
REVSTAT – Statistical Journal

Volume 5, Number 1, March 2007, 1–17

THE BREAKDOWN POINT

— EXAMPLES AND COUNTEREXAMPLES

Authors: P.L. Davies

– University of Duisburg-Essen, Germany, and
Technical University Eindhoven, Netherlands
laurie.davies@uni-essen.de

U. Gather

– University of Dortmund, Germany
gather@statistik.uni-dortmund.de

Abstract:

• The breakdown point plays an important though at times controversial role in statis-
tics. In situations in which it has proved most successful there is a group of trans-
formations which act on the sample space and which give rise to an equivariance
structure. For equivariant functionals, that is those functionals which respect the
group structure, a non-trivial upper bound for the breakdown point was derived in
Davies and Gather (2005). The present paper briefly repeats the main results of
Davies and Gather (2005) but is mainly concerned with giving additional insight into
the concept of breakdown point. In particular, we discuss the attainability of the
bound and the dependence of the breakdown point on the sample or distribution and
on the metrics used in its definition.
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1. INTRODUCTION

The breakdown point is one of the most popular measures of robustness of

a statistical procedure. Originally introduced for location functionals (Hampel,

1968, 1971) the concept has been generalized to scale, regression and — with

more or less success — to other situations.

In Huber’s functional analytic approach to robustness breakdown is related

to the boundedness of a functional and the breakdown point is defined in terms of

the sizes of neighbourhoods on the space of distributions. A simple and intuitive

definition of the breakdown point but one restricted to finite samples, the finite

sample breakdown point, was introduced by Donoho (1982) and Donoho and

Huber (1983). Successful applications of the concept of breakdown point have

been to the location, scale and regression models in R
k and to models which are

intimately related to these (see for example Ellis and Morgenthaler, 1992, Davies

and Gather, 1993, Hubert, 1997, Terbeck and Davies, 1998, He and Fung, 2000,

Müller and Uhlig, 2001). The reason for this is that such models have a rich equiv-

ariance structure deriving from the translation or affine group operating on R
k.

By restricting the class of statistical functionals to those with the appropriate

equivariance structure one can prove the existence of non-trivial highest break-

down points (Davies and Gather, 2005), which in many cases can be achieved,

at least locally (Huber, 1981, Davies, 1993).

It is the aim of this paper to provide some additional insight into the

definition of the breakdown point, to point out the limits of the concept and to

give some results on the attainment of the upper bound.

We proceed as follows: Chapter 2 summarizes the definitions and theorems

of Davies and Gather (2005). Chapter 3 shows via examples that the breakdown

point is a local concept. Chapter 4 is devoted to the attainability of the bound

and Chapter 5 to the choice of metrics. Chapter 6 contains some concluding

remarks.

2. DEFINITIONS AND BOUNDS FOR THE BREAKDOWN

POINT

Let T be a functional defined on some subfamily PT of the family P of all

distributions on a sample space (X ,B(X )) which takes its values in some metric

space (Θ, D) with

(2.1) sup
θ1,θ2∈Θ

D(θ1, θ2) = ∞ .
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The finite sample breakdown point of T at a sample xn = (x1, ..., xn), xi ∈X ,

i = 1, ..., n, is defined as

(2.2) fsbp(T, xn, D) =
1

n
min

{

k ∈ {1, ..., n} : sup
Qn,k

D
(

T (Pn), T (Qn,k)
)

= ∞
}

where Pn =
∑n

i=1 δxi
/n and Qn,k is the empirical distribution of a replacement

sample with at least n−k points from the original sample xn.

Example 2.1. If T is the median functional Tmed defined on PT = P
with Θ = R, and D(θ1, θ2) = |θ1− θ2|, then

(2.3) fsbp(Tmed, x, D) =

⌊

n+1

2

⌋

/ n .

A distributional definition of the breakdown point requires a metric d on P
with

sup
P,Q∈P

d(P, Q) = 1 .

The breakdown point of a functional T at a distribution P ∈ PT w.r.t. d and

D is then defined by

(2.4) ǫ∗(T, P, d, D) = inf

{

ǫ > 0: sup
d(P,Q)<ǫ

D
(

T (P ), T (Q)
)

= ∞
}

where D
(

T (P ), T (Q)
)

:= ∞ if Q /∈ PT .

