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Abstract:

• In the insurance area, especially based on observations of the number of claims, N(w),
corresponding to an exposure w, and on observations of the total amount of claims
incurred, Y (w), the risk theory arises to quantify risks and to fit models of pricing
and insurance company ruin. However, the main problem is the complexity to obtain
the distribution function of Y (w) and, consequently, the likelihood function used to
calculate the estimation of the parameters.

This work considers the Poisson(wλ), λ>0, for N(w) and lognormal(µ, σ2),
−∞<µ<∞, and σ2 > 0, for Zi, the individual claims, and presents maximum-
likelihood estimates for λ, µ and σ2.
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1. INTRODUCTION

In the insurance area, the main goals of the risk theory are to study, an-

alyze, specify dimensions and quantify risks. The risk theory is also responsible

for fitting models of pricing and insurance company ruin, especially based on

observations of the random variables for the number of claims, N(w), and the

total amount of claims incurred, Y (w), defined as

(1.1) Y (w) =

N(w)∑

i=1

Zi I(N(w)>0)

where the Zi’s are random variables representing the individual claims, w = vt

corresponds to the exposure, v denotes the value insured and t is the period

during which the value v is exposed to the risk of claims.

Assuming that N(w), Z1, Z2, ... are independent and the individual claims

are identically distributed, Jorgensen and Souza ([4]) discussed the estimation

and inference problem concerning the parameters considering the situation in

which the number of claims follows a Poisson process and the individual claims

follow a gamma distribution.

Using the properties of the Tweedie family for exponential dispersion mod-

els ([8]; [3]), Jorgensen and Souza ([4]) determined, using the convolution formula,

that Y (w) |N(w) follows an exponential dispersion model and the joint distribu-

tion of N(w) and Y (w)/w follows a Tweedie compound Poisson distribution.

For more details about exponential dispersion models read [2] and [3].

In spite of the distribution of the individual claim values being very well

represented in some situations by the gamma distribution, in other cases it could

be more suitable to attribute a lognormal distribution for Z1, Z2, ... . For instance,

in collision situations in car insurances and in common fires, where the individual

claim values can increase almost without limits but cannot fall below zero, with

most of the values near the lower limit and where the natural logarithm of the

individual claim variable yields a normal distribution.

The aim of this paper is to estimate the parameters of Y (w)=
N(w)∑
i=1

ZiI(N(w)>0)

and N(w) distributions, where N(w), Z1, Z2, ... are independent, Z1, Z2, ... is a se-

quence of random variables with lognormal(µ, σ2) distribution and N(w) follows

a Poisson distribution with rate λ.

Simulated examples are given to illustrate the methodology. The use of

a real dataset is not possible due to the high confidentiality with which the

companies deal with their database.
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2. LOGNORMAL MODEL

A positive random variable Z is lognormally distributed if the logarithm of

the random variable is normally distributed. Hence Z follows a lognormal(µ, σ2)

distribution if its density function is given by

(2.1) fZ(z; µ, σ2) =
(2π σ2)−

1

2

z
exp

{
− 1

2 σ2

(
log(z) − µ

)2
}

,

for z > 0, −∞ < µ < ∞ and σ > 0.

The moments of the lognormal distribution can be calculated from the

moment generating function of the normal distribution and are defined as

(2.2) E[Zk] = exp

(
kµ +

1

2
k2σ2

)
.

Thus, the mean of the lognormal distribution is given by

(2.3) E[Z] = exp

(
µ +

1

2
σ2

)

and the variance is given by

(2.4) Var[Z] = exp
(
2µ + 2σ2

)
− exp

(
2µ + σ2

)
.

Products and quotients of lognormally distributed variables are themselves

lognormally distributed, as well as Zb and bZ, for b 6= 0 and Z following a

lognormal(µ, σ2) distribution ([1]). However, the distribution of the sum of inde-

pendent lognormally distributed variables, that appears in many practical prob-

lems and describes the distribution of Y (w)|N(w), is not lognormally distributed

and does not present a recognizable probability density function ([7]).

Approximations for the distribution of the sum of lognormally distributed

random variables are suggested by Levy ([5]) and Milevsky and Posner ([6]).

3. PARAMETER ESTIMATION

As described in the previous section, the distribution function for Y (w),

where the claims Zi are independently and identically lognormal(µ,σ2) distributed,

is not known. Consequently, the joint distribution for (N(w), Y (w)) and the cor-

responding likelihood function for the parameters µ, σ2 and λ cannot be exactly

defined.
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However, since the lognormal distribution was defined with reference to the

normal distribution, estimate µ, σ2 and λ from the likelihood function for these

parameters considering the variables N(w) and Y (w) is equivalent to estimate µ,

σ2 and λ from the likelihood function based on the variables N(w) and

X+(w) =

N(w)∑

i=1

Xi I(N(w)>0) ,

where N(w) follows a Poisson(wλ), Xi = log(Zi) follows a Normal(µ,σ2) and the

Zi’s are independent identically lognormal(µ,σ2).

