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Abstract:

• Often in discriminant analysis several models are estimated but based on some valida-
tion criterion, a single model is selected. In the purpose of taking profit from several
potential models, classification rules combining models are considered in this arti-
cle. More precisely two ways of combining models are considered: a serial combining
method and a hierarchical combining method. Serial combining is a convex linear
combination of a finite number of models. Hierarchical combining method leads to
nested models structured in a binary tree. In this paper, several combining methods
resorting from both points of view are presented and their performances are assessed
on discrete and continuous classification problems.
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1. INTRODUCTION

In multivariate discriminant analysis, each object is assumed to arise from

one of K exclusive groups G1, ..., GK with prior probabilities π1, ..., πK , πk ≥ 0,

k =1, ..., K,
∑

k πk = 1. Each object is characterised by a multivariate vector x

of d variables. In this article, all d variables are assumed to be either continuous

or discrete. The conditional density that x belongs to group Gk is denoted by

fk(x). Accordingly to the discrete or continuous case, fk(x) is a probability or

a density probability function which has to be estimated from a n-dimensional

training sample t (ti =(xi, zi), i=1, ..., n), where xi is the d-dimensional vector

measurement for unit i and zi ∈ {1, ..., K}, denotes its group origin. Often, it is

convenient to replace zi with yi, a K-dimensional binary indicator vector of group

membership for unit i : The k-th coordinate of yi is 1 if i arises from group Gk

and 0 otherwise.

The Bayes classifier assigns an individual vector x to Gg if

πg fg(x) = arg max
k

πk fk(x) , k = 1, ..., K .

Usually, the group conditional probability function fk(x) is unknown and has to

be estimated on the basis of the training sample t. For continuous problems, the

parametric paradigm is adopted and these functions are assumed to belong to a

family of densities, in particular fk(x) are assumed to be d-normal with mean

vector µk and covariance matrix Σd.

For discrete problems the most natural model is to assume that the group

conditional probabilities fk(x) where x ∈ {0, 1}d are multinomial probabilities.

(For simplicity, the discrete variables are supposed to be binary variables.)

In this case, the group conditional probabilities are estimated by the observed

frequencies in the training set t. Goldstein and Dillon [14] call this model the

full multinomial model (FMM). One way to deal with the curse of dimensionality

consists of reducing the number of parameters to be estimated. The first-order

independence model (FOIM) assumes that the d binary variables are independent

in each group Gk ([14]).

In many situations M different classifiers are in competition for the same

problem and one of those classifiers is selected, based on some validation criterion.

Acting in such a way, leads to reject several classifiers for which the parameters

have been estimated. Besides, misclassified objects can be different for the dif-

ferent classifiers. Thus, those classifiers may contain useful information about

the supervised classification problem, and this information is lost by selecting a

unique classifier. The idea of combining models is present in a growing number

of papers, hoping to obtain a more robust and more stable model than any of the

competing models ([27], [35], [36], [4], [7], [20], [29] and [25] are examples of such

papers).



204 Isabel Brito, Gilles Celeux and Ana Sousa Ferreira

The aim of this paper is to gather and extend combining methods previously

presented ([9], [10], [32] and [34]) and to assess their performances from numerical

comparisons on real data set.

In this paper, two ways of combining classifiers, called serial combination

method and hierarchical combination method, are considered on the basis of

numerical experiments on real data sets. For serial combination, a convex linear

combination of M models is considered

(1.1)
∑

m

cm(x)βm , βm≥0,
∑

m

βm =1, m=1, ..., M ,

where cm(x) indicates the output of model m. Usually, this output is the group

conditional probabilities functions fm
k (x), k = 1, ..., K, or the posterior probabi-

lities pm
k (x)

(1.2) pm
k (x) =

πk fm
k (x)

∑

g
πgfm

g (x)
, g, k=1, ..., K, m=1, ..., M ,

or sometimes the membership estimation zm(x). To define the combining coef-

ficients βm, two strategies are possible: a single coefficient is associated to each

model m (βm is then a scalar) or K coefficients are associated to each model (βm is

then K-dimensional). The latter strategy can be thought of as attractive because

it allows to choose a coefficient by model and by group. It means that it would

be possible to weight differently the groups in the same combination of models.

In fact, many numerical experiments on both real and simulated data ([33] and

[10]) showed that this strategy produce awkward combining vectors. Moreover,

in discrete problems, the training data sets are most often small in regard to

the number of parameters to be estimated, and it is difficult to estimate several

combining coefficients per model in a reliable way ([33]). A better strategy is to

consider a single coefficient for each model. This strategy produces more stable

and more interpretable combined models.

The methods that estimate a single coefficient per model are grouped ac-

cording two different approaches based on least squares minimisation or on likeli-

hood maximisation. In this work several methods have been considered according

both approaches. Those methods are the committee of methods, which is a least

squares minimisation technique and the other ones are based on likelihood ratios.

