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Abstract:

• For square contingency tables with ordered categories, Agresti (1984, 2002) considered
the marginal cumulative logistic (ML) model, which is an extension of the marginal
homogeneity (MH) model. Miyamoto, Niibe and Tomizawa (2005) proposed the con-
ditional marginal cumulative logistic (CML) model which is defined off the main
diagonal cells, and gave the decompositions of the MH model using the ML (CML)
model. This paper (1) considers the ML and CML models for multi-way tables, and
(2) gives the decompositions of the MH model into the ML (CML) model and the
model of the equality of marginal means for multi-way tables. An example is given.
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1. INTRODUCTION

For an R×R square contingency table with ordered categories, let pij de-

note the probability that an observation will fall in the cell in row i and column j

(i = 1, ..., R; j = 1, ..., R), and let X1 and X2 denote the row and column variables,

respectively. The marginal homogeneity (MH) model is defined by

Pr(X1 = i) = Pr(X2 = i) for i = 1, ..., R ;

that is

pi · = p· i for i = 1, ..., R ,

where pi · =
∑R

k=1 pik and p· i =
∑R

k=1 pki. This model indicates that the row

marginal distribution is identical to the column marginal distribution (Stuart,

1955; Bhapkar, 1966; Bishop, Fienberg and Holland, 1975, p. 294; Tomizawa,

1991, 1993, 1998). Let F
(1)
i and F

(2)
i denote the marginal cumulative probabilities

of X1 and X2, respectively. These are F
(1)
i = Pr(X1≤ i) =

∑i
k=1 pk · and F

(2)
i =

Pr(X2 ≤ i) =
∑i

k=1 p·k for i = 1, ..., R−1. Then the MH model may also be

expressed as

F
(1)
i = F

(2)
i for i = 1, ..., R−1 .

Let L
(1)
i and L

(2)
i denote the marginal cumulative logit of X1 and X2,

respectively. These are given as

L
(1)
i = logit

[

Pr(X1≤ i)
]

= log

[

Pr(X1≤ i)

1 − Pr(X1≤ i)

]

,

and

L
(2)
i = logit

[

Pr(X2 ≤ i)
]

= log

[

Pr(X2 ≤ i)

1 − Pr(X2 ≤ i)

]

,

for i = 1, ..., R−1. Then the MH model may be further expressed as

L
(1)
i = L

(2)
i for i = 1, ..., R−1 .

As an extension of the MH model, Agresti (1984, p. 205; 2002, p. 420) considered

the marginal cumulative logistic (ML) model defined by

L
(1)
i = L

(2)
i + ∆ for i = 1, ..., R−1 .

This model states that the odds that X1 is i or below instead of i + 1 or above,

is exp(∆) times higher than the odds that X2 is i or below instead of i + 1 or

above, for every i = 1, ..., R−1. Note that the MH model implies the ML model.

Consider the marginal mean equivalence (ME) model defined by

R
∑

i=1

i pi · =
R
∑

i=1

i p· i (i.e., E(X1) = E(X2)) .
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Miyamoto, Niibe and Tomizawa (2005) gave the following theorem.

Theorem 1.1. The MH model holds if and only if both the ML and ME

models hold.

Using the conditional probabilities, the MH model may also be expressed

as

Pr
(

X1 = i |X1 6= X2

)

= Pr
(

X2 = i |X1 6= X2

)

for i = 1, ..., R ;

that is

pc
i · = pc

· i for i = 1, ..., R ,

where

pc
i · =

pi · − pii

δ
= Pr

(

X1 = i |X1 6= X2

)

,

pc
· i =

p· i − pii

δ
= Pr

(

X2 = i |X1 6= X2

)

,

δ =
∑∑

s 6=t

pst = Pr
(

X1 6= X2

)

.

Let F
c(1)
i and F

c(2)
i denote the conditional marginal cumulative probabilities of

X1 and X2 given that X1 6= X2, i.e.,

F
c(1)
i = Pr

(

X1≤ i |X1 6= X2

)

=
i
∑

k=1

pc
k · ,

F
c(2)
i = Pr

(

X2 ≤ i |X1 6= X2

)

=
i
∑

k=1

pc
·k ,

for i = 1, ..., R−1. Then the MH model may be further expressed as F
c(1)
i = F

c(2)
i

for i = 1, ..., R−1. Miyamoto et al. (2005) also considered the conditional marginal

cumulative logistic (CML) model defined by

L
c(1)
i = L

c(2)
i + ∆∗ for i = 1, ..., R−1 ,

where

L
c(1)
i = logit

[

Pr
(

X1≤ i |X1 6= X2

)]

,

L
c(2)
i = logit

[

Pr
(

X2 ≤ i |X1 6= X2

)]

.

