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1. INTRODUCTION

The analysis of integer-valued time series has become an important area of

research in the last two decades partially because its wide applicability to experi-

mental biology (Zhou and Basawa [34]), social science (McCabe and Martin [24]),

international tourism demand (Nordström [29], Garcia-Ferrer and Queralt [16],

Brännäs et al. [12]), queueing systems (Ahn et al. [7]) and economy (Quoreshi [30]).

We refer to McKenzie [28] for an overview of the early work in this area. Among

the most successful integer-valued time series models proposed in the literature

we mention the INAR(p) model and the INMA(q) model. The former was first

introduced by McKenzie (e.g., [26]) and Al-Osh and Alzaid [1] for the case p=1.

Empirical relevant extensions have been suggested by Brännäs ([9], explanatory

variables), Blundell et al. ([8], panel data), Brännäs and Hellström ([11], extended

dependence structure), and more recently by Silva et al. ([32], replicated data).

Extensions and generalizations were introduced by Du and Li [14] and Latour [22].

The INMA(q) model was proposed by Al-Osh and Alzaid [2] and subsequently

studied by Brännäs and Hall [10]. Related models were introduced by Aly and

Bouzar ([4], [5]) and Zhu and Joe [35].

Within the reasonably large spectrum of integer-valued models proposed

in the literature, little is known about its extremal properties. Anderson [6]

gave a noticeable contribution to the study of the extremal properties of integer-

valued independent and identically distributed (i.i.d.) sequences and as an ex-

ample of application, the author analyzed the behavior of the maximum queue

length for M/M/1 queues. Extensions of Anderson’s results were proposed by

Hooghiemstra et al. [21] who provide bounds and approximations for the distri-

bution of the maximum queue length for M/M/s queues, based on an asymptotic

analysis involving the extremal index. McCormick and Park [25] were the first to

study the extremal properties of some models obtained as discrete analogues of

continuous models, replacing scalar multiplication by random thinning. Hall [17]

analyzed the asymptotic behavior of the maximum term of a particular Markovian

model. [18] provided results regarding the limiting distribution of the maximum

of sequences within a generalized class of integer-valued moving averages driven

by i.i.d. heavy-tailed innovations. Extensions for exponential type-tailed inno-

vations have been studied by Hall [19]. More recently, Hall and Moreira [20]

derived the extremal properties of a particular moving average count data model

introduced by McKenzie [27].

It is worth to mention that all the references given in the previous para-

graph deal with the case of stationary sequences. In contrast, however, the study

of the extremal properties of integer-valued non-stationary sequences has been

overlooked in the literature. This paper aims at giving a contribution towards

this direction. In particular we consider periodic sequences with marginal dis-
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tributions within a particular class of discrete distributions first considered by

Anderson [6]. Potential applications can be found in the analysis of the number

of hotel guest nights where the series exhibit strong seasonal pattern with a peak

in July–August and a trough in December–February, and in the study of the

number of claims of short-term disability benefits made by injured workers since

it is expected to see fewer claims in the winter months and more in the summer

months.

The term periodic is used in this paper in a different sense than in the

literature of periodic stochastic processes in which a sequence (Xn)n∈N is said to

be periodically stationary (in the wide sense) if its mean and covariance struc-

ture are periodic functions of time with the same period. This class of processes,

however, does not appear to be sufficiently flexible to deal with data which ex-

hibit non-standard features like nonlinearity and/or heavy tails. In this paper

by periodic sequence, with period say T , we mean that for a sequence of random

variables (rv’s) (Xn)n∈N there exist an integer T ≥ 1 such that, for each choice

of integers 1 ≤ i1 < i2 < · · · < in, (Xi1 , ..., Xin) and (Xi1+T , ..., Xin+T ) are

identically distributed. The period T will be considered the smallest integer

satisfying the above definition.

The rest of the paper is organized as follows: Section 2 provides the neces-

sary theoretical background; Section 3 includes the main result that leads to the

calculation of the limiting distribution of the maximum term; in Section 4 the

previous results are applied to a particular class of max-autoregressive sequences

generalizing the results of Hall [17]; finally, in Section 5 we look at the distri-

bution of the maximum term of periodic moving average sequences obtained as

discrete analogues of classical moving averages with periodic (but independent)

innovations, generalizing the results given in Hall [19].

In this paper we want to highlight the following issues:

a) Under fairly general dependence conditions, integer-valued T -periodic se-

quences with marginal distribution in Anderson’s class exhibit a quasi-

stable non-degenerate limiting distribution of the maximum term which is

obtained as a generalization of the stationary case.

b) The expression of the extremal index may be obtained from the joint dis-

tribution of a finite number of observations, calculated at T distinct sets of

variables.

c) The results obtained for the integer-valued max-autoregressive and mov-

ing average models generalize the ones obtained for the stationary case:

whereas for the max-autoregressive model the extremal index is less than

unity (reflecting the influence of the dependence structure on the extremes),

for the moving averages the extremal index is equal to one.
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2. PRELIMINARY RESULTS

The study of the extremal properties of stationary sequences is frequently

based on the verification of appropriate dependence conditions which assure that

the limiting distribution of the maximum term is of the same type as the limiting

distribution of the maximum of i.i.d. rv’s with the same marginal distribution F .

For stationary sequences, usual conditions used in the literature are Leadbetter’s

D(un) condition (Leadbetter et al. [23]) and condition D(k)(un), k∈N, (Chernick

et al. [13]). For completeness and reader’s convenience the definition of condition

D(un) is given below.

Definition 2.1. The condition D(un) is said to hold for a stationary se-

quence (Xn)n∈N with marginal distribution F , if for any integers i1< · · ·< ip <

j1 < · · ·< jq < n such that j1− ip ≥ ln we have

∣

∣

∣
Fi1,...,ip,j1,...,jq(un, ..., un) − Fi1,...,ip(un, ..., un)Fj1,...,jq(un, ..., un)

∣

∣

∣
≤ αn,ln

with αn,ln−→n→∞
0 for some sequence (ln), ln = o(n).