Hierarchical combining is different in spirit. It applies on polychotomous

classification problems with K >2 groups and leads to nested models. Attention

is focused on a method of combining models by a hierarchical coupling method

related to an approach of Friedman [13]. This method is reducing the multigroup

problem into several two-group problems. The hierarchical combined model is

structured into a binary tree where each branch is associated to a model or a

combination of models and a dichotomy between groups to be classified ([32],

[34] and [9]).
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The paper is organized as follows. In Section 2, the models in compe-

tition for both continuous and discrete classification problems are presented.

In Section 3, the different convex combining strategies are described. Committee

of methods and Likelihood ratios combining methods are presented in this sec-

tion. Section 4 is devoted to the presentation of Hierarchical combining. Section 5

is concerned with the presentation of numerical experiments. The performances

of combining models are compared on both discrete and continuous problems.

For continuous data problems, serial and hierarchical combining methods are

evaluated separately. Thus, when using hierarchical coupling, at each tree level

only one model is chosen. For qualitative data problems, when using hierarchi-

cal combination at each node of the tree, a serial combination of models can be

considered. Two sections, one about computer programs (Section 6) and another

with a short discussion (Section 7) ends the paper.

2. CONTINUOUS AND DISCRETE CLASSIFIERS

In continuous supervised classification problems for assessing combining

classification methods, the fourteen Gaussian models of EDDA ([3]) have been

considered. Defined in the Gaussian setting, each group conditional probability

function is supposed to be a d-dimensional Gaussian distribution with vector

mean µk and covariance matrix Σk.

EDDA makes use of the variance matrix eigenvalue decomposition Σk =

λk DkAkD
T
k where λk = |Σk|1/d, Dk is the eigenvector matrix of Σk and Ak is

a diagonal matrix such that |Ak| = 1, with the normalised eigenvalues of Σk on

the diagonal in a decreasing order. This decomposition can lead to parsimonious

and versatile models. Parameter λk denotes the volume of the k-th group, Ak its

shape and Dk its orientation. Different assumptions on those parameters lead to

fourteen models pooled into three families: eight elliptical models, four diagonal

models and two spherical models. The eight elliptical models are

[

λDADT
]

,
[

λk DADT
]

,
[

λDAkD
T
]

,
[

λk DAkD
T
]

,
[

λDkADT
k

]

,
[

λk DkADT
k

]

,
[

λDkAkD
T
k

]

,
[

λk DkAkD
T
k

]

.

The absence of subscript k means that the parameter at hand has a fixed value

over the groups and its presence that the parameter is free over the groups.

For instance, models [λDADT ] and [λk DkAkD
T
k ] are respectively, the linear

discriminant analysis model and the quadratic discriminant analysis model.

Assuming that Σk are diagonal lead to the simplification Σk = λkBk, where Bk

is a diagonal matrix where |Bk|=1. The four diagonal models are: [λB], [λkB],

[λBk], [λkBk]. The spherical models are [λI], [λkI], I denoting the identity matrix.

For each model, parameters Dk, Ak or Bk and λk are estimated by maximizing

the likelihood ([3]).
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The output that has been considered for model m, in continuous combin-

ing context, is the posterior group probabilities pm
k (x) ([10]). In the hereunder

considered examples, those probabilities have been derived by (1.2), where the

prior probabilities πk have been replaced with nk/n (nk is the number of units

from Gk in the training set t).

In discrete problems, only two reference models have been considered. They

are the full multinomial model (FMM) and the first order independence model

(FOIM). Those two models are expected to provide different classifiers in many

circumstances. In the full multinomial model (FMM) the conditional probabilities

are estimated with the observed frequencies

(2.1) fk(x) =
N(x | k)

nk
, k=1, ..., K ,

where N(x | k) is the number of observations of the training sample, belonging

to Gk, for which state x occurs. This model involves 2d−1 parameters in each

group. Hence, even for moderate d, not all of the parameters are identifiable.

Since data sets are small or very small in regard to the number of proba-

bilities to be estimated, a problem of sparseness is encountered and some of the

multinomial cells may have no data in the training sets. Thus smoothing the

observed frequencies is desirable. Hand [16] has noticed that the choice of the

smoothing method is not very important so that computationally less demanding

methods may be used. Thus the observed frequencies are smoothed using a single

smoothing parameter λ (0 < λ≤ 1) and the conditional densities takes the form

(we omit the index k for simplicity)

(2.2) f(x |λ) =
1

n

∑

i

λd−‖x−xi‖ (1 − λ)‖x−xi‖ , i=1, ..., n .

When λ = 1.00 no smoothing is proceeded and the amount of smoothing is in-

creasing as λ decreases to 0. This method will be called KERNEL in the sequel.

