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Abstract:

• A weighted rank correlation coefficient, inspired by Spearman’s rank correlation coef-
ficient, has been proposed recently by Pinto da Costa & Soares [5]. Unlike Spearman’s
coefficient, which treats all ranks equally, rW weights the distance between two ranks
using a linear function of those ranks, giving more importance to top ranks than
lower ones. In this work we prove that rW has a gaussian limit distribution, using the
methodology employed in [7].
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1. INTRODUCTION

The objective of rank correlation methods is to assess the degree of mono-

tonicity between two or more series of paired data. By monotonicity we mean

a tendency for the values in the series to increase or decrease together (positive

correlation) or for one to increase as the other decreases (negative correlation).

They are applicable to paired data, that is to data where there is some connec-

tion between corresponding members of the samples. To use these methods, we

must first rank the observations in each sample, X andY, from 1 (highest rank)

to n (lowest rank), where n is the number of pairs of observations. We, thus

obtain, r(Xi) and r(Yi) where Xi and Yi are the pair of values corresponding to

observation i in each sample and r(Xi) returns the rank of value i in the first

series. For sake of simplicity, let us use the ranks directly rather than the values

in the series. That is, Ri = r(Xi) and Qi = r(Yi).

There has been a growing interest about weighted measures of rank cor-

relation [5, 1, 10, 6]; that is, measures that unlike Spearman’s [11] coefficient

which treat all ranks equally, weight ranks proportionally to how high they are,

although other types of weight functions could be considered.

In 2005 Pinto da Costa & Soares [5] have introduced a weighted rank corre-

lation coefficient, rW , that weights the distance between two ranks using a linear

function of those ranks, giving more importance to higher ranks than lower ones.

These authors have also analysed the distribution of rW in the case of inde-

pendence between the two vectors of ranks. A table of critical values has been

provided in order to test whether a given value of the coefficient is significantly

different from zero, and a number of applications for this new measure has also

been given.

In this work we start by defining this new measure of correlation in section 2.

Then, in section 3 we analyse the asymptotic distribution of rW for the general

case; that is, we make no assumption of independence between the two vectors of

ranks. To do so, we use the same notation and analogous arguments of those used

by Ruymgaart, Shorack and Van Zwet (1972) in the proof of their Theorem 2.1

(see [7]). We prove that rW has a normal limit distribution.

2. WEIGHTED RANK CORRELATION COEFFICIENT, rW

In this section we describe a weighted measure of correlation that has been

introduced in [5]. rS is the value obtained by calculating Pearson’s linear corre-

lation coefficient of the paired ranks (R1, Q1), (R2, Q2), ..., (Rn, Qn). It is easy
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to see that in the case of no ties,

rS = 1 −
6

n∑

i=1
(Ri −Qi)

2

n3 − n
= 1 −

6
n∑

i=1
D2

i

n3 − n
,

where D2
i = (Ri −Qi)

2. As it is obvious from this expression, rS only takes

into account the differences between paired ranks and not the values of the

ranks themselves. For instance, if D1 = 2, doesn’t matter whether the values

for (R1, Q1) are (1, 3) or (n−2, n). Nevertheless, there are applications where

top ranks are much more important than lower ones, and Spearman’s rank cor-

relation does not take this into account. For instance, when humans state their

preferences, it is obvious that top preferences are more important and accurate

than lower ones. Another example might be the evaluation of stock trading

support systems. A potential invester would like to have a system which gives

a grading of the stocks in question so that he/she can make a decision. In order

to evaluate the output of the system, one can for instance calculate Spearman’s

correlation between the ranking predicted by the system and the true ranking of

the stocks at that time. However, the top ranked alternatives are obviously more

important than the lower ones, which makes weighted measures of correlation

more suitable for this application also.

In [5, 8], Pinto da Costa & Soares propose a measure of correlation —

adapted from Spearman’s rank correlation coefficient — that weighs ranks pro-

portionally to how high they are. Specifically, they propose the following alter-

native distance measure:

W 2
i = (Ri −Qi)

2
(

(n−Ri + 1) + (n−Qi + 1)
)

= D2
i (2n+ 2 −Ri −Qi) .