Example 2.2. Let P and D be as in Example 2.1 and d be the Kolmo-

gorov-metric dk(P, Q) = sup
x

|FP (x) − FQ(x)|. For the expectation functional TE

TE(P ) = E(P ) :=

∫

x dP (x) , PT =
{

P ∈ P : E(P ) exists
}

we have ǫ∗(TE , P, d, D) = 0 for any P ∈ PT , in contrast to the median for which

ǫ∗(Tmed, P, d, D) = 1/2.

As already pointed out in the introduction the derivation of a non-trivial

upper bound for the breakdown point requires a group structure. Assume that

G is a group of measurable transformations of the sample space X onto itself.

Then G induces a group of transformations of P onto itself via P g(B)=P (g−1(B))

for all sets B ∈B(X ). Let Hg = {hg : g ∈G} be the group of transformations

hg : Θ → Θ which describes the equivariance structure of the problem. A func-

tional T : PT → Θ is called equivariant with respect to G if and only if PT is

closed under G and

(2.5) T (P g) = hg

(

T (P )
)

for all g ∈ G, P ∈ PT .
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Let

(2.6) G1 :=
{

g ∈ G : lim
n→∞

inf
θ∈Θ

D
(

θ, hgn(θ)
)

= ∞
}

and define

(2.7) ∆(Q) := sup
{

Q(B) : B ∈ B(X ), g|B = ι|B for some g ∈ G1

}

where ι is the unit element of G. We cite the main result from Davies and Gather

(2005):

Theorem 2.1. Suppose that the metrics d and D satisfy the properties

given above and additionally

(2.8) d
(

αP +(1−α)Q1, αP +(1−α)Q2

)

≤ 1−α , P, Q1, Q2 ∈ P, 0 < α < 1 ,

(2.9) G1 6= ∅ .

Then for all G-equivariant functionals T : PT → Θ, for all P ∈PT and for all xn

we have respectively

a) ǫ∗(T, P, d, D) ≤
(

1 − ∆(P )
)

2
,

b) fsbp(T, xn, D) ≤
⌊

n − n ∆(Pn) + 1

2

⌋

/

n .

Proof: a) cf. Davies and Gather (2005).

b) The proof is similar to a) but it is not given in Davies and Gather (2005).

We present it here as it illustrates the simplicity of the idea of the finite sample

breakdown point. The basic idea of all such proofs may be found in Huber (1981)

although it was clearly known to Hampel (1975) who stated the breakdown point

of what is now known as the LMS estimator (see Rousseeuw, 1984). Donoho

and Huber (1983) give the first calculations for the finite sample breakdown

point both for multivariate location and for a high breakdown linear regression

estimator based on the multivariate location estimator of Donoho (1982). The

corresponding calculations for the LMS estimator may be found in Rousseeuw

(1984). Firstly we note that there are exactly n ∆(Pn) points in xn for which

g(xi) = xi for some g ∈ G1. We assume without loss of generality that these

are the sample points x1, ..., xn∆(Pn). If ∆(Pn) = 0 there are no such points and

some obvious alterations to the following proof are required. To ease the notation

we write

l(n) =

⌊

n − n ∆(Pn) + 1

2

⌋

.

We consider the sample y
∗
n,k given by

y
∗
n,k =

(

x1, ..., xn∆(Pn), ..., xn−l(n), gm(xn−l(n)+1), ..., g
m(xn)

)

for some m ≥ 1 and some g ∈ G1. We denote its empirical distribution by Q∗
n,k .
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The sample y
∗
n,k contains at least n − l(n) points of the original sample xn.

The transformed sample g−m(y∗
n,k) is equal to

(

x1, ..., xn∆(Pn), g−m(xn∆(Pn)+1), ..., g
−m(xn−l(n)), xn−l(n)+1, ..., xn

)

.

It contains at least n ∆(Pn)+ l(n) points of the original sample xn and as

n ∆(Pn) + l(n) ≥ n − l(n)

it contains at least n − l(n) points of xn. By the equivariance of T we have

T (Q∗g−m

n,k ) = hg−m

(

T (Q∗
n,k)

)

from which it follows

D
(

hg−m

(

T (Q∗
n,k)

)

, T (Q∗
n,k)

)

≤ D
(

T (Pn), T (Q∗
n,k)

)

+ D
(

T (Pn), T (Q∗g−m

n,k )
)

.