For periodic sequences the following adaptation of condition D(k)(un) may

be used:

Definition 2.2 (Ferreira and Martins [15]). Let k ≥1 be a fixed integer

and X=(Xn)n∈N a T -periodic sequence verifying D(un) with mixing coefficient

αn,ln . The condition D
(k)
T (un) holds for X if there exists a sequence of integers

(kn)n∈N such that

lim
n→∞

kn = +∞ , lim
n→∞

kn
ln
n

= 0 , lim
n→∞

kn αn,ln = 0 ,

lim
n→∞

S
(k)
[ n
knT

] = 0 ,

where

S
(1)
[ n
knT

] =
n

T

T
∑

i=1

[ n
knT

]T
∑

j=i+k

P
(

Xi >un, Xj >un

)

,

and for k ≥ 2

S
(k)
[ n
knT

] =
n

T

T
∑

i=1

[ n
knT

]T
∑

j=i+k

P
(

Xi >un, Xj−1≤un <Xj

)

.
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Remark 2.1. If limn→∞ S
(k)
[ n
knT

] = 0, then

lim
n→∞

n

T

T
∑

i=1

P
(

Xi >un≥Mi+1,i+k−1, Mi+k,[ n
knT

]T >un

)

= 0 ,

with Mi,j = maxi≤r≤j(Xr) and Mi,j = −∞ if i > j.

When D(un) and D
(k)
T (un) hold for a particular sequence the limiting dis-

tribution of the maximum term and its corresponding extremal index may be

derived. Following Ferreira and Martins [15] the extremal index is given by

θ = lim
n→∞

n 1
T

T
∑

i=1
P
(

Xi >un≥Mi+1,i+k−1

)

n 1
T

T
∑

i=1
P
(

Xi >un

)

.

Integer-valued sequences require extra care when the analysis of the extremal

properties is in demand since in many cases, there is no non-degenerate limit-

ing distribution for the maximum term. Anderson [6] defined a particular class

of discrete distributions for which the maximum term (under an i.i.d. setting)

possesses an almost stable behavior in the sense of the following theorem:

Theorem 2.1 (Anderson [6]). Let F be a distribution function whose

support consists of all sufficiently large integers. Then, there exists a sequence of

constants (bn) such that











lim sup
n→∞

Fn(x + bn) ≤ e−e−αx

lim inf
n→∞

Fn(x + bn) ≥ e−e−α(x−1)
,

for some α > 0 and for every x ∈ R, if and only if

lim
n→∞

1 − F (n)

1 − F (n−1)
= exp{−α} .

In fact bn may be obtained by bn = F−1
c (1 − 1

n) where Fc is any continuous distri-

bution in the domain of attraction of the Gumbel distribution with Fc([x])=Fx.

Whenever a distribution F satisfies the conditions of the theorem above

we shall denote it by F ∈Dα(Anderson). The study of stationary sequences with

marginal distribution in the class of Anderson [6] was considered by Hall [17],

who obtained the following result:
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Theorem 2.2 (Hall [17]). Suppose that for some k ≥1, conditions D(un)

and D(k)(un) hold for the stationary sequence Xwith marginal F ∈Dα(Anderson),

where un is a sequence of the form un = x + bn. If Mn = max1≤k≤n(Xk), then

there exists a value 0 ≤ θ ≤ 1 such that











lim sup
n→∞

P
(

Mn≤ x + bn

)

≤ e−θe−αx

lim inf
n→∞

P
(

Mn≤ x + bn

)

≥ e−θe−α(x−1)
,

if and only if

P
(

M2,k≤ un|X1 > un

)

−→
n→∞

θ .

Hall refers to the parameter θ as the extremal index due to its similarity

with the conventional extremal index.

3. LIMITING DISTRIBUTION FOR THE MAXIMUM TERM

In this section attention is focused in the extremal behavior of periodic

sequences with marginal distributions in Anderson’s class. The first result extends

Theorem 3 in Hall [17] for T -periodic integer-valued sequences.

Theorem 3.1. Suppose that for k ≥1 the conditions D(un) and Dk
T (un)

hold for the T -periodic integer-valued sequence X, with Fr ∈ Dαr(Anderson),

for r=1, ..., T where (un)n∈N is a sequence of the form un = x + bn. If there

exists θ and θ, 0 ≤ θ ≤ θ ≤ 1, such that

θ = lim inf
n→∞

n
T

T
∑

r=1
P
(

Xr > un >Mr+1,r+k−1

)

n
T

T
∑

r=1
P
(

Xr > un

)

≤ lim sup
n→∞

n
T

T
∑

r=1
P
(

Xr > un >Mr+1,r+k−1

)

n
T

T
∑

r=1
P
(

Xr > un

)

= θ ,

then










lim sup
n→∞

P
(

Mn≤ x + bn

)

≤ e−θ 1
T

PT
r=1 e−αrx

lim inf
n→∞

P
(

Mn≤ x + bn

)

≥ e−θ 1
T

PT
r=1 e−αr(x−1)

.
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Proof: First let us suppose that lim infn→∞ P (Mn ≤ x + bn) > 0, ∀x.

By Proposition 2.1 in Ferreira and Martins [15] we have that

P
(

Mn≤ un

)

− e−
n
T

PT
r=1P (Xr>un>Mr+1,r+k−1) → 0 , n → ∞ ,

which is equivalent to

P
(

Mn≤ un

)

−
(

e−
n
T

PT
r=1P (Xr>un)

)

n
T

PT
r=1 P (Xr>un>Mr+1,r+k−1)

n
T

PT
r=1 P (Xr>un) → 0 ,(3.1)

as n → ∞. From Theorem 2.1 it follows that

0 < e−
1
T

PT
r=1 e−αr(x−1)

≤ lim inf
n→∞

e−
n
T

PT
r=1 P (Xr>un)

≤ lim sup
n→∞

e−
n
T

PT
r=1 P (Xr>un) ≤ e−

1
T

PT
r=1 e−αrx

< 1 ,

and if we assume

θ = lim inf
n→∞

n
T

T
∑

r=1
P
(

Xr > un >Mr+1,r+k−1

)

n
T

T
∑

r=1
P (Xr > un)

≤ lim sup
n→∞

n
T

T
∑

r=1
P
(

Xr > un >Mr+1,r+k−1

)

n
T

T
∑

r=1
P
(

Xr > un

)

= θ

then, (3.1) leads to the stated result.