The first factor, D2
i , represents the distance bewteen Ri and Qi, exactly as in

Spearman’s; the second factor represents the importance of Ri and Qi.

The authors then prove that in order to have a coefficient of the form

A+B
∑n

i=1W
2
i that yields values in the range [−1, 1], A must be 1 and

B = −6
n4+n3−n2−n

. Their weighted measure of correlation is therefore,

rW = 1 −
6

n∑

i=1
(Ri −Qi)

2
(

(n−Ri + 1) + (n−Qi + 1)
)

n4 + n3 − n2 − n
.

In [5] it is proved that under the hypothesis of independence between the

two vectors of ranks, the expected value of rW is 0, which is a desirable property

for a correlation coefficient. Under the same hypothesis, var(rW )= 31n2+60n+26
30(n3+n2−n−1)

.

In addition, the authors have also conducted an experimental evaluation of the

differences between the values obtained by rW and rS in various situations, show-

ing that large differences can occur.
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3. THE ASYMPTOTIC DISTRIBUTION OF rW

Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) represent n i.i.d. random vectors from

a continuous distribution. In this section, we show that rW is asymptotically

normal distributed. We start by showing the results of some simulations that

indicate that this new statistic convergs to the gaussian curve in a particular

case; namely, that the two vectors of ranks are independent. Then, we study

formally the asymptotic distribution of rW for the general case.

We have calculated the exact distribution of rW for n up to 14. Due to

computational limitations, for larger values of n we estimated the distribution

based on a random sample of one million permutations. In Figure 1 we plot

the distribution for n = 14 and n = 15, respectively the last exact and the first

estimated distributions. In the same figure we also plot the estimated distribu-

tions for n = 20 and 40, respectively. In all graphs, the values of rW have been

standardized and we plot the Normal curve for comparison. From these graphs

it seems clear that at least in this special case, the statistic rW converges to the

gaussian as n increases.
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Figure 1: Exact distribution for n = 14 and estimated distribution for
n = 15, 20 and 40, together with the Standard Normal curve.
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Now we make no independence assumptions; that is, we study the asymp-

totic distribution of rW for the general case. First,

rW = 1 −
6

n∑

i=1
(Ri −Qi)

2 (2n+ 2 −Ri −Qi)

n4 + n3 − n2 − n

= 1 − 6

n

n∑

i=1

(
Ri

n+ 1
− Qi

n+ 1

)2(2n+ 2 −Ri −Qi

n− 1

)

.

Therefore, the asymptotic behaviour of rW is the same as the one of

1 − 6Wn, where

Wn =
1

n

n∑

i=1

(
Ri

n+ 1
− Qi

n+ 1

)2 (

2 − Ri

n+ 1
− Qi

n+ 1

)

.

Wn is a statistic of the type 1
n

∑n
i=1 an(Ri, Qi), where an(i, j) is a real

number for i, j = 1, 2, ..., n.

If we define J(s, t) = (s− t)2 (2− s− t), 0 ≤ s, t ≤ 1, then J(s, t) is a limit

of the score function

(3.1) Jn(s, t) = an(i, j) = J

(
i

n+ 1
,

j

n+ 1

)

,

for i and j such that i−1
n

< s ≤ i
n

and j−1
n

< t ≤ j
n
. Hence, Wn can be written

as (see [2]),

(3.2) Wn =

∫∫

Jn(Fn, Gn) dHn ,

where Fn and Gn are the empirical marginal distribution functions of F and G,

respectively; Hn is the bivariate empirical distribution function of H. Now, let us

define the population moment µ =
∫∫

J(F,G) dH. By analogy to rW , we define

the population weighted rank correlation coefficient to be

ρW (X,Y ) = 1 − 6µ

= 1 − 6

∫∫ (

F (x) −G(y)
)2 (

2 − F (x) −G(y)
)

dH(x, y) ,

or, by using copulas [4]

ρW (X,Y ) = 1 − 6

∫

[0,1]2
(u− v)2 (2 − u− v) dc(u, v) ,

where the copula c(u, v) = P
(
F (X) ≤ u, G(y) ≤ v

)
, 0 ≤ u, v ≤ 1.

