1/2)

LT (θ)
≥ 1

}

= P T
θ

{

sup
|u|≥ρ

ZT (u) ≥ 1

}

≤
∞
∑

r=0

P T
θ

{

sup
u∈Γr

ZT (u) ≥ 1

}

,

where Γr = [ρ+r, ρ+r+1]. Applying Lemma 2.1 with ζ(u) = Z
1/2
T (u), we obtain

from Lemma 2.3 that there exists a constant B > 0 such that

(3.2) sup
θ∈Θ

ET
θ

{

sup
|u1−u2|≤h
|u1|,|u2|≤l

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]

}

≤ B l1/2 h1/2 log h−1 .

Divide Γr into subintervals of length at most h > 0. The number n of subintervals

is clearly less than or equal to [ 1
h ] + 1. Let Γ

(j)
r , 1 ≤ j ∈ n be the subintervals

chosen. Choose uj ∈ Γ
(j)
r . Then

P T
θ

[

sup
u∈Γr

ZT (u) ≥ 1

]

≤

≤
n
∑

j=1

P T
θ

[

Z
1/2
T (uj) ≥

1

2

]

+ P T
θ

{

sup
|u−v|≤h

|u|,|v|≤ρ+r+1

∣

∣

∣
Z

1/2
T (u) − Z

1/2
T (v)

∣

∣

∣
≥ 1

2

}

≤ 2
n
∑

j=1

ET
θ

[

Z
1/2
T (uj)

]

+ 2B(ρ+ r + 1)1/2 h1/2 log(h−1)

(by Markov inequality and (3.2))

≤ 2C
n
∑

j=1

exp
(

−C |uj |γ
)

+ 2B(ρ+r+1)1/2 h1/2 log(h−1) (by Lemma 2.2)

≤ 2C

([

1

h

]

+1

)

exp
{

−C(ρ+r)γ
}

+ 2B(ρ+r+1)1/2 h1/2 log(h−1) .

Let us now choose h = exp
{

−C(ρ+r)γ

2

}

. Then

(3.3)
sup
θ∈Θ

P T
θ

{

sup
u>ρ

ZT (u) ≥ 1

}

≤ B

∞
∑

r=0

(ρ+ r + 1)1/2 exp

{−C(ρ+ r)γ

4

}

≤ B exp(−bργ) ,

where B and b are positive generic constants independent of ρ and T . Similarly

it can be shown that

(3.4) sup
θ∈Θ

P T
θ

[

sup
u<−ρ

ZT (u) ≥ 1

]

≤ B exp(−bργ) .
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Combining (3.3) and (3.4), we obtain

(3.5) sup
θ∈Θ

P T
θ

[

sup
|u|>ρ

ZT (u) ≥ 1

]

≤ B exp(−bργ) .

The theorem follows from (3.2) and (3.5).

By substituting ρ = n
1/2
T ǫ in Theorem 3.1, the following result is obtained.

Corollary 3.1. Under the conditions of Theorem 3.1, for arbitrary ǫ > 0

and all T > 0, we have

sup
θ∈Θ

P T
θ

{

|θT − θ| > ǫ
}

≤ B exp(−b nT ǫ
γ)

where B and b are positive constants independent of ǫ and T .

We obtain the following large deviations bound for the Bayes estimator
∼
θT .

Theorem 3.2. Suppose (A1)–(A4) and (B1)–(B5) hold. For ρ > 0, the

Bayes estimator
∼
θT with respect to the prior λ(·) and a loss function l(·, ·) with

l(u) = l(|u|) satisfies

sup
θ∈Θ

P T
θ

{√
T
∣

∣

∼
θT − θ

∣

∣ ≥ ρ
}

≤ B exp(−bρ2)

for some positive constants B and b independent of ρ and T .

Proof: Using Lemma 2.3, conditions (1), (2) and (3) of Lemma 2.2 are

satisfied with α = 2 and g(u) = u2. Hence the result follows from Lemma 2.2.

Corollary 3.2. Under the conditions of Theorem 3.3, for arbitrary ǫ > 0

and all T > 0, we have

sup
θ∈Θ

P T
θ

{

∣

∣

∼
θT − θ

∣

∣ > ǫ
}

≤ B exp(−C T ǫ2) .

As another application of Theorem 3.3 we obtain the following result.

Theorem 3.3. Under the assumptions (A1)–(A4), for all N , we have for

the Bayes estimator
∼
θT with respect to the prior λ(·) and loss function ψ(·, ·)

satisfying the conditions (B1)–(B5),

lim
H→∞
T→∞

HN sup
θǫΘ

P T
θ

{√
T
∣

∣

∼
θT − θ

∣

∣>H
}

= 0 .
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We establish the following Berry–Esseen type inequality for the MLE.