From lim
n→∞

inf
θ

D(θ, hgn(θ)) = ∞ for all g ∈ G1 we have

lim
m→∞

D
(

hg−m

(

T (Q∗
n,k)

)

, T (Q∗
n,k)

)

= ∞

and hence D
(

T (Pn), T (Q∗
n,k)

)

and D
(

T (Pn), T (Q∗g−m

n,k )
)

cannot both remain

bounded. We conclude that for any k ≥
⌊n−n∆(Pn)+1

2

⌋

sup
Qn,k

D
(

T (Pn), T (Qn,k)
)

= ∞

from which the claim of the theorem follows.

For examples of Theorem 2.1 we refer to Davies and Gather (2005).

3. THE BREAKDOWN POINT IS A LOCAL CONCEPT

As seen above the median Tmed has a finite sample breakdown point of

⌊(n+1)/2⌋ at every real sample xn and this is the highest possible value for

translation equivariant location functionals. If we consider scale functionals then

the situation is somewhat different. The statistical folklore is that the highest

possible finite sample breakdown point for any affine equivariant scale functional

is ⌊n/2⌋/n and that this is attained by the median absolute deviation functional

TMAD. Some authors (Croux and Rousseeuw, 1992, Davies, 1993) are aware that

this is not correct as is shown by the following sample

(3.1) x11 =
(

1.0, 1.8, 1.3, 1.3, 1.9, 1.1, 1.3, 1.6, 1.7, 1.3, 1.3
)

.
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The fsbp of TMAD at this sample is 1/11. This can be seen by replacing the data

point 1.0 by 1.3 so that for the altered data set TMAD= 0 which is conventionally

defined as breakdown. If a sample has no repeated observations then TMAD has a

finite sample breakdown point of ⌊n/2⌋/n and this is indeed the highest possible

finite sample breakdown point for a scale functional. The difference between

the maximal finite sample breakdown points for location and scale functionals

is explained by Theorem 2.1. For the sample (3.1) we have ∆(Pn) = 5/11 and

the theorem gives

fsbp
(

TMAD, x11, D
)

≤ 3/11 .

For a sample x̃11 without ties we have ∆(Pn) = 1/n and the theorem yields

fsbp
(

TMAD, x̃11, D
)

≤
⌊n

2

⌋

/

n = 5/11 .

From the above it follows that TMAD may or may not attain the upper bound.

We study this in more detail in the next chapter.

4. ATTAINING THE BOUND

4.1. Location functionals

From Theorem 2.1 above it is clear that the maximum breakdown point

for translation equivariant location functionals is 1/2. This bound is sharp as

is shown by the location equivariant L1-functional

(4.1) T (P ) = argminµ

∫

(

‖x−µ‖ − ‖x‖
)

dP (x) .

In general the L1-functional is not regarded as a satisfactory location functional

as it is not affine equivariant in dimensions higher than one. For an affinely

equivariant location functional the set G1 of (2.6) is now the set of pure non-zero

translations and it follows that ∆(P ) = 0 for any distribution P . Theorem 2.1

gives an upper bound of 1/2 which is clearly attainable in one dimension.

It is not however clear whether this bound is attainable in higher dimensions.

Work has been done in this direction but it is not conclusive (Rousseeuw and

Leroy, 1987, Niinimaa, Oja and Tableman, 1990, Lopuhaä and Rousseeuw, 1991,

Gordaliza, 1991, Lopuhaä, 1992, Donoho and Gasko, 1992, Davies and Gather,

2005, Chapter 5 and the Discussion of Rousseeuw in Davies and Gather, 2005).

We first point out that the bound 1/2 is not globally sharp. Take a dis-

crete measure in R
2 with point mass 1/3 on the points x1 = (0, 1), x2 = (0,−1),

x3 = (
√

3, 0). The points form a regular simplex. For symmetry reasons every
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affinely equivariant location functional must yield the value (1/
√

3, 0). On replac-

ing (
√

3, 0) by (η
√

3, 0) it is clear that each affinely equivariant location functional

must result in (η/
√

3, 0). On letting η →∞ it follows that the breakdown point

of every affinely equivariant location functional cannot exceed 1/3. In k dimen-

sions one can prove in a similar manner that 1/(k+1) is the maximal breakdown

point for points on a regular simplex with k+1 sides.