The first-order independence model (FOIM) assumes that the d binary

variables are independent in each group Gk, k=1, ..., K. Then, the group proba-

bility function is of the form
∏

j f(xj |Gk), j =1, ..., d, and is estimated by

(2.3) f I
k (x) =

∏

j

N(xj | k)

nk
,

where nk = ♯Gk and N(xj | k) = ♯{y∈Gk : yj =xj}. In this model the number

of parameters to be estimated for each group is reduced from 2d − 1 to d.

This method is simple but may be unrealistic in some situations.

The resulting serial combining classifier is using a single coefficient, pro-

ducing an intermediate model between the full multinomial model and the first

order independence model. Combining methods differ in the way this coefficient

is derived.
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3. CONVEX COMBINING STRATEGIES

3.1. Committee of methods

A natural way of deriving the coefficients βm in serial combining is minimi-

sing the fitting error using a least squares criterion. The committee of methods

introduced by Bishop [4] in the neural computing literature is such an approach.

In the committee of methods that will be considered here to get a relevant con-

vex combining of classifiers, the fit of a classifier m is measured with the group

classification probabilities, cm(x). The committee of models is of the form

(3.1) cCOM(x) =
∑

m

cm(x)βm ,

with βm > 0, m = 1, ..., M , and
∑

m βm = 1. Writing cm(x) as

(3.2) cm(x) = c(x) + em(x) ,

where c(x) is the true group probabilities vector and em(x) represents the vector

error of model m, leads to

(3.3) cCOM(x) = c(x) +
∑

m

em(x)βm .

Defining C the error correlation matrix of the models whose general term

is

(3.4) Cml = E
[

em(X) el(X)
]

, m, l = 1, ...M ,

E denoting the expectation under the true distribution of the training dataset,

the committee of methods consists of minimizing the error Er =
∑

m

∑

l βmβlCml

under the constraint that the positive coefficients β are summing to one. Using

standard Lagrangian manipulation leads to

(3.5) βm =

∑

l

(C−1)ml

∑

m

∑

l

(C−1)ml
.

The correlation error matrix can be estimated by plug-in empirical values

(3.6) Ĉml =
1

n

∑

i

(

yi − cm(xi)
) (

yi − cl(xi)
)T

.

This formula means that in a natural way, the error vector em(xi) is estimated

with

(3.7) êm(xi) =
(

êk
m(xi) = yk

i − ck
m(xi)

)

.
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3.2. Likelihood ratios

LeBlanc and Tibshirani [20] presented an interesting combination method

by likelihood ratios although they did not experiment it. It consists of choosing

the combining coefficients as the ratio of the likelihood for model m over the sum

of all models likelihoods,

(3.8) βm =
Lm(θ,x)

∑

l

Ll(θ,x)
,

where, recalling that yik is the k-th coordinate of the indicator vector giving the

label of unit i,

Lm(θ,x) =
∏

i

∏

k

[

fm
k (xi)πk

]yik .

In the discrete case the single coefficient β is

(3.9) βm =
LI

LI + LM
,

where LI , LM represents the likelihood for the FOIM and the FMM models,

respectively.

Since the likelihood increases with the model complexity, this weighting

strategy will favour more complex models. Thus, it could be preferable to propose

penalized versions of likelihood ratios.

A natural penalisation is inspired from Akaike Information Criterion (AIC)

([1]). Denoting νm the number of independent parameters of model m, the AIC

criterion is AIC = −2 ln(Lm(θ,x))+2 νm and it leads to the combining coefficients

(3.10) βm =
Lm(θ,x) exp{−νm}
∑

l

Ll(θ,x) exp{−νl}
.

In the discrete case, it takes the form

(3.11) βm =
LI exp{−Kd}

LI exp{−Kd} + LM exp{−K(2d−1)} ,

because Kd and K(2d−1) are respectively the number of independent parameters

for the FOIM and the FMM models.

Remark that in the discrete case, it appears that the likelihood ratio stra-

tegy derived from AIC leads always to a single coefficient with value one or zero

and so this strategy is useless because it leads to a single model, FOIM or FMM

(see [34]).
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Another possibility, in the Bayesian model averaging spirit ([23] and [29]),

is to base the combining weights on integrated likelihood ratios. The integrated

or marginal likelihood for model m is

(3.12) L(x |m) =

∫

Lm(θ,x) p(θm) dθm ,

where p(θm) is a prior probability distribution on θm.

Unfortunately, in most continuous cases, integral (3.12) is difficult to calcu-

late. Kass and Wasserman [18] and Raftery [29] showed that integrated likelihood

can be approximated using BIC criterion of Schwarz ([31]). This approximation

leads to the combining coefficient for model m

(3.13) βm =
Lm(θ,x)n−0.5 νm

∑

Ll(θ,x)n−0.5 νl

.