Theorem 3.4. Under the assumptions (A2), (A3) and (A5),

sup
x∈R

∣

∣

∣
Pθ

{

I
−1/2
T (θ) (θT − θ) ≤ x

}

− Φ(x)
∣

∣

∣
≤

≤ E
1/3
θ

∣

∣

∣

∣

IT (θ)

mT
− η(θ)

∣

∣

∣

∣

+ Pθ

{∣

∣

∣

∣

HT (θ)

IT
−1

∣

∣

∣

∣

>
ǫT

2

}

+ Pθ

{

sup
θ∈Θ

∣

∣I−1
T (QT (θ))

∣

∣>
ǫT

2δ

}

+ C exp
(

−b nT δ
2
)

.

for any δ > 0 and some ǫT ↓ 0 as T→∞ and b > 0 is a constant independent of T .

Proof: Recall that l′t(θ) ≡ UT (θ), l′′T (θ) ≡ HT (θ) and l′′′T (θ) ≡ QT (θ).

By a Taylor expansion of UT (θ) around θ, we have

0 = UT (θT ) = UT (θ) + (θT − θ)HT (θT ) where |θT − θ| < |θT − θ| .

Hence

I
1/2
T (θ) (θT − θ) = −I1/2

T (θ)
UT (θ)

HT (θT )

= −
(

IT (θ)

mT

)1/2 m
−1/2
T UT (θ)

m−1
T HT (θT )

.

Thus by Lemma 2.3, we have

sup
x∈R

∣

∣

∣
Pθ

{

I
1/2
T (θ) (θT − θ) ≤ x

}

− Φ(x)
∣

∣

∣
=

= sup
x∈R

∣

∣

∣

∣

∣

∣

∣

Pθ











−
(

IT (θ)
mT

)−1/2
m

−1/2
T UT (θ)

(

IT (θ)
mT

)−1
m−1

T HT (θT )
≤ x











− Φ(x)

∣

∣

∣

∣

∣

∣

∣

= sup
x∈R

∣

∣

∣

∣

∣

∣

∣

Pθ











−m−1/2
T UT (θ)
(

IT (θ)
mT

)1/2
≤ x











− Φ(x)

∣

∣

∣

∣

∣

∣

∣

+ Pθ

{

∣

∣I−1
T (θ)HT (θT ) − 1

∣

∣ > ǫT

}

+ ǫT

=: J1 + J2 + ǫT .

Let MT (θ) = −m−1/2
T UT (θ) = m

−1/2
T

∫ T
0 f

′(θ, t,Xt) dWt, a normalized continuous

martingale with respect to FT and 〈M(θ)〉T = m−1
T IT (θ) = m−1

T

∫ T
0 f

′2(θ, t,Xt) dt

be its corresponding increasing process. Let
∼
Φ(x) = P

(

Gη ≤ x|η
)

, G ∼ N (0, 1)
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and G ≡ σ(η) ⊂ F0. Then by Lemma 2.5

J1 = sup
x∈R

∣

∣

∣

∣

∣

∣

∣

Pθ











−m−1/2
T UT (θ)
(

IT (θ)
mT

)1/2
≤ x











− Φ(x)

∣

∣

∣

∣

∣

∣

∣

= sup
x∈R

∣

∣

∣

∣

∣

Pθ

{

MT (θ)
√

〈M(θ)〉T
≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

≤ Eθ sup
x∈R

∣

∣

∣
Pθ

(

MT (θ)≤ x |G
)

−
∼
Φ(x)

∣

∣

∣

+ 2Pθ

{

∣

∣

√

〈M(θ)〉T − η(θ)
∣

∣ > ǫT

}

+ ǫT E
(

η−1(θ)
)

≤ C1E
1/3
θ

∣

∣

∣

∣

IT (θ)

mT
− η(θ)

∣

∣

∣

∣

(by Lemma 2.5)

where C1 depends only on E(η−1(θ)). Further,

J2 = Pθ

{

∣

∣I−1
T HT (θT ) − 1

∣

∣ > ǫT

}

≤ Pθ

{

∣

∣I−1
T

∣

∣

∣

∣HT (θT ) −HT (θ)
∣

∣ >
ǫT

2

}

+ Pθ

{

∣

∣I−1
T HT (θ) − 1

∣

∣ >
ǫT

2

}

= Pθ

{

I−1
T

∣

∣(θT − θ)QT (θ⋆
T )
∣

∣ >
ǫT

2

}

+ Pθ

{

∣

∣I−1
T HT (θ) − 1

∣

∣ >
ǫT

2

}

(

where |θ⋆
T − θ| < |θT − θ|

)

≤ Pθ

{

∣

∣I−1
T

(

QT (θ⋆
T )
)
∣

∣>
ǫT

2 δ

}

+ Pθ

{

∣

∣θT − θ
∣

∣> δ
}

+ Pθ

{

∣

∣I−1
T HT (θ) −1

∣

∣>
ǫT

2

}

≤ Pθ

{

∣

∣I−1
T

(

QT (θ⋆
T )
)
∣

∣>
ǫT

2 δ

}

+ Pθ

{

∣

∣θT − θ
∣

∣> δ
}

+ Pθ

{

∣

∣I−1
T HT (θ) −1

∣

∣>
ǫT

2

}

≤ Pθ

{

sup
θ∈Θ

∣

∣I−1
T

(

QT (θ)
)
∣

∣>
ǫT

2δ

}

+ C exp
(

−b nT δ
γ
)

+ Pθ

{

∣

∣I−1
T HT (θ) −1

∣

∣>
ǫT

2

}

(by Corollary 3.2) .