In spite of the above example we now show that there are probability dis-

tributions at which the finite sample replacement breakdown point is 1/2 even if

this cannot be obtained globally. We consider a sample xn = (x1, ..., xn) of size n

in R
k and form the empirical measure Pn given by Pn = 1/n

∑n
i=1 δxi

. To obtain

our goal we define an appropriate affinely equivariant location functional T

at PA
n for all affine transformations A and also at all measures of the form P ∗A

n .

Here P ∗
n is any empirical measure obtained from xn by altering the values of

at most ⌊(n−1)/2⌋ of the xi. The new sample will be denoted by x
∗
n= (x∗

1, ..., x
∗
n).

We have to show that the values of T (P ∗A
n ) can be defined in such a way that

T (PA
n ) = A

(

T (Pn)
)

,(4.2)

T (P ∗A
n ) = A

(

T (P ∗
n)

)

(4.3)

and

sup
P ∗

n

∣

∣T (Pn) − T (P ∗
n)

∣

∣ < ∞ .(4.4)

This is done in Appendix A.

We note that the Sample conditions 1 and 2 in Appendix A are satisfied

for an i.i.d. Gaussian sample of size n if n is sufficiently large. We indicate how

this may be shown in Appendix B.

4.2. Scatter functionals

At the sample (3.1) above the median absolute deviation TMAD has a finite

sample breakdown point of 1/11 compared with the upper bound of 3/11 given

by Theorem 2.1. We consider a modification of TMAD as defined in Davies and

Gather (2005) which attains the upper bound.

For a probability measure P the interval I(P, λ) is defined by

I(P, λ) =
[

med(P )−λ, med(P )+λ
]

.

We write

∆(P, λ) = max
{

P ({x}) : x ∈ I(P, λ)
}

.

The new scale functional T ∗
MAD is defined by

T ∗
MAD(P ) = min

{

λ : P
(

I(P, λ)
)

≥
(

1+∆(P, λ)
)

/2
}

.
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We shall show

(4.5) fsbp
(

T ∗
MAD, xn, D

)

=

⌊

n − n ∆(Pn) + 1

2

⌋

/

n .

We consider a replacement sample x
′
n with

n1 + n2 = m <
⌊

(

n − n ∆(Pn) + 1
)

/2
⌋

points replaced and with empirical distribution P ′
n. We show firstly that T ∗

MAD(P ′
n)

does not explode. Let λ′ be such that the interval
[

med(P ′
n)−λ′, med(P ′

n)+λ′
]

contains the original sample xn. As the median does not explode we see that

λ′ remains bounded over all replacement samples. Clearly if T ∗
MAD(P ′

n) is to

explode x
′
n must contain points outside of this interval. We denote the num-

ber of such points by n1. We use n2 points to increase the size of the largest

atom of x
′
n in the interval. This is clearly done by placing these points at

the largest atom of xn. The size of the largest atom of x
′
n in the interval

is therefore at most ∆(Pn) + n2/n. It follows that T ∗
MAD(P ′

n)≤ λ′ if the inter-

val contains at least
(

n + n ∆(Pn) + n2

)

/2 observations. This will be the case

if n−n1 ≥
(

n + n ∆(Pn) + n2

)

/2 which reduces to n1 + n2/2 ≤ n
(

1−∆(Pn)
)

/2

which holds as

n1 + n2/2 ≤ n1 + n2 <
⌊

n
(

1 − ∆(Pn) + 1
)

⌋

/

2 .

It remains to show that T ∗
MAD(P ′

n) does not implode to zero. For this to

happen we would have to be able to construct a replacement sample for which the

interval I(P ′, λ) is arbitrarily small but for which P ′
(

I(P ′, λ)
)

≥
(

1+∆(P ′, λ)
)

/2.

In order for the interval to be arbitrarily small it must contain either no points

of the original sample xn or just one atom. In the latter case we denote the size

of the atom by ∆1(Pn). Suppose we replace n1+n2 points and that the n2 points

form the largest atom in the interval I(P ′, λ). We see that if n2 ≥ n ∆1(Pn) then

n1 + n2 + n ∆1(Pn) ≥ (n+n2)/2

which implies

2n1 + 2n2 ≥ 2n1 + n2 + n ∆1(Pn) ≥ n > n − n ∆(Pn)

which contradicts n1 + n2 <
⌊

n
(

1−∆(Pn)+1
)⌋

/2. If the n2 replacement points

do not compose the largest atom then this must be of size at least ∆1(Pn) which

implies

n1 + n2 + n ∆1(Pn) ≥
(

n + n ∆1(Pn)
)