The case P (Mn ≤ x + bn) → 0 as n → ∞ is easily handled by the results

above and the arguments in Hall ([17], p. 725). We skip the details.

As a consequence of Theorem 3.1 the extremal index can be computed

as follows:

Corollary 3.1. Suppose that for some k ≥1 the conditions D(un) and

Dk
T (un) hold for the T-periodic integer-valued sequence X, with Fr∈Dαr(Anderson),

for r=1, ..., T where {un}n∈N is a sequence of the form un = x + bn. Then, there

exists a value 0 ≤ θ ≤ 1 such that










lim sup
n→∞

P
(

Mn≤ x + bn

)

≤ e−θ 1
T

PT
r=1 e−αrx

lim inf
n→∞

P
(

Mn≤ x + bn

)

≥ e−θ 1
T

PT
r=1 e−αr(x−1)

,

if and only if

n
T

T
∑

r=1
P
(

Xr > un >Mr+1,r+k−1

)

n
T

T
∑

r=1
P
(

Xr > un

)

→ θ , n → ∞ .
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4. MAX-AUTOREGRESSIVE PERIODIC SEQUENCES

Let X=(Xn)n∈N be a T -periodic non-negative integer-valued max-auto-

regressive sequence defined as

(4.1) Xn = max{Xn−1, Zn} − cn ,

where (c1, ..., cT ) ∈ N
T, cn+T = cn for all n ∈ N and Z = (Zn)n∈N is a sequence of

i.i.d. integer-valued rv’s with common distribution F . Let Hn denote the distri-

bution of Xn. The max-autoregressive sequence defined in (4.1) is an extension

of the max-autoregressive model considered by Alpuim [3]. Her ideas will be

extensively used throughout this section. First note that the following relations

hold

Hn(x) = P
(

Xn≤ x
)

= P
(

Xn−1≤ x + cn, Zn≤ x + cn

)

=
∞
∏

i=0

F

(

x +
i
∑

l=0

cn−l

)

=
T−1
∏

s=0

∞
∏

j=0

F
(

x + jS + Ss,n

)

,

with S =
∑T

i=1 ci and Ss,n =
∑s

l=0 cn−l. Moreover, it is also true that

(4.2) F (x) =
Hn(x − cn)

Hn−1(x)
, for all n .

Next result shows that if F belongs to Anderson’s class then Hn will also belong

to Anderson’s class for all n.

Lemma 4.1. Let X be a max-autoregressive integer-valued T-periodic

sequence defined by (4.1). If F ∈Dα(Anderson) then Hn∈Dα(Anderson), ∀n∈N.

Let un = x + bn be such that







lim sup
n→∞

n
(

1 − F (un)
)

≤ e−αx

lim inf
n→∞

n
(

1 − F (un)
)

≥ e−α(x−1)
.

Choosing u′
n = x + bn + ln C1

α with C1 =
PT−1

s=0 e−Ss,1α

1−e−Sα it follows that







lim sup
n→∞

n
(

1 − H1(u
′
n)
)

≤ e−αx

lim inf
n→∞

n
(

1 − H1(u
′
n)
)

≥ e−α(x−1)

and






lim sup
n→∞

n
(

1 − Hr(u
′
n)
)

≤ γr,1 e−αx

lim inf
n→∞

n
(

1 − Hr(u
′
n)
)

≥ γr,1 e−α(x−1)
,

where

γi,r = lim
x→∞

1 − Hi(x)

1 − Hr(x)
, r=1, ..., T, i=0, ..., T−1 .(4.3)



258 Andreia Hall and Manuel G. Scotto

Furthermore for i = 0, ..., T−1



























lim sup
n→∞

n

T

T
∑

i=1

P
(

Xi >u′
n

)

≤
1

T

T
∑

i=1

γi,1 e−αx

lim inf
n→∞

n

T

T
∑

i=1

P
(

Xi >u′
n

)

≥
1

T

T
∑

i=1

γi,1 e−α(x−1)

.

Proof: First note that for any two integer-valued distribution functions,

say F1 and F2, the following relation hold: If F1∈Dα(Anderson) and lim
n→∞

1−F2(n)
1−F1(n) =

c > 0 then F2 ∈Dα(Anderson). Furthermore, if bn is such that







lim sup
n→∞

n
(

1 − F1(x + bn)
)

≤ e−αx

lim inf
n→∞

n
(

1 − F1(x + bn)
)

≥ e−α(x−1)
,

then for b′n = bn+ ln c
α







lim sup
n→∞

n
(

1 − F2(x + b′n)
)

≤ e−αx

lim inf
n→∞

n
(

1 − F2(x + b′n)
)

≥ e−α(x−1)
.

Now suppose that F ∈Dα(Anderson).

lim
x→∞

1 − Hn(x)

1 − F (x)
= lim

x→∞

T−1
∏

s=0

∞
∏

j=0
F
(

x + jS + Ss,n

)

1 − F (x)

= lim
x→∞

T−1
∑

s=0

∞
∑

j=0
1 − F

(

x + jS + Ss,n

)

1 − F (x)

=
T−1
∑

s=0

e−Ss,nα lim
x→∞

∞
∑

j=0

1 − F (x + jS)

1 − F (x)
.

Since limx→∞
1−F (x)

1−F (x−1) = e−α we may choose α′< α so that there exists x0

such that for all x > x0 then 1−F (x+jS)
1−F (x) < e−jSα′

for all j. By the dominated

convergence theorem, limit and sum can be interchanged providing

lim
x→∞

1 − Hn(x)

1 − F (x)
=

T−1
∑

s=0

e−Ss,nα
∞
∑

j=0

e−jSα =

T−1
∑

s=0
e−Ss,nα

1 − e−Sα
≡ Cn .

Applying the relations stated in the beginning of the proof we conclude that

Hn ∈ Dα(Anderson).
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We shall now obtain the asymptotic behaviour of the maximum term of the

T -periodic non-negative integer-valued max-autoregressive sequence in (4.1).