Miyamoto et al. (2005) also gave the following theorem.

Theorem 1.2. The MH model holds if and only if both the CML and ME

models hold.
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For analyzing the data of multi-way tables of the same classifications with

ordered categories, the some models of symmetry, e.g., the symmetry model, the

MH model (e.g., Bishop et al. 1975, pp. 300–307), and the ML model (Agresti,

2002, pp. 439–440) are applied. The symmetry and the MH models do not depend

on the main diagonal cell probabilities, however, the ML model depends on them.

So, we are now interested in the another ML model which does not depend on

the main diagonal cell probabilities, namely, in the conditional ML model on

condition that an observation will fall in one of off-diagonal cells of the table.

The purpose of this paper is (1) to extend the CML model into the multi-

way tables (Section 2.4) and (2) to extend Theorems 1.1 and 1.2 into the multi-

way tables (Section 3).

2. EXTENSION TO MULTI-WAY TABLES

2.1. The MH model

Consider an RT table (T ≥ 3) having ordered categories. Let Xt denote

the t-th random variable for t = 1, ..., T and let Pr(X1 = i1, ..., XT = iT ) = pi1...iT

for it = 1, ..., R. The marginal homogeneity (MH) model is defined by

Pr(X1 = i) = · · · = Pr(XT = i) for i = 1, ..., R ;

that is

p
(1)
i = · · · = p

(T )
i for i = 1, ..., R ,

where

p
(t)
i = Pr(Xt = i) for t = 1, ..., T .

Let F
(t)
i denote the marginal cumulative probabilities and let L

(t)
i denote

the marginal cumulative logit of Xt for i = 1, ..., R−1; t = 1, ..., T . Namely,

F
(t)
i =

∑i
s=1 p

(t)
s , and L

(t)
i = logit

[

Pr(Xt ≤ i)
]

. Then the MH model may also

be expressed as

F
(k)
i = F

(1)
i for i = 1, ..., R−1; k = 2, ..., T ,

or

L
(k)
i = L

(1)
i for i = 1, ..., R−1; k = 2, ..., T .
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2.2. The ML model

Agresti (2002, p. 442) considered the marginal cumulative logistic (ML)

model, defined by

L
(k)
i = L

(1)
i − ∆k−1 for i = 1, ..., R−1; k = 2, ..., T .

By putting L
(1)
i = θi, this model may be expressed as

F
(k)
i =

exp(θi − ∆k−1)

1 + exp(θi − ∆k−1)
for i = 1, ..., R−1; k = 1, ..., T ,

where ∆0 = 0. A special case of this model obtained by putting ∆1 = · · · =

∆T−1 = 0 is the MH model.

2.3. Other expressions of MH model

The MH model may also be expressed as

Pr
(

Xk = i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)

=

= Pr
(

X1 = i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)

,

for i = 1, ..., R; k = 2, ..., T ; that is

p
c(k)
i = p

c(1)
i for i = 1, ..., R; k = 2, ..., T ,

where, for m = 1, ..., T ,

p
c(m)
i =

p
(m)
i − pii ··· i

δ
= Pr

(

Xm = i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)

,

δ = 1 −

R
∑

i=1

pii ··· i = Pr
(

(X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)

.

Let F
c(k)
i denote the conditional marginal cumulative probabilities of Xk given

that (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R, i.e.,

F
c(k)
i = Pr

(

Xk ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)

=
i
∑

t=1

p
c(k)
t

for i = 1, ..., R−1; k = 1, ..., T . Then the MH model may be further expressed as

F
c(k)
i = F

c(1)
i for i = 1, ..., R−1; k = 2, ..., T .
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2.4. The CML model

Consider now a model defined by

L
c(k)
i = L

c(1)
i − ∆∗

k−1 for i = 1, ..., R−1; k = 2, ..., T ,

where, for m = 1, ..., T ,

L
c(m)
i = logit

[

Pr
(

Xm ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)]

= log





Pr
(

Xm ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)

1 − Pr
(

Xm ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R
)



 .

We shall refer to this model as the conditional marginal cumulative logistic (CML)

model. By putting L
c(1)
i = θ∗i , this model may be expressed as

F
c(k)
i =

exp(θ∗i − ∆∗
k−1)

1 + exp(θ∗i − ∆∗
k−1)

for i = 1, ..., R−1; k = 1, ..., T ,

where ∆∗
0 = 0. A special case of the CML model obtained by putting ∆∗

1 = · · · =

∆∗
T−1 = 0 is the MH model.