Then, we have

(3.1) X+(w)|N(w) = n ∼ Normal(nµ, nσ2), for n ≥ 1 .

The joint density of X+(w) and N(w), for n ≥ 1, is defined as

f(X+(w),N(w))

(
x+, n; µ, σ2, λ

)
=

(3.2)

=
(wλ)n

n!
√

2πn σ2
exp

{
− 1

2n σ2
(x+− nµ)2 − wλ

}
I(0,∞)(x+)

and

(3.3) f(X+(w),N(w))

(
x+, 0; µ, σ2, λ

)
= exp{−wλ} I(0,∞)(x+) .

In this work, without loss of generality, w is assumed to be equal to 1.

Considering (x+1, n1), (x+2, n2), ..., (x+m, nm) observations from the independent

random vectors (X+1, N1), (X+2, N2) ..., (X+m, Nm), where Ni ∼ Poisson(λ),

X+i | (Ni =ni) ∼ Normal(niµ, niσ
2), i=1, 2, ..., m, and m is the number of groups

present in the portfolio and considering δi = 0 for Ni = 0 and δi = 1 for Ni > 0,

the log likelihood function for the parameters µ, σ2 and λ is given by

l(µ, σ2, λ) =(3.4)

=

m∑

i=1

{
δi

(
−1

2
log
(
2πni σ

2
)
+ ni log(λ)− 1

2ni σ2

(
x+i − niµ

)2− λ

)
+ (1−δi) (−λ)

}

If σ2 =σ2
0 is known the maximum likelihood estimates of µ and λ are given

by

(3.5)
∧
µ =

m∑
i=1

δiX+i

m∑
j=1

δjNj

=

m∑
i=1

X+i

m∑
j=1

Nj

if
m∑

j=1

Nj > 0 ,

and

(3.6)
∧
λ =

m∑
i=1

δiNi

m
=

m∑
i=1

Ni

m
.
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Let S =
m∑

i=1
Ni be the total number of claims and U =

m∑
i=1

X+i. Hence,

S follows a Poisson(mλ) and U | (N=n) follows a Normal
(
µ

m∑
i=1

ni, σ2
0

m∑
i=1

ni

)
,

where N = (N1, N2, ..., Nm) and n = (n1, n2, ..., nm) is the observed vector of
number of claims for m groups. Thus U | (S =s) follows a Normal(µs, σ2

0s) and

the exact distribution of
∧
λ is given by

(3.7) P

(
∧
λ=

c

m

)
= P

(
S =c

)
=

exp(−mλ) (mλ)c

c!
for c = 0, 1, 2, ... .

The cumulative distribution function of
∧
µ given S >0, F∧

µ|S>0
(v), for v∈R

is

P
(
∧
µ ≤ v|S > 0

)
= P

[
(∧
µ ≤ v

)
∩

∞⋃

j=1

(
S =j

)
|S > 0

]

=

P

(
∧
µ ≤ v,

∞⋃
j=1

(
S =j

)
, S > 0

)

P
(
S > 0

)

=

P

(
∧
µ ≤ v,

∞⋃
j=1

(
S =j

)
)

P
(
S > 0

)

=

∞∑
j=1

P
(
∧
µ ≤ v, S = j

)

P
(
S > 0

)

=

∞∑
j=1

P
(
∧
µ ≤ v|S = j

)
P
(
S = j

)

P
(
S > 0

)(3.8)

=

∞∑
j=1

P
(

U
S
≤ v|S = j

)
P
(
S = j

)

P
(
S > 0

)

=

∞∑
j=1

P
(

U
j
≤ v|S = j

)
P
(
S = j

)

P
(
S > 0

)

=

∞∑
j=1

P
(
U ≤ jv|S = j

)
P
(
S = j

)

P
(
S > 0

)

=
∞∑

j=1

FU (jv)
exp(−mλ) (mλ)j

j!
(
1 − exp(−mλ)

) ,

where FU is the cumulative distribution function of the Normal(µj, σ2
0j) distri-

bution, for j = 1, 2, ... .
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The corresponding probability density function is defined as

f∧
µ|S>0

(v) =
dF∧

µ|S>0
(v)

dv

=
∞∑

j=1

fU (jv)
exp(−mλ) (mλ)j

j!
(
1 − exp(−mλ)

) j

=
exp(−mλ)

1 − exp(−mλ)

∞∑

j=1

fU (jv)
(mλ)j

(j−1)!
(3.9)

=
exp(−mλ)

1 − exp(−mλ)

∞∑

r=0

fU

(
(r+1)v

) (mλ)r+1

(r)!