Theorem 4.1. Let X be the T -periodic non-negative integer-valued mov-

ing average sequence defined in (4.1) with F ∈Dα(Anderson). If Mn = max
1≤k≤n

(Xk)

and un = x + bn with

bn = b′n +

ln
(

1
T

T
∑

i=1
Ci

)

α

where Ci =
PT−1

s=0 e−Ss,iα

1−e−Sα and b′n is the sequence of normalizing constants of F ,

then 









lim sup
n→∞

P
(

Mn≤un

)

≤ e−θe−αx

lim inf
n→∞

P
(

Mn≤un

)

≥ e−θe−α(x−1)

and the extremal index θ is given by

θ =

T
∑

i=1
γi,1

(

1 − exp{−α ci+1}
)

T
∑

i=1
γi,1

,(4.4)

with γi,1 = Ci/C1.

Proof: First we prove that condition D(un) holds for X. Note that for

any two indexes i1, i2 we obtain the following relations by (4.2):

P
(

Xi1 ≤ x, Xi2 ≤ x
)

= P
(

Xi1 ≤ x
)

i2−i1−1
∏

l=0

F (x + Sl,i2)(4.5)

= Hi1(x)
Hi2(x)

Hi1(x + Si2−i1−1,i2)
.

Using (4.5) we obtain
∣

∣

∣
Hi1,...,ip,j1,...,jq(un, ..., un) − Hi1,...,ip(un, ..., un)Hj1,...,jq(un, ..., un)

∣

∣

∣
=

=

∣

∣

∣

∣

∣

Hi1(un)

p
∏

m=2

im−im−1−1
∏

l=0

F (un + Sl,im)

q
∏

m=2

jm−jm−1−1
∏

l=0

F (un + Sl,jm)

×

( ln−1
∏

l=0

F (un+ Sl,j1) − Hj1(un)

)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

Hj1(un)

Hip(un+ Sj1−ip−1)
− Hj1(un)

∣

∣

∣

∣

≤ 1 − Hip(un+ Sj1−ip−1) ≤ 1 − Hip(un) .

Since 1−Hi(un) ∼ O( 1
n) for all i, the desired result is obtained.
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Next we show that condition D′′
T (un) also holds for X.

P
(

Xi > un≥Xi+1, Xi+j > un

)

=

= P
(

Xi > un, Xi+j > un|Xi+1≤ un

)

Hi+1(un)

= P
(

Xi > un|Xi+1≤ un

)

P
(

Xi+j > un|Xi+1≤ un

)

Hi+1(un) ,

since the events {Xi > un|Xi+1 ≤ un} and {Xi+j > un|Xi+1 ≤ un} are indepen-

dent for this type of sequences. Moreover

P
(

Xi > un|Xi+1≤ un

)

=
Hi+1(un) − Hi(un)F (un+ ci+1)

Hi+1(un)

= 1 −
Hi(un)

Hi+1(un)
F (un+ ci+1) .

Since Hi(un)
Hi+1(un) ≥ Hi+1(un) we have

P
(

Xi > un|Xi+1≤ un

)

≤ 1 − Hi(un) = O

(

1

n

)

.

For the second term we have

P
(

Xi+j > un|Xi+1≤ un

)

= 1 −
Hi+j(un)

Hi+1

(

un +
j−2
∑

m=0
ci+j−m

)

≤ 1 − Hi+j(un)

= O

(

1

n

)

.

Hence

lim
n→∞

n

T

T
∑

i=1

[ n
knT

]T
∑

j=i+2

P
(

Xi > un≥Xi+1, Xi+j > un

)

≤ lim
n→∞

nT

[

n

knT

]

O

(

1

n

)

O

(

1

n

)

= 0 .

Note that by Corollary 3.1

θ = lim
n→∞

n
T

T
∑

i=1
P
(

Xi > un≥Xi+1

)

n
T

T
∑

i=1
P
(

Xi > un

)

= lim
n→∞

T
∑

i=1
P
(

Xi > un≥Xi+1

)

/ P
(

X1 > un

)

T
∑

i=1
P
(

Xi > un

)

/ P
(

X1 > un

)

.
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Since

lim
n→∞

T
∑

i=1

P
(

Xi > un

)

/ P
(

X1 > un

)

=
T
∑

i=1

γi,1

and

lim
n→∞

T
∑

i=1

P
(

Xi > un≥Xi+1

)

/ P
(

X1 > un

)

=

= lim
n→∞

T
∑

i=1

(

P
(

Xi≤ un

)

− P
(

Xi≤ un, Xi+1≤ un

)

)

/ P
(

X1 > un

)

= lim
n→∞

T
∑

i=1

(

Hi+1(un) − Hi(un)F (un + ci+i)
)

/
(

1 − H1(un)
)

= lim
n→∞

T
∑

i=1

(

Hi+1(un) − Hi(un)
Hi+1(un)

Hi(un + ci+i)

)

/
(

1 − H1(un)
)

= lim
n→∞

T
∑

i=1

Hi+1(un)

Hi(un+ ci+1)

(

Hi(un+ ci+1) − Hi(un)
)

/
(

1 − H1(un)
)

= lim
n→∞

T
∑

i=1

1 − Hi(un)

1 − H1(un)

(

1 −
1 − Hi(un+ ci+1)

1 − Hi(un)

)

=
T
∑

i=1

γi,1

(

1 − exp(−α ci+1)
)

,

then

θ =

T
∑

i=1
γi,1

(

1 − exp(−α ci+1)
)

T
∑

i=1
γi,1

,

concluding the proof.

5. MOVING AVERAGE MODELS WITH EXPONENTIAL TYPE-

TAILS

Let Z = (Zn)n∈Z be a sequence of T -periodic integer-valued random vari-

ables. Throughout this section we will assume that

1−FZr(x) ∼ Kr xξr(1+λr)
−x , x→∞, ξ∈R, Kr, λr >0 ,(5.1)

for r=1, ..., T . Furthermore, we assume that Xn admits the representation

Xn =
∞
∑

j=−∞

βj ◦ Zn−j , βj ∈ [0, 1] ,(5.2)
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where the discrete operator ◦ denotes binomial thinning defined as β ◦Z =
∑Z

s=1 Us(β), where (Us(β)) is a i.i.d. sequence of Bernoulli random variables ver-

ifying P
(

Us(β)=1
)

= β. Moreover, the sequence of coefficients (βj)j∈Z will be

taken to satisfy
∞
∑

j=−∞

βj < ∞ ,

in order to ensure the almost sure convergence of (5.2). All thinning operations

involved in (5.2) are independent, for each n. Nevertheless, dependence is allowed

to occur between the thinning operators βj ◦Zn and βi ◦Zn, j 6= i (which belong

to Xn+j and Xn+i respectively).