The CML model states that for k = 2, ..., T , on condition that the values

of random variables are not all same, the odds that X1 is i or below instead of

i+1 or above, is exp(∆∗
k−1) times higher than the odds that Xk is i or below

instead of i+1 or above, for every i = 1, ..., R−1. Thus, if ∆∗
k−1 > 0, on the same

condition, X1 rather than Xk tends to be i or below instead of i+1 or above for

every i = 1, ..., R−1.

3. DECOMPOSITIONS OF THE MARGINAL HOMOGENEITY

MODEL

We shall consider two kinds of decompositions of the MH model.

3.1. A decomposition of the MH model using the ML model

Consider a model defined as

R
∑

i=1

i p
(1)
i = · · · =

R
∑

i=1

i p
(T )
i (i.e., E(X1) = · · · = E(XT )) .(3.1)
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Namely, the means of variables Xk (k=1,...,T ) are equal. Note that the MH model

implies model (3.1).

Consider a specified monotonic function g(k) satisfying g(1) ≤ · · · ≤ g(R)

or g(1) ≥ · · · ≥ g(R), where at least one strict inequality holds. Using the func-

tion g(k), model (3.1) is generalized as

R
∑

i=1

g(i) p
(1)
i = · · · =

R
∑

i=1

g(i) p
(T )
i (i.e., E(g(X1)) = · · ·= E(g(XT ))) .(3.2)

We shall refer to (3.2) as the marginal mean equivalence (ME) model.

The {g(k)} may be considered as the ordered scores {uk} assigned to the

categories if it is possible to assign the scores; namely, g(k) = uk satisfying

u1≤ · · · ≤ uR or u1≥ · · · ≥ uR. In particular, when the scores are equal-interval;

that is, when u2 − u1 = u3 − u2 = · · · = uR − uR−1, then the ME model with

g(k) = uk is equivalent to the model (3.1). We now obtain the following theorem.

Theorem 3.1. For multi-way tables, the MH model holds if and only if

both the ML and ME models hold.

Proof: If the MH model holds, then both the ML and ME models hold.

Therefore, assuming that both the ML and ME models hold, we shall show that

the MH model holds. We have

E(g(X1)) =

R
∑

k=1

g(k) p
(1)
k

= g(1) +
R
∑

k=2

(

dk

R
∑

i=k

p
(1)
i

)

= g(1) +
R
∑

k=2

dk

(

1 − F
(1)
k−1

)

= g(R) −
R
∑

k=2

dk F
(1)
k−1 ,

where

dk = g(k) − g(k−1) .

Similarly, we have

E(g(X2)) = g(R) −
R
∑

k=2

dk F
(2)
k−1 .

This yields

E(g(X2)) − E(g(X1)) =

R
∑

k=2

dk

(

F
(1)
k−1 − F

(2)
k−1

)

.
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Since the ML and ME models hold, we obtain

R
∑

k=2

dk

(

exp(θk−1)

1 + exp(θk−1)
−

exp(θk−1− ∆1)

1 + exp(θk−1 − ∆1)

)

= 0 .

Thus

(

1 − exp(−∆1)
)

R
∑

k=2

dk

exp(θk−1)
(

1 + exp(θk−1)
) (

1 + exp(θk−1− ∆1)
) = 0 .

Then

R
∑

k=2

dk

exp(θk−1)
(

1 + exp(θk−1)
) (

1 + exp(θk−1− ∆1)
) 6= 0 ,

because dk ≥ 0 for all k = 2, ..., R (or dk ≤ 0 for all k = 2, ..., R), with at least

one of the dk’s being not equal to zero. Therefore we obtain ∆1 = 0. In the

similar way, we obtain ∆k = 0 for k = 2, ..., T − 1. Thus, the MH model holds.

The proof is completed.

3.2. A decomposition of the MH model using the CML model

We now obtain the following theorem.

Theorem 3.2. For multi-way tables, the MH model holds if and only if

both the CML and ME models hold.

We omit the proof because it can be obtained in a similar way as the proof

of Theorem 3.1.

Generally, consider a decomposition of model such that model M1 holds

if and only if both models M2 and M3 hold. When models M1 and M2 fit the

data poorly but model M3 fits the data well, we can then understand that the

poor fit of model M1 is caused by the lack of structure of model M2 rather than

the structure of model M3. Thus, the decomposition of model M1 may be useful

to see the reason for the poor fit of model M1.