Next we present the conclusion that rW is assymptotically gaussian dis-

tributed.
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Theorem 3.1. rW is an asymptotic normal and consistent (ANC)

estimator of ρW .

Proof: We want to prove that rW is an asymptotic normal and consistent

(ANC) estimator of ρW ; first,

√
n (rW − ρW ) = − 6

√
n (Wn − µ) = − 6

√
n

[ ∫∫

Jn(Fn, Gn) dHn − µ

]

.

We start by considering the empirical processes Un(F ) =
√
n (Fn − F ),

Vn(G) =
√
n (Gn −G), U∗

n(F ) =
√
n (F ∗

n − F ), V ∗
n (G) =

√
n (G∗

n −G), where

F ∗
n =

[
n

n+1 Fn

]
and G∗

n =
[

n
n+1 Gn

]
. Let now ∆̄n = [X1n, Xnn]× [Y1n, Ynn] where

Xin and Yin denote the i th order statistics and B∗
0n =

√
n

∫∫ [
Jn(Fn, Gn) −

J(F ∗
n , G

∗
n)

]
dHn.

We will now prove that Jn(Fn, Gn) = J(F ∗
n , G

∗
n) and so B∗

0n = 0 for all n.

In fact the function Fn, for instance, is a step function and so there is always

an i ∈ {0, 1, ..., n} such that Fn = i
n
; similarly for Gn. This means that by (3.1)

Jn(Fn, Gn)=J
(

i
n+1 ,

j
n+1

)
for some i and j. Now, by the definition above, i

n+1 =F ∗
n

and j
n+1 = G∗

n. So, B∗
0n = 0 for all n.

Because B∗
0n = 0 for all n, then an assumption similar to 2.3 b) in [7] (see

Appendix A) is satisfied, that is, B∗
0n→p 0. We will now use the same argument

of these authors, adapting it to our situation because our score function an(i, j)

is bivariate and the score functions used in [7], an(i) and bn(i) have just one

variable (see Appendix A). Nevertheless, the adaption follows from the same steps

of their proof. The asymptotic convergence of rW to the Normal distribution may

be uniform over a class of distribution functions. However in this work we are

not interested in proving uniform convergence, but only convergence for a single

distribution.

Now we can write,

√
n (Wn − µ) =

3∑

i=1

Ain +B∗
0n +B∗

1n ,

where

A1n =
√
n

∫∫

J(F,G) d(Hn−H) ,

A2n =

∫∫

Un(F )
∂J

∂s
(F,G) dH ,

A3n =

∫∫

Vn(G)
∂J

∂t
(F,G) dH ,

B∗
0n is defined above ,

B∗
1n =

√
n

∫∫ [

J(F ∗
n , G

∗
n) − J(F,G)

]

dHn − A2n − A3n .
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3.1.
3∑

i=1
Ain is asymptotically normal distributed

As in [7] we can prove the asymptotic normality of A1n, A2n and A3n

based on the fact that J is a continuous function and its partial derivatives are

continuous and bounded on (0, 1)2.

Let us start by noting thatA1n = 1√
n

n∑

i=1
A1in whereA1in =J

(
F (Xi),G(Yi)

)
−µ.

In fact,

A1n =
√
n

∫∫

J(F,G) d(Hn−H)

=
√
n

(∫∫

J(F,G) dHn −
∫∫

J(F,G) dH

)

.

Now, as in equation 3.2 we get,

A1n =

√
n

n

n∑

i=1

(

J
(
F (Xi), G(Yi)

)
− µ

)

=
1√
n

n∑

i=1

(

J
(
F (Xi), G(Yi)

)
− µ

)

.

The random variables A1in are i.i.d. with mean zero. If we choose δ = 1
4 ,

D = p0 = q0 = 2, r(u) = 1
u(1−u) then we have an assumption similar to assump-

tion 2.1 in the statement of Theorem 2.1 in [7] (See Appendix A), that is,

J(F,G) ≤ D
(
r(F )

)a (
r(G)

)b
with a =

δ− 1

2

po
= −1

8 and b =
δ− 1

2

qo
= −1

8 ,

∂J

∂s
(F,G) ≤ D

(
r(F )

)a+1 (
r(G)

)b
with a =

δ− 1

2

p1 = −1
8 and b =

δ− 1

2

q1 = −1
8 ,

∂J

∂t
(F,G) ≤ D

(
r(F )

)b (
r(G)

)a+1
with a =

δ− 1

2

p2 = −1
8 and b =

δ− 1

2

q2 = −1
8 .