In the discrete context, it is possible to get exact calculation of inte-

gral (3.12). In the non informative Bayesian setting, the prior distribution of

FOIM parameters p(ak
j ), k=1, ..., K, j =1, ..., d, are non informative Jeffreys

distribution B(1/2, 1/2) and prior distribution of FMM parameters p(bk
h),

k=1, ..., K, h=1, ..., s, where s is the number of states, is a non informative

distribution of Jeffreys D(1/2, 1/2, ..., 1/2). From which, it follows directly that

integrated likelihood for FOIM and FMM are

LI(x) =

∏

k

∏

j
B

(

xj
k + 0.5 nk − xj

k + 0.5
)

B(0.5, 0.5)kd
,(3.14)

and

LM (x) =

Γ(s/2)k
∏

k

∏

h

Γ
(

0.5 + ch
k

)

Γ(1/2)ks
∏

k

Γ
(

s/2 + nk

) ,(3.15)

where ch
k is the number of objects of group Gk with state h. And, the resulting

combining coefficient β is estimated by

(3.16) β =
LI(x)

LM (x) + LI(x)
.

4. HIERARCHICAL COMBINING

When the number of groups K to be discriminated is greater than two, as

noted in Friedman [13], it can be advantageous to consider the polychotomous

classification problem as a sequence of two group classification problem to get

classifiers easier to be estimated and to be interpreted. Friedman proposed to
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decompose the K groups in all possible combinations of pairs of groups. For each

pair of groups, a classifier is designed. The overall classifier is derived from all

the pairwise classifiers by a majority vote.

The strategy we now present is different. A polychotomous problem is

decomposed into several dichotomous problems but the dichotomous problems

are nested in a hierarchical binary tree. It is the reason why this strategy is

called hierarchical coupling. Let G = {G1, ..., GK} be the set of groups. Consider

a partition of G in two elements. At this level the best two class partition of

groups is designed according to some criterion and the model or combination of

models leading to the two class classifier minimizing the cross validated error rate

between the two classes is designed. According to the sample size of the learning

sample, leave one out or v-fold cross validation is considered. If available, it is

also possible to assess the error rate with a test sample.

The procedure is repeated until all the elements in the actual partition are

single groups. The combining classifier obtained from this hierarchical coupling

procedure can be represented in a hierarchical tree as exemplified in Figure 1.

 

  G1 

   Model  C 

   Model  B 

   Model  A 

  G2   G3   G4 

Figure 1: Example of hierarchical combined model
for a four group problem.

The classifier depicted in Figure 1 is as follows. When a new observation

is presented to the hierarchical classifier it passes through model A that classifies

it in G1 or G2 ∪G3 ∪G4. If model A classifies the observation in G1 the analysis

is stopped. Otherwise, the observation passes through model B and the decision

is G4 or G2 ∪ G3. If model B does not classify the observation in G4 it passes

finally through model C that assigns the observation to G2 or G3.

In order to choose, at each level, the best model or combination of models

and the best partition, different strategies for continuous and discrete problems

are employed.
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In continuous data context, it was proceeded as follows:

1. For each possible binary partition all M models are estimated (at the be-

ginning level there are M(2K−1−1) couples (model, partition)).

2. From those couples, the one providing the lowest misclassification error rate

(ME) is chosen. In all the experiments, ME is evaluated by leave one out

cross validation.

In the discrete case, the hierarchical coupling procedure is somewhat

different.

1. At each level of the binary tree, the choice of the two-class decomposition of

groups among the 2K−1−1 possible decomposition is done by minimizing

the basic affinity coefficient ([24] and [2]) between the two classes of groups:

Denoting F1 ={pj} and F2 ={qj}, j =1, ..., d, two discrete distributions

defined on the same space, the affinity coefficient between F1 and F2 is

given by ρ(F1F2) =
∑

j
√

pj
√

qj . Then the two classes of groups minimiz-

ing the affinity coefficient are selected.

2. After the two classes of groups have been chosen, the combining model is

chosen by minimizing the error rate evaluated on a test sample or by v-fold

cross validation.

Consider the example for a four group problem:

 

  G1 

   .8125 

   .7845 

  .7832 

  G2   G3   G4 

Figure 2: Example of hierarchical combined model for a four group dis-
crete problem with the basic affinity coefficient values displayed.

It can be noticed that hierarchical combining method leads often to simple

models at each step. From this point of view, it can lead to easily interpretable

and stable decision rules, avoiding unnecessary complicated models.
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5. RESULTS ON REAL DATA

In continuous context, combining methods have been applied on benchmark

real datasets. Four of them were taken from the Machine Learning Repository of

California University [5] (MLR), one from the Oxford University Repository [26]

(OR) and another one from [15] (Hab). Table 1 provides a brief description of

each dataset and their source.

Table 1: Continuous datasets description.