This completes the proof of the theorem.

Remark. We used the splitting technique developed by Michel and Pfan-

zagl (1971) for the i.i.d. case. The upper bound in the Berry–Esseen type in-

equality obtained here contains four terms. The first term is cube root of the

absolute moment, the second and the third term are moderate deviations type

probabilities of the second and the third derivatives of log-likelihood respectively,

and the fourth term is decays exponentially. The bound is quite sharp as seen in

the linear case in the following example.
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4. NONHOMOGENEOUS ORNSTEIN–UHLENBECK PROCESS

We apply the Berry–Esseen results for the MLE in the nonhomogeneous

Ornstein–Uhlenbeck process satisfying the stochastic differential equation

(4.1) dXt = θ tXt dt+ dWt , t ≥ 0, X0 = 0

where θ > 0. Note that the solution is a nonstationary and nonergodic process.

Here the MLE based on {Xt, 0≤ t≤ T} is given by

θT =

∫ T
0 tXt dXt
∫ T
0 t2X2

t dt
,

and IT (θ)=
∫ T
0 t

2X2
t dt. Let us choose mT =

∫ T
0 t

2 eθt2dt. Note that m
1/2
T (θ)(θT−θ)

converges to Cauchy distribution with parameters (0,1) as T→∞. Here IT
mT

→∆2

a.s. where ∆ has N
(

0, ( π
4θ )1/2

)

distribution and η2(θ) = ∆2. Directly from the

calculation of J1 in Theorem 3.6, we have

sup
x∈R

∣

∣

∣
Pθ

{

I
1/2
T (θ) (θT − θ) ≤ x

}

− Φ(x)
∣

∣

∣
≤ E

1/3
θ

∣

∣

∣

∣

∣

∫ T
0 t2X2

t dt
∫ T
0 t2 eθt2 dt

− ∆2

∣

∣

∣

∣

∣

≤ C T 1/2 exp

(−θ T 4

12

)

≤ C exp

(−θ T 4

24

)

.

This shows that rate of weak convergence can be faster in the nonergodic

processes than in ergodic processes in which case the sharpest possible rate is

O(T−1/2).

Remarks.

(1) Levanony et al. (1994) (see also Trofimov (1982)) showed that, for

large enough t, MLE θt is a continuous semimartingale satisfying a

stochastic differential equation. One could use the Berry–Esseenbound

for semimartingales (see, e.g., Liptser and Shiryayev (1982, 1989))

to obtain a Berry–Esseen bound for the MLE θt. However, it would

not give sharp bounds. Hence we follow the method of Michel and

Pfanzagl (1971)) developed for the independent observations case.

(2) Large deviations for M -estimator remains to be investigated.

(3) It would be interesting if one can improve the Berry–Esseen bound in

the above example by applying the characteristic function technique

used in Bishwal (2000a).

(4) Berry–Esseen type bounds for Bayes estimators remain open.

(5) Large deviations and Berry–Esseen results for diffusions based on dis-

crete observations remains to be investigated which would be more

interesting in view of applications in finance.
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[5] Bishwal, J.P.N. (2000b). Rates of convergence of the posterior distributions
and the Bayes estimators in the Ornstein–Uhlenbeck process, Random Operators

and Stochastic Equations, 8(1), 51–70.

[6] Bishwal, J.P.N. (2005). Uniform rate of weak convergence for the minimum
contrast estimator in the Ornstein–Uhlenbeck process, Methodology and Comput-

ing in Applied Probability (to appear).

[7] Bishwal, J.P.N. (2007). Parameter Estimation in Stochastic Differential Equa-

tions, Lecture Notes in Mathematics, Vol.1923, Springer-Verlag.

[8] Bishwal, J.P.N. and Bose, A. (1995). Speed of convergence of the maximum
likelihood estimator in the Ornstein–Uhlenbeck process, Calcutta Statist. Assoc.

Bulletin, 45, 245–251.

[9] Borkar, V. and Bagchi, A. (1982). Parameter estimation in continuous time
stochastic processes, Stochastics, 8, 193–212.

[10] Bose, A. (1986). Berry–Esseen bound for the maximum likelihood estimator in
the Ornstein–Uhlenbeck process, Sankhyā Ser. A, 48, 181–187.
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