/2

and hence

2n1 + 2n2 ≥ n − n ∆1(Pn) ≥ n − n ∆(Pn)

which again contradicts n1 + n2 <
⌊

n
(

1 − ∆(Pn) + 1
)⌋

/2. We conclude that

T ∗
MAD(P ′

n) cannot implode, and thus (4.5) is shown.
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5. THE CHOICE OF THE METRICS d AND D

5.1. The metric d

Considering the parts a) and b) of Theorem 2.1 we note that there is

in fact a direct connection between the two results. We consider the total varia-

tion metric dtv defined by

dtv(P, Q) = sup
B∈B(X )

∣

∣P (B) − Q(B)
∣

∣ .

If B(X ) “shatters” every finite set of points in X then

dtv(Pn, P ∗
n) = k/n

where Pn denotes the empirical measure deriving from (x1, ..., xn) and P ∗
n that

deriving from (x∗
1, ..., x

∗
n) with the two samples differing in exactly k points.

Suppose now that ǫ∗(T, Pn, dtv, D) =
(

1 − ∆(Pn)
)

/2. If k < n
(

1 − ∆(Pn)
)

/2

then breakdown in the sense of finite sample breakdown point cannot occur and

we see that

(5.1) fsbp
(

T, xn, D
)

≥
⌊

n − n ∆(Pn)

2

⌋

/

n .

Unfortunately the inequality of Theorem 2.1 b) seems not to be provable in the

same manner.

We point out that the breakdown point is not necessarily the same for all

metrics d. A simple counterexample is provided by the scale problem in R. If we

use the Kolmogorov metric then the breakdown point of TMAD at an atomless

distribution is 1/4 (Huber, 1981, page 110). However if we use the Kuiper metric

d1
ku defined in (5.3) below then the breakdown point is 1/2 in spite of the fact that

both metrics satisfy the conditions of the theorem. More generally if d′ and d′′

are two metrics satisfying sup
P,Q∈P

d(P, Q) = 1 and (2.8) and such that d′≤ d′′ then

(5.2) ǫ∗(T, P, d′, D) ≤ ǫ∗(T, P, d′′, D) ≤
(

1 − ∆(P )
)

/2 .

In particular if ǫ∗(T, P, d′, D) =
(

1−∆(P )
)

/2 then ǫ∗(T, P, d′′, D) =
(

1−∆(P )
)

/2.

A class of ordered metrics is provided by the generalized Kuiper metrics dm
ku

defined by

(5.3) dm
ku(P, Q) = sup

{

∣

∣

∣

∣

m
∑

k=1

(

P (Ik)−Q(Ik)
)

∣

∣

∣

∣

: I1, ..., Im disjoint intervals

}

.

We have

(5.4) d1
ku ≤ ... ≤ dm

ku .
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For further remarks on the choice of d we refer to Davies and Gather (2005),

Rejoinder and for a related but different generalization of the Kuiper metric of

use in the context of the modality of densities we refer to Davies and Kovac

(2004).

5.2. The metric D

As we have seen in the case of d above there seems to be no canonical choice:

different choices of d can lead to different breakdown points. A similar problem

exists with respect to the metric D on Θ. In the discussion of Tyler in Davies and

Gather (2005) it was also pointed out that it might be difficult to achieve (2.1)

when Θ is a compact space. This problem is discussed in the Rejoinder of Davies

and Gather (2005), Chapter 6, and solved in Davies and Gather (2006) with

applications to directional data.

We now indicate a possibility of making D dependent on d. The idea is that

two parameter values θ1 and θ2 are far apart with respect to D if and only if

the corresponding distributions are far apart with respect to d. We illustrate

the idea using the location problem in R. Suppose we have data with empirical

distribution Pn and two values of the location parameter θ1 and θ2. We trans-

form the data using the translations θ1 and θ2 which gives rise to two further

distributions Pn( · − θ1) and Pn( · − θ2). If these two distributions are clearly dis-

tinguishable then d
(

Pn( · − θ1), Pn( · − θ2)
)

will be almost one. An opposed case

is provided by an autoregressive process of order one. The parameter space is

Θ = (−1, 1) and this may be metricized in such a manner that D(θ1, θ2) tends to

infinity for fixed θ1 as θ2 tends to the boundary. However values of θ close to, on,

or even beyond the boundary, may not be empirically distinguishable from values

of θ in the parameter space. A sample of size n = 100 generated with θ1 = 0.95

is not easily distinguishable from a series generated with θ2 = 0.9999 even though

D(θ1, θ2) is large.