Taking this assumption into account and by application of Holder’s inequality,

∫∫
∣
∣φ(F )ψ(G)

∣
∣ dH ≤

[∫

|φ|p0 dI

] 1

p0

[∫

|ψ|q0 dI

] 1

q0

, ∀ p0>0, qo>0:
1

p0
+

1

q0
=1 ,

where φ and ψ are functions on (0, 1), dI denotes Lebesgue measure restricted to

the unit interval, we note that A1in has a finite absolute moment of order 2 + δ0

for some δ0 > 0 (see appendix B).

Let us consider now A2n. As Un(F ) = 1√
n

∑n
i=1

(
I(Xi ≤ x) − F

)
we can

write A2n = 1√
n

∑n
i=1A2in, where A2in =

∫∫ (
I(Xi ≤ x) − F

)
∂J
∂s

(F,G) dH are

i.i.d. with mean zero. If we choose δ = 1
4 , D = p1 = q1 = 2, r(u) = 1

u(1−u) then
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an assumption similar to 2.1 in [7] is satisfied. Again, by applying Holder’s in-

equality and similarly to A1in, it follows that A2in has a finite absolute moment

of order 2 + δ1 for some δ1> 0.

Let us consider now A3n. As Vn(G) = 1√
n

∑n
i=1

(
I(Yi ≤ y) −G

)
we can

write A3n = 1√
n

∑n
i=1A3in where A3in =

∫∫ (
I(Yi ≤ y) −G

)
∂J
∂t

(F,G) dH are

i.i.d. with mean zero. If we choose δ = 1
4 , D = p2 = q2 = 2, r(u) = 1

u(1−u) then

an assumption similar to assumption 2.1 in [7], is satisfied. By application of

Holder’s inequality and similarly to A1in, it follows that A3in has a finite abso-

lute moment of order 2 + δ2 for some δ2 > 0.

From the above conclusions: A1n = 1√
n

∑n
i=1A1in where A1in are i.i.d.

with mean zero; A2n = 1√
n

∑n
i=1A2in where A2in are i.i.d. with mean zero;

A3n = 1√
n

∑n
i=1A3in whereA3in are i.i.d. with mean zero and because A1in, A2in,

A3in have a finite absolute moment of order larger than 2, we get
∑3

i=1Ain →d

N(0, σ2) as n→∞. The expression for the variance corresponds to equation 3.10

in [7] and is given by

σ2 = Var

[

J
(
F (X), G(Y )

)
+

∫∫
(
I(X≤x) − F

) ∂J

∂s

(
F (x), G(y)

)
dH(x, y)

+

∫∫
(
I(Y ≤y) −G

) ∂J

∂t

(
F (x), G(y)

)
dH(x, y)

]

.

3.2. B∗
1n is asymptotically negligible

We have already seen that an assumption similar to 2.3 b) in [7] is satisfied.

If we consider the mean value theorem (see [9]),

√
nJ(F ∗

n , G
∗
n) =

√
nJ(F,G) + U∗

n(F )
∂J

∂s
(φ∗n, ψ

∗
n) + V ∗

n (G)
∂J

∂t
(φ∗n, ψ

∗
n)

for all (x, y) in ∆̄n with φ∗n = F + α3(F
∗
n−F ) and ψ∗

n = G+ α4(G
∗
n−G), where

α3 and α4 are numbers between 0 and 1, then B∗
1n can be decomposed as a sum

of seven terms which are all asymptotically negligible by the same arguments

used in section 5 of Ruymgaart et al. (1972) [7].