Nb Nb Nb
Dataset Source Description of of of

units features groups

Presence/absence of liver
disorders that might arise

Bupa MLR from excessive alcohol 345 6 2
consumption, measured by

blood tests

Morphology of two species,
Crabs OR blue and orange, by sex, 200 5 4

of Australian crabs

Survival of patients
Haberman MLR who had undergone surgery 306 3 2

for breast cancer

Haemo Hab
Presence of haemophilia

75 2 2
on women

Iris MLR

Measurements on the sepal

150 4 3
and petal iris to

determine iris specie
(the famous Fisher dataset)

Medical records to
Thyroid MLR predict the type of 215 5 3

patients thyroidism

In discrete context, several real and simulated binary datasets were used

to evaluate the performance of the considered strategies. Table 2 gives a brief

description of each real dataset.
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Table 2: Discrete datasets description.

Nb Nb Nb
Dataset Source Description of of of

units features groups

Medical
Data

Presence/absence of four
[30] symptoms liver disorders to 20 4 2

predict the type of icterus

Psycho- Scores obtained for each older
logical adult in the six dimensions of
Data [11] the Psychological Well-Being 80 6 2

in older Scale taken as binary data
people into two groups

Psycho-
logical
Data

[28]

Six binary variables of a psycho-

34 6 3
logical test — Rorschach test —

in 3 groups with different
degrees of alexithymia

Psycho-
logical
Coun-
selling
Career
Data

[21]

Students of four
licenciature’s: Vocational
Biology (B), Identity (VI) 600 6 4

Psychology (P), with 6 items
Language and

Literature (LL),
Occupational
Information

(OI)
with 4 items

Engineering (E),
described by the 600 4 4

Psychological
Questionnaire —
My Vocational

Barriers (B)
with 4 items

600 4 4
Situation — that
is organised in
three scales

5.1. Performance of serial combining techniques

The continuous case

Because several of the fourteen EDDA models lead to similar classifiers,

combining all of them is useless. The more different models have been determined

from the Correspondence Analysis of the fourteen models involved in EDDA

described with their posterior densities pm
k (x) (see Brito [9]). For each dataset,

the chosen models are given in Table 3.
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Table 3: EDDA models chosen for each dataset by a Correspondence Analysis.

Dataset Chosen models

Bupa
[

λB
]

,
[

λkB
]

,
[

λI
]

,
[

λkI
]

Crabs
[

λDADT
]

,
[

λI
]

Haberman
[

λDkADT
k

]

,
[

λBk

]

,
[

λI
]

Haemo
[

λDADT
]

,
[

λkDADT
]

,
[

λI
]

Iris
[

λB
]

,
[

λI
]

Thyroid
[

λB
]

,
[

λI
]

Serial combining methods were evaluated by leave-one-out cross validated

misclassification error rate (ME). The purpose is to compare combining tech-

niques opposite to single model techniques. In Tables 4 to 5, ME on each database

are presented and compared with ME of model chosen with the standard EDDA

strategy.

Table 4: Model and ME for each dataset using the committee of methods
technique and EDDA.

Dataset
Committee of methods EDDA

Model ME Model ME

Bupa .79
[

λB
]

+ .21
[

λI
]

.3971
[

λB
]

.4000

Crabs
[

λDADT
]

.5000
[

λI
]

.0500

Haberman .4
[

λDkADT
k

]

+ .6
[

λI
]

.2549
[

λBk

]

.2516

Haemo
[

λDADT
]

.1600
[

λDADT
]

.1467

Iris .82
[

λB
]

+ .18
[

λI
]

.0400
[

λB
]

.0400

Thyroid .73
[

λB
]

+ .27
[

λI
]

.0930
[

λB
]

.0977

For Bupa and Thyroid datasets, misclassification error rate is slightly

better using the committee of methods technique. Bupa dataset contains infor-

mation on the presence or absence of liver disorders caused by excessive alcohol

consumption. Thyroid dataset resumes medical records in order to predict pa-

tient type of thyroidism. In both cases, the diagonal model [λB] is the model

chosen with EDDA method. And, in both cases, the committee of methods tech-

nique proposes combining that model to the spherical model [λI]. The resulting

shrunk model gives somewhat better predictions than the diagonal model alone.
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Haberman dataset describes survival of women who had undergone surgery to

remove breast cancer. Haemo illustrates the presence or absence of haemophilia

on women. For those two datasets, EDDA strategy is slightly better than the

application of committee of methods. In the other hand, for Crabs dataset which

describes the morphology of males and females of two species of Australian crabs

and for the famous Fisher dataset Iris, both EDDA and committee of meth-

ods lead to the same misclassification error. For two of the six examples, the

Crabs and Haemo datasets, the committee of methods technique, lead to a

single model, the linear discriminant analysis model, and for all other datasets a

combination of models was selected.

Table 5: Model and ME for each dataset using the penalised likelihood ratios
technique and EDDA.