We now give a choice of D in terms of d and such that (2.1) is satisfied.

We set

G(θ1, θ2) =
{

g ∈ G : hg(θ1) = θ2

}

and then define D by

(5.5) D(θ1, θ2) = DP (θ1, θ2) = inf
g∈G(θ1,θ2)

∣

∣ log
(

1− d(P g, P )
)
∣

∣ .

The interpretation is that we associate P with the parameter value θ1 and P g

with the parameter value θ2. The requirement (2.1) will only hold if d(P g, P )

may be arbitrarily close to one so that the distributions associated with θ1 and θ2

are as far apart as possible. It is easily checked that D defines a pseudometric



12 P.L. Davies and U. Gather

on Θ, which is sufficient for our purposes; namely DP ≥ 0, DP is symmetric and

satisfies the triangle inequality. In some situations it seems reasonable to require

that d and D be invariant with respect to the groups G and HG respectively.

If d is G-invariant, i.e.

d(P, Q) = d(P g, Qg), for all P, Q ∈ P, g ∈ G ,

then D, defined by (5.5), inherits the invariance, i.e.

D(θ1, θ2) = D
(

hg(θ1), hg(θ2)
)

, for all θ1, θ2 ∈ Θ, g ∈ G .

The G-invariance of d can often be met.

6. FINAL REMARKS

We conclude with a small graphic showing the connections between all

ingredients which are necessary for a meaningful breakdown point concept.

G

(X ,B(X ),P)

HG

Θ
T

d D

�
��

@
@@

�
��

@
@@

Figure 1: Connections.

We point out that each object in this graphic has an important influence on the

breakdown point and its upper bound:

• ǫ∗(T, P, d, D) depends on P as shown in Chapter 3, and it depends on

the metrics d and D as discussed in Chapter 5.

• It is the equivariance structure w.r.t. the group G which allows to

prove an upper bound for ǫ∗(T, P, d, D) and it is the condition G1 6= ∅
which provides the main step in the proof. In particular, the choice

of the group G determines ∆(P ), thereby the upper bound, as well as

its attainability. For many P, T and G the attainability of the bound

remains an open problem.
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APPENDIX A

We consider the constraints imposed upon us when defining T (P ∗
n).

We start with the internal constraints which apply to each P ∗
n without reference

to the other measures.

• Case 1: P ∗A1
n 6=P ∗A2

n for any two different affine transformations A1 and A2.

This is seen to reduce to P ∗A
n 6= P ∗

n for any affine transformation A which

is not the identity. If this is the case then there are no restrictions on

the choice of T (P ∗
n). Having chosen it we extend the definition of T to all

the measures P ∗A
n by T (P ∗A

n ) = A
(

T (P ∗
n)

)

.

• Case 2: P ∗A
n =P ∗

n for some affine transformation A which is not the iden-

tity. If this is the case then A is unique and there exists a permutation π of

{1, ..., n} such that A(xi) = xπ(i). This implies that for each i we can form

cycles
(

xi, A(xi), ..., Ami−1(xi)
)

with Ami(xi) = xi. From this we see that for some sufficiently large m

Am(xi) = xi for all i. On writing A(x) = α(x) + a we see that if the xi,

i = 1, ..., n, span R
k then αm = I where I denotes the identity transforma-

tion on R
k. This implies that α must be an orthogonal transformation and

that

(A.1)
m−1
∑

j=0

αj(a) = 0 .

It follows that if we set T (P ∗
n) = µ, we must have A(µ) = µ for any affine

transformation for which P ∗A
n = P ∗

n . The choice of µ is arbitrary subject

only to these constraints. Having chosen such a µ the values of T (P ∗B
n ) are

defined to be B(µ) for all other affine transformations B.

The above argument shows the internal consistency relationships which

must be placed on T so that T (P ∗A
n ) = A

(

T (Pn)
)

for any affine transformation A.

We now consider what one may call the external restrictions.