Let ni1··· iT denote the observed frequency in the (i1, ..., iT ) cell of the RT

table with n =
∑

· · ·
∑

ni1··· iT , and let mi1··· iT denote the corresponding expected

frequency. We assume that {ni1··· iT } have a multinomial distribution. The max-

imum likelihood estimates (MLEs) of the expected frequencies under each model
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can be obtained using a Newton–Raphson method to solve the likelihood equa-

tion (see Appendix for the CML model). Denote the likelihood ratio chi-squared

statistic for testing the goodness-of-fit of model M by G2(M). For testing that

model M1 holds assuming that model M2 holds true, the likelihood ratio statis-

tic is given as G2(M1 |M2) = G2(M1) − G2(M2) (≥ 0). The numbers of degrees

of freedom (df) for testing the goodness-of-fit of the MH, ML (CML), and ME

models are (T −1)(R−1), (T −1)(R−2), and T −1, respectively.

Table 1: Opinions about government spending; from Lang and Agresti (1994).
The upper and lower paranthesized values are the MLEs of expected
frequencies under the ML and CML models, respectively.

Cities Health
Law Enforcement

(1) (2) (3)

(1) (1) 76 20 5
(71.31) (17.03) (5.92)
(76.00) (21.00) (5.66)

(1) (2) 13 11 0
(12.29) (9.43) (0.00)
(15.22) (12.59) (0.00)

(1) (3) 4 3 2
(3.68) (2.51) (2.31)
(3.31) (2.44) (1.72)

(2) (1) 113 56 5
(122.83) (54.44) (7.16)
(108.92) (52.96) (5.06)

(2) (2) 30 28 1
(32.89) (27.43) (1.45)
(31.29) (28.00) (1.10)

(2) (3) 4 1 2
(4.25) (0.95) (2.78)
(3.04) (0.75) (1.58)

(3) (1) 103 41 15
(100.86) (36.28) (18.76)
(103.88) (40.54) (15.92)

(3) (2) 29 21 5
(28.61) (18.71) (6.32)
(31.77) (22.51) (5.79)

(3) (3) 6 8 5
(5.76) (6.95) (6.09)
(4.73) (6.21) (5.00)

Note: (1) – too little; (2) – about right; (3) – too much.
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4. EXAMPLE

The data in Table 1, taken directly from Lang and Agresti (1994), is the

1989 General Social Survey conducted by the National Opinion Research Center

at the University of Chicago. Subjects in the sample were asked their opinion

regarding government spending on the health (X1), the law enforcement (X2),

and the assistance to big cities (X3). The common response scale is (1) too little,

(2) about right, and (3) too much. Table 2 presents the values of likelihood ratio

statistic G2 for each model.

The MH model fits these data very poorly. However the CML model fits

these data well although the ML model does not fit so well. Also, the ME model

with g(k) = k, k = 1, 2, 3, fits these data very poorly.

Consider the hypothesis that the MH model holds under the assumption

that the ML (CML) model holds; namely, the hypothesis that ∆1 = ∆2 = 0

(∆∗
1= ∆∗

2 = 0) under the assumption. Because G2(MH |ML) = G2(MH)−G2(ML)

= 328.57 and G2(MH |CML) = G2(MH) − G2(CML) = 331.49 with 2 df, we re-

ject these hypotheses at the 0.05 level. These show the rejection of ∆1 = ∆2 = 0

(∆∗
1 = ∆∗

2 = 0) in the ML (CML) model.

Under the CML model the MLEs of exp(∆∗
k) are exp(∆̂∗

1) = 1.59 and

exp(∆̂∗
2) = 17.3 (i.e., ∆̂∗

1 = 0.46 and ∆̂∗
2 = 2.85). Thus, the CML model provides

that (1) under the condition that the opinions are not all same, the odds that

the opinion is ‘too little’ instead of not ‘too little’ are estimated to be 1.59 times

higher in health than in law, and (2) the odds that the opinion is not ‘too much’

instead of ‘too much’ are estimated to be 1.59 times higher in health than in law,

and similarly, (3) the odds that the opinion is ‘too little’ instead of not ‘too little’

are estimated to be 17.3 times higher in health than in cities, and (4) the odds

that the opinion is not ‘too much’ instead of ‘too much’ are estimated to be

17.3 times higher in health than in cities.

Table 2: Likelihood ratio statistic G2 for models applied to the data in Table 1.

Models
Table 1

df G2

MH 4 334.62∗

ML 2 6.05∗

CML 2 3.13
ME 2 316.01∗

∗ means significant at 0.05 level.