Dataset
Penalised likelihood EDDA

Model ME Model ME

Bupa
[

λBk

]

.4000
[

λB
]

.4000

Crabs
[

λDADT
]

.5000
[

λI
]

.0500

Haberman
[

λBk

]

.2516
[

λBk

]

.2516

Haemo .32
[

λDADT
]

+ .68
[

λkDADT
]

.1600
[

λDADT
]

.1467

Iris
[

λB
]

.0400
[

λB
]

.0400

Thyroid
[

λB
]

.0977
[

λB
]

.0977

Using the penalised likelihood ratios technique did not produce improved

performances on those datasets. The only case where it did not select a single

model, for dataset Haemo, it provided a slightly higher misclassification error

rate.

The discrete case

Since our samples are small the performance of the serial combining me-

thods were evaluated by v-fold cross validation(ME). In Table 6, ME obtained

on dataset Psychological Data in older people using the committee of meth-

ods technique and single models are compared. The performances of the classi-

fiers have been assessed with half-sampling (two-fold cross validation error rate).

Group prior probabilities were assumed to be equal, πk = .5 (k = 1, 2).
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Table 6: Estimated error rate (half-sampling) and parameters values for the
Psychological Data in older people.

FOIM FMM KERNEL C. MET. C. MET.

Half-sampling .30 .41 .32 .25 .25

λ 1.00 .95 1.00 .95

β .555 .493

The goal of the present study is to explore the impact of playing with

pets on psychological well-being among older people [11]. So, the two groups are

constituted by 40 aged persons who have pets (group G1) and 40 aged persons

who don’t have pets (group G2).

Remark that this dataset is not very sparse (26 =64 states and 80 observa-

tions) but, even so, the lowest error rate has been obtained with the committee

of methods. The estimation obtained for β, through this strategy, is quite sta-

ble, producing a really intermediate model between the full multinomial model

and the first order independence model. Also note that this approach seems to

be no sensitive to the sparseness problem and so there is no need to smooth of

the observed frequencies (λ = 1). On the basis of this study we can conclude

that the involvement of playing with pets among older people can contribute for

psychological well-being and thus, perhaps, for a successful ageing.

The numerical experiments performed for the model CMET on simulated

binary data showed that good performances can be expected in a setting for which

sample sizes are small or very small and population structures are identical in

the two classes.

In Table 7, ME using the integrated likelihood ratio techniques and the

single models have been compared on dataset Medical Data. In that case ME

is the five-fold cross validation error rate of compared classifiers. Group prior

probabilities were assumed to be equal, πk = .5 (k = 1, 2).

Table 7: Estimated error rate with five-fold cross-validation and parameters
values for the Medical Data.

FOIM FMM KERNEL INT. LIK. INT. LIK.

Five-fold cross-vali. .45 .55 .55 .45 .45

λ 1.00 .95 1.00 .95

β .832 .985
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In this study, the goal is to predict the type of icterus, since it’s not easy to

make a diagnosis on the basis of liver disorders. Integrated likelihood ratio tech-

nique and FOIM provide the same performance for this dataset. The numerical

experiments performed for this strategy on simulated binary data have shown

that good performances can be expected with this technique in a moderate or

large sample setting ([34]). In this small dataset setting (20 patients) it is no

surprising that this method does not improve the performance since it involves

the evaluation of an additional parameter β.

5.2. Assessing the performance of hierarchical combining

The continuous case

Hierarchical combining concerns only datasets with more than two groups.

It has been assessed on Crabs, Iris and Thyroid datasets. All the fourteen

models of EDDA were employed to get the hierarchical model. Hierarchical com-

bining and EDDA methods are compared in Table 8.

Hierarchical combining concerns only datasets with more than two groups.

It has been assessed on Crabs, Iris and Thyroid datasets. All the fourteen mod-

els of EDDA were employed to get the hierarchical model. Hierarchical combining

and EDDA methods are compared in Table 8. As it can be seen from Table 8,

the classification error rates of hierarchical methods and EDDA are quite similar.

Here the interest of hierarchical coupling lies essentially in its ability to choose

different models at each step of the classification procedure. Thus it can provide

more subtle and interpretable results. For instance, for Iris dataset, it shows at

a glance that the Setosa group can be easily separated from the two other groups

with the simplest model
[

λI
]

. On the contrary, for Thyroid dataset, it appears

that separating the “hyper” group from the other groups needs a more complex

model than separating the normal group from the “hypo” group.

Hierarchical coupling model for Crabs dataset is also appealing. At the

first level, the linear model
[

λDADT
]

splits the Blue and Orange species.

At the second level, males and females are separated inside each species. For

Blue crabs, hierarchical coupling selects an elliptical model allowing for class of

males and class of females to have different orientations
[

λDkADT
k

]

. For Orange

Crabs, an elliptical model
[

λDAkD
T
]

is preferred which differentiates the shape

of males and females classes.