Lemma 5.1. Under the conditions set above, the sum

∞
∑

j=−∞

βj ◦ Zn−j ,

with

βj = O
(

|j|−δ
)

,(5.3)

as j → ±∞, for some δ > 2, converges almost surely to Xn.

Proof: Note that

E

[

∞
∑

j=−∞

βj ◦ Zn−j

]

=

T−1
∑

s=0

E
[

Zn−s

]

∞
∑

j=−∞

βjT+s < ∞ .

Likewise,

Var

[

∞
∑

j=−∞

βj ◦ Zn−j

]

=

=
T−1
∑

s=0

(

Var
[

Zn−s

]

− E
[

Zn−s

]

)

∞
∑

j=−∞

β2
jT+s + E[Zn−s]

∞
∑

j=−∞

βjT+s

< ∞ .

Thus
∑∞

j=−∞ βj ◦ Zn−j → Xn almost surely by the Corollary of page 112 in

Tucker [33].

We now begin with a series of results designed to understand the tail

behavior of X
(s)
r =

∑∞
j=−∞ βjT+s ◦ Zr−jT−s as well as sums of these variables.

The first result we present is a simple modification of Theorem 8 in Hall [19]

for the stationary case, but crucial for the characterization of the tail behavior

of Xr.
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Lemma 5.2. Let Z be a T -periodic sequence verifying (5.1). For fixed

values of s = 0, ..., T−1 and r = 1, ..., T , it holds that, as x → ∞

P
(

X(s)
r > x

)

∼ K̆r−s xξ̆r−s(1 + λ̆r−s)
−x ,

for ξr−s 6=1, with λ̆r−s = λr−s

β(s) , β(s) = max
−∞≤j≤∞

{βjT+s}, ks = #
{

j :
βjT+s

β(s) = 1
}

,

ξ̆r−s =

{

ks ξr−s + ks − 1 ξr−s > −1

ξr−s ξr−s < −1
,

K∗
r−s = β(s) Kr−s

(

1 + λr−s

λr−s + β(s)

)ξr−s+1

,

K̆r−s =



















λ̆ks−1
r−s K∗ks

r−s

(

Γ(ξr−s+1)
)ks

Γ
(

ks(ξr−s+1)
) E

[

(1+λ̆r−s)
P

j′ /∈γs
βj′◦Zr−s

]

ξr−s >−1

ks K∗
r−s

(

E
[

(1+λ̆r−s)
]

)ks−1
E
[

(1+λ̆r−s)
P

j′ /∈γs
βj′◦Zr−s

]

ξr−s <−1

,

with j′= jT + s and γs =
{

i1, ..., iks: βih=β(s), h=1, ..., ks

}

.

We shall now obtain the tail behavior of FXr . For simplicity in notation

we define i1, ..., iT = 0, 1, ..., T−1, being i1 6= i2 6= ... 6= iT .

Lemma 5.3. For the process defined in (5.2) it holds that, for r=1, ..., T ,

as x → ∞,

P
(

Xr > x
)

∼ A∗
r xξ∗r (1+λ∗

r)
−x ,(5.4)

with λ∗
r =min(λ̆r, ..., λ̆r−T+1). Moreover, the constant A∗

r can be calculated

as follows:

1. if λ̆r−i1 = ··· = λ̆r−iT and

(a) ξ̆r−i1 = ··· = ξ̆r−iT < −1 then ξ∗r = ξ̆r−i1 and

A∗
r =

{

C2,r T = 2

CT,r T ≥ 3
,

with

C2,r = K̆r−i1E
[

(1+λ∗
r)

X
(i2)
r

]

+ K̆r−i2 E
[

(1+λ∗
r)

X
(i1)
r

]

,

CT,r = CT−1,r E
[

(1+λ∗
r)

X
(iT )
r

]

+ K̆r−iT E
[

(1+λ∗
r)
PT−1

s=1 X
(is)
r

]

;
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(b) ξ̆r−i1 >−1, ..., ξ̆r−iT >−1 then ξ∗r =
∑T

s=1 ξ̆r−is + T − 1, and

A∗
r =

{

C∗
2,r T = 2

C∗
T,r T ≥ 3

,

with

C∗
2,r = λ∗

r K̆r−i1K̆r−i2

Γ
(

ξ̆r−i1 + 1
)

Γ
(

ξ̆r−i2 + 1
)

Γ
(

ξ̆r−i1 + ξ̆r−i2 + 2
) ,

C∗
T,r = C∗

T−1,r λ∗
r K̆r−iT

Γ

(

T−1
∑

s=1
ξ̆r−is + T − 1

)

Γ
(

ξ̆r−iT + 1
)

Γ

(

T
∑

s=1
ξ̆r−is + T

) ;

2. if λ̆r−i1 < ··· < λ̆r−iT , then ξ∗r = ξ̆r−i1 and

A∗
r = K̆r−i1

T
∏

h=2

E
[

(1+λ∗
r)

X
(ih)
r

]

;

3. if λ̆r−i1 < · · · < λ̆r−il+1
= · · · = λ̆r−il+k

< λ̆r−il+k+1
< · · · < λ̆r−iT , then

ξ∗r = ξ̆r−i1 and

A∗
r = Q̆

(k)
r−i1

(

T−k−l
∏

h=1

E
[

(1+λ∗
r)

X
(il+k+h)
r

]

)

with

Q̆
(k)
r−i1

= K̆r−i1

(

l
∏

h=2

E
[

(1+λ∗
r)

X
(ih)
r

]

)

E
[

(1+λ∗
r)
Pk

h=1 X
(il+h)
r

]

;(5.5)

4. if λ̆r−i1 < ··· < λ̆r−il < λ̆r−il+1
= ··· = λ̆r−iT then ξ∗r = ξ̆r−i1 and

A∗
r = Q̆

(T−l)
r−i1

,

with Q̆
(·)
r−i1

defined as in (5.5);

5. if λ̆r−i1 = ··· = λ̆r−il < λ̆r−il+1
< ··· < λ̆r−iT and

(a) ξ̆r−i1 = ··· = ξ̆r−il < −1 then ξ∗r = ξ̆r−i1

A∗
r =











C2,r T = 2

CT,r

T
∏

h=l+1

E
[

(1+λ∗
r)

X
(ih)
r

]

3 ≤ l < T
;

(b) ξ̆r−i1 > −1, ..., ξ̆r−il > −1 then ξ∗r =
∑l

s=1 ξ̆r−is + l − 1

A∗
r =











C∗
2,r T = 2

C∗
T,r

T
∏

h=l+1

E
[

(1+λ∗
r)

X
(ih)
r

]

3 ≤ l < T
.
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Proof: The result follows by applying repeatedly Lemma 7 in Hall [19]

which is the discrete version of Theorem 7.1 in Rootzén [31], after some tedious

calculations.