=
(mλ) exp(−mλ)

1 − exp(−mλ)

∞∑

r=0

fU

(
(r+1)v

) (mλ)r

(r)!
,

where fU is the probability density function of the Normal
(
µ(r+1), σ2

0(r+1)
)

distribution.

Let k be the number of groups with number of claims greater that zero.
If σ2 is unknown, the maximum likelihood estimate of σ2 is

∧

σ2 =

m∑
i=1

δi

(
(X+i −Ni

∧

µ)
2

Ni

)

m∑
i=1

δi

(3.10)

=

k∑
j=1

(
(X+j −Nj

∧

µ)
2

Nj

)

k
if Nj > 0, for all j = 1, 2, ..., k .

Using the invariant principle of maximum-likelihood estimation, the esti-
mates of E[Z], Var[Z], E[N ] and Var[N ], where Z represents the individual claims
and N the number of claims, are, respectively

Ê[Z] = exp

(
∧
µ +

1

2

∧

σ2

)
,

V̂ar[Z] = exp

(
2
∧
µ + 2

∧

σ2

)
− exp

(
2
∧
µ +

∧

σ2

)
,

Ê[N ] =
∧
λ

and

V̂ar[N ] =
∧
λ .
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4. THE LOCATION PARAMETER µ AS A FUNCTION OF

A COVARIATE

Suppose that (x+1, n1), (x+2, n2), ..., (x+m, nm) are observations of the in-
dependent random vectors (X+1, N1), (X+2, N2) ..., (X+m, Nm), m is the number
of groups present in the insurance portfolio, Ni ∼ Poisson(λ), and X+i | (Ni =ni)
∼ Normal(µi, niσ

2), i = 1, 2, ..., m, with the following regression structure for the
location parameter

µi = α ni + β

ni∑

j=1

vij ,

where vij represents the covariate of the j-th individual claims of the i-th group,
for i = 1, 2, ..., m and j = 1, 2, ..., ni.

Defining ri =
ni∑

j=1
vij , the log likelihood function for the parameters α, β, σ2

and λ is given by

l
(
α, β, σ2, λ

)
=

=
m∑

i=1

{
δi

(
−1

2
log
(
2πni σ

2
)

+ ni log(λ) − 1

2ni σ2

(
x+i − α ni − β ri

)2
)

+ (−λ)

}
.

Let k, k ≤ m, be the number of groups with the number of claims greater

that zero, so that
k∑

j=1
Nj > 0. The maximum likelihood estimates of α, β, σ2 are

obtained through the data of only these k groups and are given by

∧
α =

k∑
j=1

X+j −
∧
β

k∑
j=1

rj

k∑
j=1

Nj

,(4.1)

∧
β =

k∑
j=1

X+j rj

Nj
−

kP
j=1

X+j

kP
j=1

rj

kP
j=1

Nj

k∑
j=1

r2
j

Nj
−

(
kP

j=1

rj

)2

kP
j=1

Nj

,(4.2)

∧

σ2 =

k∑
j=1

(
(X+j −

∧

µj)
2

Nj

)

k
, Nj > 0, for all j ,(4.3)

where
∧
µj =

∧
α nj +

∧
β rj .

The maximum likelihood estimates of λ is defined as (3.6).
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5. APPLICATIONS

In order to illustrate the methods outlined in this article, two simulated
data set, with 20 insurance groups each, are presented. For the i-th group we
generated one observation of N following Poisson(λ) and ni observations of Z
following lognormal(µ, σ2) and we considered Xj =log(Zj) for j =1, 2, ..., Ni and

X+i =
Ni∑
j=1

Xj for each group. These observations, together with the values of N ,

are used in the estimation of the parameters. The first data set was simulated
considering a small rate of occurrence of claims in each insurance group and,
consequently, a large probability of groups with zero claims. The second data set
was simulated considering a large rate of occurrence of claims and, consequently,
a small number of groups with zero claims. In both cases the values of µ and σ2

considered in the simulation of the data was 7.1 and 0.1, respectively. Thus

E[Z] = 1274.11 and Var[Z] = 170728.8 ,

that is, the expected individual claim value is 1274.11 MU with a variance of
170728.8 MU.

5.1. Portfolio with small rate of occurrence of claim

Considering m = 20, N ∼ Poisson(2), and the Zi’s iid lognormal(7.1, 0.1),
we have

P
[
N =0

]
= exp(−2) = 0.135 ,

that is, the probability of occurrence of no claims in each group is equal to 0.135.

The simulated individual claim values vary between 634.48 MU and
2819.6 MU and the observed values of N , X+ and δ are presented in Table 1.
Note that four of the twenty groups have no occurrence of claims.