• Case 3: Suppose that P ∗
n is such that there does not exist a P ′∗

n and an

affine transformation A such that P ∗A
n = P ′∗

n . In this case the choice of

T (P ∗
n) is only restricted by the considerations of Case 2 above if that case

applies and otherwise not at all.

• Case 4: Suppose that P ∗
n is such that there exists a P ′∗

n and an affine

transformation A such that P ∗
n = P ′∗A

n . In this case we require T (P ∗
n) =

A
(

T (P ′∗
n )

)

.
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We now place the following conditions on the sample xn:

Sample condition 1: There do not exist two distinct subsets of xn each

of size at least k+2 and an affine transformation A which transforms one subset

into the other.

Sample condition 2: If
∣

∣A(xn) ∩ B(xn)
∣

∣ ≥
⌊

(n+1)/2
⌋

− 2k

for two affine transformations A and B then A = B.

Sample condition 3: k <
⌊

(n−1)/2
⌋

.

We now construct a functional T which satisfies (4.2), (4.3) and (4.4).

If the sample conditions hold then for any affine transformation A 6= I we have

PA
n 6= P ∗

n where P ∗
n derives from a subset x

∗
n which differs from xn by at least one

and at most
⌊

(n−1)/2
⌋

points. This follows on noting that at most k+1 of the

A(xi) belong to xn by Sample condition 1. Because of this we can define T (Pn)

without reference to the values of T (P ∗
n). We set

T (Pn) =
1

n

n
∑

i=1

xi .

If P ∗
n satisfies the conditions of Case 3 above we set

T (P ∗
n) =

1

n∗

n∗

∑

i=1

xπ(i)

where the xπ(i) are those n∗ ≥
⌈

(n + 1)/2
⌉

points of the sample xn which also

belong to the sample x
∗
n. Finally we consider Case 4 above. We show that the

sample assumptions and the condition P ∗
n = P ′∗A

n uniquely determine the affine

transformation A. To see this we suppose that there exists a second affine trans-

formation B and a distribution P ′′∗
n such that P ∗

n = P ′′∗B
n . Let x∗

π(1), ..., x
∗
π(N ′)

denote those points of x
∗
n not contained in the sample xn. Because of Sample

condition 1 this set contains at least
⌈

(n+1)/2
⌉

− k− 2 points of the form A(xi).

Similarly it also contains at least
⌈

(n + 1)/2
⌉

− k − 2 points of the form B(xi).

The intersection of these two sets is of size at least
⌊

(n+1)/2
⌋

− 2k and we may

conclude from Sample condition 2 that A = B. The representation is therefore

unique. Let xπ(1), ..., xπ(m) be those points of xn which belong to the sample x
′∗
n

and for which A(xπ(1)), ..., A(xπ(m)) belong to the sample xn. It is clear that

m ≥ 1. We define

T (P ′∗
n ) =

1

m

m
∑

i=1

xπ(i)

and by equivariance

T (P ∗
n) =

1

m

m
∑

i=1

A
(

xπ(i)

)

.
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It follows that T (P ∗
n) is well defined and in both cases the sums involved come

from the sample xn. The functional T is extended to all Pn∗B and P ′
n∗B by affine

equivariance. In all cases the definition of T (P ∗
n) is as the mean of a subset of xn.

From this it is clear that (4.4) is satisfied.

APPENDIX B

We now show that Sample conditions 1 and 2 hold for independent random

samples X1, ..., Xn with probability one. Let A=A+a and B=B+b with A and B

nonsingular matrices and a and b points in R
k. We suppose that A 6= B. On tak-

ing differences we see that there exist variables Xi1 , ..., Xik+1
and Xj1 , ..., Xjk+1

such that

A(Xil−Xik+1
) = B(Xjl

−Xjk+1
) , j = 1, ..., k .

This implies that B−1A and B−1(b−a) are functions of the chosen sample points

B−1A = C
(

Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

)

,
(B.1)

B−1(b−a) = c
(

Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

)

.

For n sufficiently large there exist four further sample points Xi, i = 1, ..., 4

which are not contained in
{

Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

}

and for which

A(X1) + a = B(X2) + b , A(X3) + a = B(X4) + b .

This implies

(B.2) B−1A(X3 − X1) = X4 − X2 .

However as the Xi, i = 1, ..., 4, are independent of Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

it follows from (B.1) that (B.2) holds with probability zero. From this we conclude

that A = B. Similarly we can show that a = b and hence A = B.
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