Note: g(k) for the ME model are the equal-interval scores.
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5. CONCLUDING REMARKS

When the MH model fits the data poorly, the decompositions of the MH

model may be useful for seeing the reason for its poor fit. Indeed, for the data in

Table 1, the poor fit of the MH model is caused by the poor fit of the ME model

rather than the ML (or CML) model.

Each of the MH, CML and ME models does not depend on the probabilities

{pii ··· i} on the main diagonal of the table, but the ML model depends on them.

Notice that the estimated expected frequencies on the main diagonal cells under

the ML model are different from the observed frequencies on the main diagonal

(see Table 1).

When the MH model does not hold, if we want to see the reason why

the equalities of the conditional marginal cumulative probabilities {F
c(k)
i } do not

hold, the analyst would be interested in inferring the structure of only off-diagonal

probabilities. In this case, the decomposition of the MH model into the CML and

ME models may be preferable to that into the ML and ME models.

Also, the MH model indicates the equalities of marginal cumulative prob-

abilities {F
(k)
i }, which include the probabilities {pii ··· i} on the main diagonal.

Therefore, when the MH model does not hold, if we want to see the reason why

the equalities of {F
(k)
i } do not hold, the analyst would be interested in inferring

the structure of {F
(k)
i }. Then, the decomposition of the MH model into the ML

and ME models may be preferable to that into the CML and ME models.

The decompositions of the MH model described here should be consid-

ered for ordinal categorical data, because each of the decomposed models is not

invariant under the same arbitrary permutations of all categories.
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APPENDIX

We consider the MLEs of the expected frequencies {mijt} under the CML

model. We give the case of three-way table below and omit the case of more

multi-way table because those are obtained in the similar way.

To obtain the MLEs under the CML model, we must maximize the Lagran-

gian

L =

R
∑

i=1

R
∑

j=1

R
∑

t=1

nijt log pijt − µ

(

R
∑

i=1

R
∑

j=1

R
∑

t=1

pijt − 1

)

−
R−1
∑

i=1

λ1i

(

F
c(1)
i

(

1−F
c(2)
i

)

− exp(∆∗
1)
(

1−F
c(1)
i

)

F
c(2)
i

)

−
R−1
∑

i=1

λ2i

(

F
c(1)
i

(

1−F
c(3)
i

)

− exp(∆∗
2)
(

1−F
c(1)
i

)

F
c(3)
i

)

with respect to {pijt}, µ, {λ1i}, {λ2i}, ∆∗
1, and ∆∗

2. Setting the partial derivatives

of L equal to zeros, we obtain the equations

mijt =
nijt

1 + 1
n
(T1ij + T2it)

for i, j, t = 1, ..., R; (i, j, t) 6= (i, i, i) ,

miii = niii for i = 1, ..., R ,

where

T1ij = δ−1
R−1
∑

u=1

[

I(u≥i) I(u≥j) λ1u

{

(

1−F c(2)
u

)

− exp(∆∗
1)
(

1−F c(1)
u

)

}

+ I(u<i) I(u≥j) λ1u

{

− exp(∆∗
1)
(

F c(2)
u +

(

1−F c(1)
u

)

)}

+ I(u≥i) I(u<j) λ1u

{

(

1−F c(2)
u

)

+ F c(1)
u

}

+ I(u<i) I(u<j) λ1u

{

F c(1)
u − exp(∆∗

1)F c(2)
u

}

]

,

T2it = δ−1
R−1
∑

u=1

[

I(u≥i) I(u≥t) λ2u

{

(

1−F c(3)
u

)

− exp(∆∗
2)
(

1−F c(1)
u

)

}

+ I(u<i) I(u≥t) λ2u

{

− exp(∆∗
2)
(

F c(3)
u +

(

1−F c(1)
u

)

)}

+ I(u≥i) I(u<t) λ2u

{

(

1−F c(3)
u

)

+ F c(1)
u

}

+ I(u<i) I(u<t) λ2u

{

F c(1)
u − exp(∆∗

2)F c(3)
u

}

]

,
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and R−1
∑

i=1

λk−1,i

(

1−F
c(1)
i

)

F
c(k)
i = 0 for k = 2, 3 ,

F
c(1)
i

(

1−F
c(k)
i

)

= exp(∆∗
k−1)

(

1−F
c(1)
i

)

F
c(k)
i for i = 1, ..., R−1; k = 2, 3 ,

where mijt = npijt and I(·) is the indicator function. Using the Newton–Raphson

method, we can solve the equations with respect to {pijt}, {λ1i}, {λ2i}, ∆
∗
1 and ∆∗

2.

Therefore, we can obtain the MLEs of {mijt}, ∆∗
1 and ∆∗

2 under the CML model.
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