In contrast with EDDA strategy which selects
[

λDkADT
k

]

for separate the

four groups, hierarchical coupling is less strict, proposing more adequate models
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at the different levels. Only Blue males and females need the
[

λDkADT
k

]

model

to be separated, less complex models being proposed to distinguish other groups.

Table 8: Model and ME for each dataset using the hierarchical coupling
technique and EDDA.

Dataset
Hierarchical coupling EDDA

Model ME Model ME

Crabs

 

 Blue Male 

 [λDkADk
T
] 

   [λDAD
T
] 

  Blue Female   Orange Male  Orange Female 

 [λDAkD
T
] 

.045
[

λDkADT
k

]

.045

Iris

 [λ
I
]
 

Setosa
 Versicolor

  Virginica 

[λ
DAD

T]
 

.02
[

λDADT
]

.02

Thyroid

 [λ
kDkADkT

]
 

  Hyper
 Normal

 Hypo 
[λ
kB

]
 

.0372
[

λkB
]

.0326
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The discrete case

For the Psychological Data the misclassification error is assessed by half-

sampling. For the Psychological Counselling Career Data it is assessed from

a test sample. A training sample of 200 students was drawn at random and the

rest of the dataset constituted the test sample. Table 9 summarises the results

of the four methods for these datasets and the coefficients of the combination

obtained in each level of the tree.

The Psychological Counselling Career Data set consists of 600 stu-

dents of the 1st and 2nd forms of four licenciature’s degree: Biology (B), Psy-

chology (P), Language and Literature (LL) and Engineering (E). The aim of

the study is to know if those four groups of student are different regarding their

Career Information.

For the Psychological Counselling Career Data the first decomposi-

tion chosen by hierarchical coupling for the several scales, suggest that Biology

students are different from the other students in what concerns the definition

of a clear and stable picture of their goals and interests, Engineering students

revealing a distinct need for vocational information from the other students;

and the students of odd groups show individually perceived external obstacles

or limitations in pursuing occupational goals different from the students of even

groups.

Remark that this dataset is not very sparse (26 = 64 or 24 = 16 states

and 200 observations), but again the hierarchical combining method using the

integrated likelihood (HIER/IL) or committee of methods (HIER/CM) provides

markedly the lowest misclassification error rate. The results of the hierarchical

coupling provide markedly the lowest test estimates of the misclassification risk

for all scales. However, HIER performs poorly for the Barriers scale.

We noted that in some situations, particularly when the groups have very

different sizes, usual methods and even the HIER method perform poorly. More-

over, the choice of the decomposition at each level of the tree may be unrealistic.

Therefore, new developments on the hierarchical coupling approach are required

in such a situation and this is a perspective for future research on this method.

The Psychological Data set consists of 34 dermatology’s patients divided

into three groups — Nonalexithymics Group (G1), Alexithymics Group (G2),

Intermediate Group (G3) — according to the value obtained in a psychological

test (TAS-20: Twenty Item Toronto Alexithymia Scale) conceived to evaluate the

presence of alexithymia1. The goal of the study is to evaluate how alexithymia

influences personality characteristics (evaluated by another psychological test —

Rorschach test).

1Alexithymia means “no words to express emotions”.
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For the Psychological Data the first decomposition chosen by hierarchi-

cal coupling, suggests that the union of the extremes groups forms a class well-

separated from the intermediate group, since these subjects obtained balanced

scores. Since the dataset is very sparse (26 = 64 states and only 17 observations)

the hierarchical combining method using committee of methods (HIER/CM)

provides the lowest estimated error rate.

Table 9: Model and ME for two datasets using the hierarchical coupling technique.

Dataset Hierarchical coupling Model ME λ
β

1st 2nd 3rd

  

                   VI                                                          OI          

 

 

 

       B 

 

B
 

P
 

LL
 

E

 

B
 

P
 

LL
 

E
 

B
 

P
 

LL
 

E
 

VI Scale

FOIM .69 1

FMM .75 1

KERNEL .73 .99

HIER/CM .49 1 .51 .52 .53

HIER/CM .49 .99 .47 .47 .48

HIER/IL .38 1 .98 .99 1

HIER/IL .38 .99 1 1 1

Psycho- OI Scale

logical FOIM .66 1

Coun- FMM .66 1

selling KERNEL .65 .99

Career HIER/CM .45 1 .50 .51 .52

Data HIER/CM .46 .99 .48 .49 .49

HIER/IL .41 1 0 ≈ 0 ≈ 0

HIER/IL .38 .99 0 .02 1

B Scale

FOIM .66 1

FMM .66 1

KERNEL .65 .99

HIER/CM .50 1 .50 .52 .50

HIER/CM .50 .99 .49 .49 .49

HIER/IL .52 1 .99 .99 1

HIER/IL .52 .99 1 1 1

 

G 1 
No  Alex . 