3.3. rW is asymptotically normal distributed

We have thus that
√
n(Wn − µ) → N(0, σ2) in distribution and it is

immediate that rW is an asymptotic normal and consistent (ANC) estimator of

ρW :
√
n(rW − ρW ) → N(0, 36σ2).
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APPENDIX

A. Asymptotic Normality of Nonparametric Statistics

We present in this appendix Theorem 2.1 of Ruymgaart, Shorack and

Van Zwet, 1972 (see [7]) as it is the fundamental tool used in the proof of our

Theorem 3.1. We start by introducing some notation. Let (X1, Y1), ..., (Xn, Yn)

be a random sample from a continuous bivariate distribution function H(x, y)

(bivariate empirical df is denoted by Hn) having marginal dfs F (x) and G(y)

and empirical df Fn and Gn, respectively. The rank of Xi is denoted by Ri and

the rank of Yi by Qi. Let Tn = 1
n

∑n
i=1 an(Ri) bn(Qi), where an(i), bn(i) are real

numbers for i = 1, ..., n. The standardization of Tn can be written as

√
n(Tn − µ) =

√
n

[∫∫

Jn(Fn)Kn(Gn) dHn − µ

]

,

where Jn(s) = an(i), Kn(s) = bn(i), for i = 1, ..., n such that (i−1)
n

< s ≤ i
n
;

µ =
∫∫

J(F )K(G) dH . The functions J and K can be thought of as limits of the

score functions Jn and Kn. H denote the class of all continuous bivariate dfs H.

Assumption 2.1 (Ruymgaart, Shorack and Van Zwet, 1972). The func-

tions J and K are continuous on (0, 1); each is differentiable except at most at a

finite number of points, and in the open intervals between these points the deriva-

tives are continuous. The function Jn, Kn, J , K satisfy |Jn| ≤ Dra, |Kn| ≤ Dra

and |J (i)| ≤ Dra+i and |K(i)| ≤ Drb+i for i = 0, 1. Here D is a positive constant,

a =
( 1

2
−δ)
p

, b =
( 1

2
−δ)
q

for some 0 < δ < 1
2 and some p, q > 1 with 1

p
+ 1

q
= 1.

Assumption 2.3 b (Ruymgaart, Shorack and Van Zwet, 1972).

B∗
0n =

√
n

∫∫ [

Jn(Fn)Kn(Gn) − J(F ∗
n)K(G∗

n)
]

dHn →
︸︷︷︸

p

0 as n→ ∞

where F ∗
n =

[
n

n+1

]
Fn and G∗

n =
[

n
n+1

]
Gn.

Theorem 2.1 of Ruymgaart, Shorack and VanZwet, 1972 (see [7]).

If H is in H and if assumptions 2.1 and 2.3 b) are satisfied, then

√
n(Tn − µ) →

︸︷︷︸

d

N(0, σ2) as n→ ∞ ,
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where µ and σ2 are finite and are given by

µ =

∫∫

J(F )K(G) dH (expression 1.3 in [7])

and

σ2 = Var

[

J
(
F (X)

)
K

(
G(Y )

)
+

∫∫

(φX − F )J ′(F )K(G) dH

+

∫∫

(φY −G)J(F )K ′(G) dH

]

(expression 3.10 in [7])

with φXi
(x) = 0 if x < Xi and φXi

(x) = 1 if x ≥ Xi.

B. A1in has a finite absolute moment of order greater than 2

We show here that there exist δ0>0 and δ0< δ = 1
4 such that E |A1in|2+δ0

is bounded. Using Assumption 2.1 in the appendix above we can prove that

∫∫
∣
∣J

(
F (Xi), G(Yi)

)∣
∣2+δ0 dH ≤ D

∫∫
∣
∣r(F )

∣
∣a(2+δ0) ∣

∣r(G)
∣
∣b(2+δ0)

dH .

By using now Holder’s Inequality this quantity is

≤ D
1

n

n∑

i=1

{

r(2+δ0)(δ− 1

2
)

(
i

n+1

)} 1

p0

{

1

n

n∑

i=1

r(2+δ0)(δ− 1

2
)

(
i

n+1

)} 1

q0

=
D

n

∑

r(2+δ0)(δ− 1

2
)

(
i

n+1

)

≤ D

∫ 1

0

1
(
u(1 − u)

)(2+δ0)( 1

2
−δ)

du

that is finite for 0 < δ0 < δ = 1
4 .
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