We are now in conditions to obtain the limiting distribution of the maxi-

mum term of X. An explicit expression for the sequence of norming constants (bn)

can be obtained though the following result. For clarification in notation we

define λ̌ = min1≤r≤T {λ
∗
r} and (q1, ..., qk) the set of indices such that λ̌/λ∗

ql
= 1,

for l = 1, ..., k (k ≤ T ). In addition, we define ξ̌ = max1≤l≤k{ξ
∗
ql
} and the set of

indices (p1, ..., ps) such that ξ̌/ξ∗pl
= 1, with l = 1, ..., s, (s ≤ k). Furthermore,

let A = 1
T

∑s
j=1A

∗
pj

.

Lemma 5.4. For the T -periodic integer-valued sequence X given in (5.2)

the normalizing constants bn of Theorem 3.1 are given by

bn =
(

ln(1+λ̌)
)−1

(lnn + ξ̌ ln lnn + lnA) .(5.6)

The demonstration of this lemma is based on the following result.

Lemma 5.5. If a distribution function F belongs to the domain of attrac-

tion of an extreme value distribution, (F ∈ D(Gγ(x))) and F∗= F (x)(1 + ǫ(x))

with limx→xF ǫ(x) = 0, then F∗ ∈ D(Gγ(x)).

Proof of Lemma 5.4: By Lemma 5.3, as x → ∞

1

T

T
∑

r=1

P
(

Xr > x
)

∼
1

T

T
∑

r=1

A∗
r xξ∗r (1+λ∗

r)
−x

= A xξ̌(1+λ̌)−x

[

1 +
T
∑

l=s+1

A∗
pj

A

(

1 + λ∗
ql

1 + λ̌

)−x

xξ∗ql
−ξ̌

]

∼ A xξ̌(1+λ̌)−x ,

where the last step is justified by Lemma 5.5.

Let X̂ be the associated independent T -periodic sequence of X, i.e.

X̂1, X̂2, ..., are independent random variables being the tail distribution of X̂r

as in (5.4) for r = 1, ..., T , and define M̂n = max(X̂n). Next result ensures that

condition D(un) holds for X with FZr given as in (5.1).

Lemma 5.6. Suppose that the T -periodic integer-valued sequence X given

in (5.2) is defined by a.s. convergent sums and satisfies










lim sup
n→∞

P
(

M̂n≤ x + bn

)

≤ e−
1
T

PT
r=1(1+λr)−x

lim inf
n→∞

P
(

M̂n≤ x + bn

)

≥ e−
1
T

PT
r=1(1+λr)−(x−1)

,

for all x ∈ R and some set of constants λ1, ..., λT > 0, bn ∈ R. Then condition

D(x + bn) holds for X.



266 Andreia Hall and Manuel G. Scotto

Proof: For any ǫn > 0,

sup
i,j

∣

∣

∣
Fi1,...,ip,j1,...,jq(un, ..., un) − Fi1,...,ip(un, ..., un)Fj1,...,iq(un, ..., un)

∣

∣

∣
≤

≤
n

T

T
∑

r=1

P
(

x + bn− 2 ǫn < Xr ≤ x + bn + 2 ǫn

)

+
n

T

T
∑

r=1

P

(
∣

∣

∣

∣

∣

T−1
∑

s=0

∞
∑

j=[nγT ]+1

βjT+s ◦ Zr−jT−s

∣

∣

∣

∣

∣

> ǫn

)

+
n

T

T
∑

r=1

P

(∣

∣

∣

∣

∣

T−1
∑

s=0

−[nγT ]−1
∑

j=−∞

βjT+s ◦ Zr−jT−s

∣

∣

∣

∣

∣

> ǫn

)

where j1− ip ≥ 2 nγT , γ ∈ (0, 1). Note that

n

T

T
∑

r=1

P
(

x + bn− 2 ǫn < Xr ≤ x + bn + 2 ǫn

)

=

=
n

T

T
∑

r=1

P
(

Xr > x + bn− 2 ǫn

)

−
n

T

T
∑

r=1

P
(

Xr > x + bn + 2 ǫn

)

.

Since bn →∞ and ǫ→ 0, if bn is a normalizing constant for the maximum term,

then b±n =bn±2 ǫn are also constants for the maximum term. For each n and a fixed

value of r=1, ..., T n P (Xr > x + b−n ) and n P (Xr > x + b−n ) are step functions

of x, with the same step width, and different location parameters, but whose

difference converges to zero. Then

n

T

T
∑

r=1

P
(

x + bn− 2 ǫn < Xr ≤ x + bn + 2 ǫn

)

→ 0 , n → ∞ ,

for all x ∈ R, providing that

n

T

T
∑

r=1

P

(
∣

∣

∣

∣

∣

T−1
∑

s=0

∞
∑

j=[nγT ]+1

βjT+s ◦ Zr−jT−s

∣

∣

∣

∣

∣

> ǫn

)

→ 0(5.7)

n

T

T
∑

r=1

P

(∣

∣

∣

∣

∣

T−1
∑

s=0

−[nγT ]−1
∑

j=−∞

βjT+s ◦ Zr−jT−s

∣

∣

∣

∣

∣

> ǫn

)

→ 0(5.8)

as n → ∞, for some γT ∈ (0, 1) and ǫ = o(1) as n → ∞, are sufficient conditions

for D(un). In proving (5.7) and (5.8) note that by Markov’s inequality

n

T

T
∑

r=1

P

(
∣

∣

∣

∣

∣

T−1
∑

s=0

∞
∑

j=[nγT ]+1

βjT+s ◦ Zr−s

∣

∣

∣

∣

∣

> ǫn

)