G 2 
Very Alex . G 3 

Averge Alex . 
G 1 

No  Alex . 
G 2 

Very Alex . G 3 
Averge Alex . 

G 2 
Very Alex . 

1st 2nd

FOIM .53 1

FMM .71 1

Psycho- KERNEL .65 .99

logical HIER/CM .29 1 .52 .55

Data HIER/CM .29 .99 .47 .50

HIER/IL .35 1 .18 .44

HIER/IL .35 .99 .53 .78
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These results are in accordance with the numerical experiments performed

for CM and IL strategies on simulated binary data that have shown that good

performances can be expected with CM technique in a small or very small sample

setting and with IL technique in moderate or large sample setting.

6. COMPUTER PROGRAMS

The efficiency of the combining approaches presented in this paper has been

investigated on both real and simulated data. The computer programs realizing

these combining approaches were implemented by the authors and are available

from them.

The continuous case

All computer programs for the continuous case are written in Matlab R©
code. The different routines are structured as follows:

• EDDA — estimates all EDDA models and the leave-one-out cross vali-

dated misclassification error of each model;

• COMMITTEE — estimates the serial combined model by a committee

of methods strategy;

• SERIAL — estimates the serial combined model by a penalized likelihood

strategy;

• HIERARCHICAL — evaluates the combination of the models for all

possible two class of groups. It calculates the leave-one-out cross validated

misclassification error of each solution and builds the tree representation.

Run time execution is about five time more important for hierarchical cou-

pling method than for serial combining method. It means that, for most appli-

cations, it remains a reasonable method.

The discrete case

The computer programs implemented for the discrete case use FORTRAN R©
77 Language according to Microsoft FORTRAN Optimizing Compiler Version 5.0

and they use a structure in three main routines:
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• GESTAO — determines the group conditional probabilities associated to

the full multinomial model (FMM) and to the first-order independence

model (FOIM) and their estimative by cross validation;

• CALFA — determines the combining coefficient according to the chosen

combining strategy;

• CRULE — builds the new combining model and determines the error rate

evaluated on a test sample.

For the hierarchical combining, an additional routine is implemented:

• HIERQ — builds the hierarchical binary tree, using the basic affinity

coefficient.

After the selection of the two classes of groups have been chosen at each level

of the binary tree, the combining model is chosen by minimizing the error rate

evaluated on a test sample, using routines GESTAO, CALFA and CRULE.

Finally, it can be noticed that the run time execution for the hierarchical

combining is quite similar to that of the serial combining in the K=3 group case.

Otherwise, when K >3, the run time execution for the hierarchical combining

triplicate or even more, due to the necessary reorganization of the groups for the

evaluation of the basic affinity coefficient for all possible combination of couples

of groups. However, the computational time for hierarchical combining remains

quite reasonable and cannot be regarded as a drawback of this approach.

7. DISCUSSION

It is worth noticing that the combining methods that were considered in

this paper are of different nature than other combining or ensemble methods.

For example, Bagging and Boosting methods which are very efficient to improve

unstable classifiers are committee-based approaches in which a single classification

algorithm is applied to repeatedly modified versions of the data ([7], [8], [12], [17]-

chapter 10). On the contrary the combing methods we considered are combining

several methods but do not modified the weights of the data. On an other hand,

the CRUISE ([19]) and QUEST ([22]) methods are classification tree algorithms

different of the hierarchical combining methods we considered because the tree

we designed is not a classification tree.

Many combining methods of classification have been considered in different

contexts from a practical point of view. The main conclusions of this compa-

rative experimental study are the following. Convex combining appears to be

disappointing in the continuous case. In that case, at best, they lead to the same
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error rate obtained with the better single model. Moreover, they often prefer a

single model to a combination of several models. Convex combining appears to

be more efficient to propose a good compromise between FMM and FOIM models

in discrete data context. Maybe the reason for this more satisfactory behaviour

is that FMM and FOIM are quite different models.

On the contrary hierarchical coupling seems to be a promising technique of

combining classification methods when more than two groups are to be classified.

In different contexts, hierarchical coupling leads to a substantial improvement

of the misclassification error rate and its easily interpretable representation is

appealing. It provides original and parsimonious classification rules. An interest-

ing perspective would be to explore all possible hierarchical coupling solutions.

This is feasible when the number of groups is less than five. Otherwise, a branch

and bound algorithm could be considered in order to search for the optimal tree

solution in a reasonable time.

Finally, it can be noticed that there is a huge literature on combining models.

For instance Bayesian Model Averaging (BMA) (see [23] or [29], among many

others) has received a lot of attention. However, the practical implementation of

Bayesian Model Averaging is far from being simple especially in the continuous

case. Finally, we want to cite the interesting theoretical study of Yang ([37])

which proves that combining models cannot be expected to outperform an opti-

mal single method for large samples.
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