≤

≤
n

T

T
∑

r=1

E

[

(

T−1
∑

s=0

∞
∑

j=[nγT ]+1

βjT+s ◦ Zr−s

)2
]

ǫ2n
.
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Using the properties of the thinning operation, for a fixed value r=1, ..., T

E

[(

T−1
∑

s=0

∞
∑

j=[nγT ]+1

βjT+s ◦ Zr−s

)2 ]

=

=
T−1
∑

s=0

(

Var
[

Zr−s

]

− E
[

Zr−s

]

)

∞
∑

j=[nγT ]+1

β2
jT+s

+

(

T−1
∑

s=0

E
[

Zr−s

]

∞
∑

j=[nγT ]+1

βjT+s

)2

+
T−1
∑

s=0

E
[

Zr−s

]

∞
∑

j=[nγT ]+1

βjT+s

= O
(

n−γT (δ−1)
)

,

by (5.3). Hence by taking for instance ǫn = O
(

(lnn)−ζ
)

, ζ > 0 and choosing

γT ∈ (0, 1) such that γT (δ − 1) > 1, we have that condition (5.7) is satisfied.

For the expression in (5.8) the procedure is analogous.

Next result provides sufficient conditions for D′
T (un).

Lemma 5.7. Denote n′
T = [nγT ] and suppose that for some constants

γT ∈ (0, 1) and ζ > 0 the following conditions hold, for un = x + bn, ∀x ∈ R,

n

T

T
∑

r=1

2n′

T
∑

t=r+1

P
(

Xr + Xt > 2un

)

→ 0 , n → ∞ ;(5.9)

n2

T

T
∑

r=1

P

(

T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s ◦ Zr−jT−s > ζ

)

→ 0 , n → ∞ ;(5.10)

n2

T

T
∑

r=1

P

(

T−1
∑

s=0

−n′

T−1
∑

j=−∞

βjT+s ◦ Zr−jT−s > ζ

)

→ 0 , n → ∞ ;(5.11)

T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s ◦ Zr−jT−s
P
→ 0 ,

T−1
∑

s=0

−n′

T−1
∑

j=−∞

βjT+s ◦ Zr−jT−s
P
→ 0 .(5.12)

Then, condition D′
T (un) holds for the T -periodic integer-valued sequence X

defined in (5.2).

Proof: First note that, for a fixed value of r=1, ..., T, P (Xr>un, Xt>un)

≤ P (Xr+Xt > 2 un) following from (5.9) that

n

T

T
∑

r=1

2n′

T
∑

t=r+1

P
(

Xr > un, Xt > un

)

→ 0 , n → ∞ .
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Next write X
′

r=
∑T−1

s=0

∑n′

T
j=−∞ βjT+s◦Zr−jT−s and X

′′

t=
∑T−1

s=0

∑∞
j=n′

T
βjT+s◦Zt−jT−s

so that X
′

r and X
′′

t are independent for t > 2 n′
T . Following Rootzén [31], for

a fixed value of r=1, ..., T it follows that

P
(

Xr > un, Xt > un

)

≤ P
(

X
′

r > un− ζ
)

P
(

X
′′

r > un− ζ
)

+ P

(

T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s ◦ Zr−jT−s > ζ

)

+ P

(

T−1
∑

s=0

−n′

T−1
∑

j=−∞

βjT+s ◦ Zt−jT−s > ζ

)

,

and hence, writing u∗
n = x − ζ + bn we have that

n

T

T
∑

r=1

[n/kT ]T
∑

t=2n′

T +1

P
(

Xr > un, Xt > un

)

≤

≤
T
∑

r=1

n2

k T
P

(

T−1
∑

s=0

n′

T
∑

j=−∞

βjT+s ◦ Zr−jT−s > u∗
n

)

× P

(

T−1
∑

s=0

∞
∑

j=−n′

T

βjT+s ◦ Zr−jT−s > u∗
n

)

+
n2

T

T
∑

r=1

P

(

T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s ◦ Zr−jT−s > ζ

)

+
n2

T

T
∑

r=1

P

(

T−1
∑

s=0

−n′

T−1
∑

j=−∞

βjT+s ◦ Zr−jT−s > ζ

)

.

The last two terms tend to zero by (5.10) and (5.11). By the same line of reasoning

as in Rootzén ([31], p. 622) it is easy to check that

lim sup
n→∞

n

T

T
∑

r=1

[n/kT ]T
∑

t=2n′

T +1

P
(

Xr > un, Xt > un

)

≤
1

k
×(constant) → 0 , k→∞ .

The final result is formalized through the following theorem.

Theorem 5.1. For the T -periodic integer-valued sequence X defined in

(5.2), with ks = 1, s = 0, ..., T−1 and ξr−s 6= 1 for r = 1..., T , it holds that











lim sup
n→∞

P
(

Mn≤ x + bn

)

≤ e−
1
T

PT
r=1(1+λ∗

r)−x

lim inf
n→∞

P
(

Mn≤ x + bn

)

≥ e−
1
T

PT
r=1(1+λ∗

r)−(x−1)
,

with bn defined as in (5.6).
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Proof: First note that for r = 1, ..., T

Xr + Xt =
T−1
∑

s=0

∞
∑

j=−∞

(

βjT+s ◦ Zr−jT−s + βjT+s+t ◦ Zr−jT−s

)

.

For simplicity in notation we define λmin =min(λr,...,λr−T+1) and for s=0,...,T−1,

β
(s)
1 = maxj

{

βjT+s : j /∈γs

}

< β(s), β
(s)
2 = maxt

{

maxj{βjT+s + βjT+s+t}
}

< 2 β(s),

and β̆max = max0≤s≤T−1

{

β̆(s)
}

with β̆(s) = max
{

β
(s)
1 , β

(s)
2 /2

}

.

E
[

(1+h)βjT+s◦Zr−s+ βjT+s+t◦Zr−s

]

= E
[

E
[

(1+h)βjT+s◦Zr−s+ βjT+s+t◦Zr−s |Zr−s

]

]

= P̃Zr−s

(

β(jT +s, t)h2 + (βjT+s + βjT+s+t)h
)

with 0 ≤ h < λmin. Since, for h ≥ 0 and s = 0, ..., T−1, β(jT+s, t)h2 + (βjT+s +

βjT+s+t)h ≤ β̆maxh2 +2 β̆maxh, the existence of E
[

(1+h)βjT+s◦Zr−s+βjT+s+t◦Zr−s
]

will be granted if it is possible to find an h>0 such that β̆maxh2+2 β̆maxh < λmin.

β̆maxh2 + 2 β̆maxh − λmin = 0 ⇐⇒ h = −1 ±

√

1 +
λmin

β̆max

.

Let h1 < 0 < h2 be the two solutions of this equation.

E
[

(1+h)Xr+Xt

]

= E
[

(1+h)
PT−1

s=0

P
∞

j=−∞
(βjT+s◦Zr−jT−s+βjT+s+t◦Zr−jT−s)

]

=
T−1
∏

s=0

(

[t/2]
∏

j=−∞

P̃Zr−s

(

β(jT +s, t)h2 + (βjT+s + βjT+s+t)h
)

×
∞
∏

j=[t/2]+1

P̃Zr−s

(

β(jT +s, t)h2 + (βjT+s + βjT+s+t)h
)

)

.(5.13)

Moreover, P̃
′

Zr−s
(ν) = E

[

(1+ ν)Zr−s
]

< ∞, if 0 < ν < λmin, and P̃
′

Zr−s
(ν) ≥ 1

for 0 ≤ ν ≤ β̆maxh2 + 2 β̆maxh. By the mean value Theorem, P̃Zr−s(ν1 + ν2) ≤

P̃Zr−s(ν1) (1+Cν2), ν1, ν2 > 0, ν1+ ν2 ≤ β̆maxh2 + 2 β̆maxh, with

C = sup

{

P̃
′

Zr−s
(ν +x)

P̃Zr−s(ν)
: s=0, ..., T−1, 0<ν+x<β̆maxh

2+2 β̆maxh, ν >0, x>0

}

< ∞ .

On the basis of this result we have for ν1=h(βjT+s+βjT+s+t) and ν2 =β(jT+s,t)h2

[t/2]
∏

j=−∞

P̃Zr−s

(

β(jT +s, t)h2 + (βjT+s +βjT+s+t)h
)

≤

≤

[t/2]
∏

j=−∞

P̃Zr−s

(

(βjT+s +βjT+s+t)h
)

[t/2]
∏

j=−∞

(

1 + CβjT+s β(jT +s, t)h2
)

≤

[t/2]
∏

j=−∞

P̃Zr−s

(

βjT+s h
)

−[t/2]
∏

j=−∞

(

1 + CβjT+s h
)

[t/2]
∏

j=−∞

(

1 + Cβ(jT +s, t)h2
)

.
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Noticing that P̃Zr−s(βjT+s h) = 1 + βjT+s hE[Zr−s] (1 + o(1)) and using (5.3),

we may conclude that the last expression is bounded, uniformly in t. Using

a similar argument for the second product in (5.13) we are lead to conclude that

E
[

(1+h)Xr+Xt
]

< ∞ for r=1, ...T . By Lemma 5.4, un∼
ln n

ln(1+λ̌)
as n → ∞.

By Bernstein’s inequality

P
(

Xr+Xt > 2 un

)

≤ E
[

(1+h)Xr+Xt

]

(1+h)−2un

= O
(

(1+h)−2un

)

= O
(

n
ln(1+2h+h2)

ln(1+λ̌)

)

= o
(

n−(1+γT )
)

,

where the last equality follows by the arguments given in Hall ([19], p. 373). More-

over, in proving (5.10) and (5.11), it suffices to show by Bernstein’s inequality

that

E

[

(1 + h)
PT−1

s=0

P
∞

j=Tn′

T
+1

βjT+s◦Zr−jT−s

]

and

E

[

(1 + h)
PT−1

s=0

P−Tn′

T −1

j=−∞
βjT+s◦Zr−jT−s

]

,

are bounded as n → ∞, for some h = nη − 1, η > 0. We can choose ζ and η

such that 2 < ζ η < ζ γT (δ − 1). By (5.3), we have that

E

[

(1+h)

PT−1
s=0

P
∞

j=n′

T
+1

βjT+s◦Zr−jT−s

]

=
T−1
∏

s=0

∞
∏

j=Tn′

T +1

E
[

(1+h)βjT+s◦Zr−jT−s

]

=
T−1
∏

s=0

∞
∏

j=n′

T +1

P̃Zr−s(βjT+s h)

=

T−1
∏

s=0

∞
∏

j=n′

T +1

(

1+ βjT+s hE
[

Zr−s

](

1+o(1)
)

)

< ∞ ,

as n → ∞ providing

n2

T

T
∑

r=1

P

(

T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s ◦ Zr−jT−s > ζ

)

≤

≤
n2

T
E

[

(1+h)
PT−1

s=0

P
∞

j=n′

T
+1

βjT+s◦Zr−jT−s

]

n−ζη → 0 , n→∞ .

A similar procedure can be carried out to prove (5.11). We skip the details.
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Finally, the proof is completed upon showing (5.12). Note that

E

[

T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s ◦ Zr−jT−s

]

=
T−1
∑

s=0

E
[

Zr−s

]

∞
∑

j=n′

T +1

βjT+s

<
T−1
∑

s=0

E
[

Zr−s

]

∞
∑

j=n′

T +1

O(j−δ)

= O
(

nγT (−δ+1)
)

→ 0 , n→∞ .

Moreover

Var

[

T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s ◦ Zr−jT−s

]

=

=
T−1
∑

s=0

∞
∑

j=n′

T +1

β2
jT+s

(

Var
[

Zr−s

]

− E
[

Zr−s

]

)

+
T−1
∑

s=0

∞
∑

j=n′

T +1

βjT+s E
[

Zr−s

]

<
T−1
∑

s=0

∞
∑

j=n′

T +1

(

O(j−2δ) + O(j−δ)
)

= O
(

nγT (−δ+1)
)

→ 0 , n→∞ .

Hence, (5.12) holds concluding the proof.
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