Table 1: Observed values of N , X+ and δ for a simulated insurance portfolio

N X+ δ N X+ δ N X+ δ

1 1 6.79 1 8 2 14.63 1 15 3 21.58 1
2 3 21.12 1 9 1 6.89 1 16 0 0.00 0
3 0 0.00 0 10 1 7.29 1 17 2 13.54 1
4 3 20.98 1 11 1 6.54 1 18 2 14.48 1
5 2 13.56 1 12 3 21.97 1 19 0 0.00 0
6 0 0.00 0 13 1 7.03 1 20 2 14.24 1
7 3 21.82 1 14 4 27.69 1 Total 34 240.17 16
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The estimates of λ, µ and σ2, calculated by (3.6), (3.5) and (3.10), respec-
tively, as well as a comparison between the true values of the parameters and
their estimates are presented in Table 2.

Table 2: The parameters true values and their estimates

True value Estimate Difference

λ 2 1.7 0.3
µ 7.1 7.06 0.04
σ2 0.1 0.09 0.01

From the distribution function of
∧
µ given S > 0, defined in (3.8), we can

calculate P
(∧
µ ≤ v|S > 0

)
for different values of v ∈ R. Table 3 shows the prob-

ability of
∧
µ ≤ v given S > 0, considering λ = 2, µ = 7.1, σ2 = 0.1 (used for the

data simulation) and s = 34 (observed in this dataset).

Table 3: P
( ∧
µ ≤ v|S > 0

)
for λ = 2, µ = 7.1, σ2 = 0.1 and s = 34

v P
(∧
µ ≤ v|S > 0

)
v P

(∧
µ ≤ v|S > 0

)
v P

(∧
µ ≤ v|S > 0

)

4 0.0013 7 0.8063 10 0.9960
4.25 0.0060 7.25 0.8529 10.25 0.9974
4.5 0.0193 7.5 0.8913 10.5 0.9980
4.75 0.0484 7.75 0.9208 10.75 0.9986
5 0.0980 8 0.9424 11 0.9990
5.25 0.1721 8.25 0.9585 11.25 0.9993
5.5 0.2656 8.5 0.9709 11.5 0.9995
5.75 0.3687 8.75 0.9804 11.75 0.9996
6 0.4718 9 0.9863 12 0.9997
6.25 0.5787 9.25 0.9892 12.25 0.9998
6.5 0.6635 9.5 0.9925 2.5 0.9998
6.75 0.7473 9.75 0.9952 12.75 0.9999

Note that, from the results of Table 3,

P
[
4.5 ≤ ∧

µ ≤ 9.25
]

= 0.9699 .

5.2. Portfolio with large rate of occurrence of claim

In the second dataset, twenty observations of N were generated from the
Poisson(100) distribution and the Zi’s were generated from the lognormal(7.1, 0.1)
distribution. Consequently,

P
[
N = 0

]
= exp

(
−100

)
≃ 0 ,



A Lognormal Model for Insurance Claims Data 141

that is, the probability of occurrence of no claims in each group is practically null.
The observed values of N , X+ and δ are presented in Table 4 and the simulated
individual claim values vary between 440.91 MU and 3212.9 MU.

Table 4: Observed values of N , X+ and δ for a simulated insurance portfolio

N X+ δ N X+ δ N X+ δ

1 95 676.0 1 8 86 606.6 1 15 79 553.4 1
2 104 739.3 1 9 108 762.0 1 16 95 674.5 1
3 85 601.6 1 10 85 601.1 1 17 87 619.8 1
4 92 652.6 1 11 98 695.8 1 18 105 747.6 1
5 106 749.6 1 12 86 612.0 1 19 101 717.3 1
6 111 791.9 1 13 83 586.1 1 20 100 714.6 1
7 85 600.8 1 14 100 709.8 1 Total 1891 13412.5 20

The estimates of λ, µ and σ2, calculated by (3.6), (3.5) and (3.10), respec-
tively, as well as a comparison between the true values of the parameters and its
estimates are displayed in in Table 5.

Table 5: The parameters true values and their estimates

True value Estimate Difference

λ 100 94.55 5.45
µ 7.1 7.093 0.007
σ2 0.1 0.096 0.004

Table 6 shows the probability of
∧
µ ≤ v given S > 0, considering λ = 100,

µ = 7.1, σ2 = 0.1 (used for the data simulation) and s = 1891 (observed in this
dataset).

Table 6: P
( ∧
µ ≤ v|S > 0

)
for λ = 100, µ = 7.1, σ2 = 0.1 and s = 1891

v P
(∧
µ ≤ v|S > 0

)
v P

(∧
µ ≤ v|S > 0

)
v P

(∧
µ ≤ v|S > 0

)

6.1 0.0000 6.6 0.2216 7.1 0.9929
6.2 0.0001 6.7 0.4639 7.2 0.9989
6.3 0.0019 6.8 0.7152 7.3 0.9999
6.4 0.0150 6.9 0.8873 7.4 1.0000
6.5 0.0722 7.0 0.9671 7.5 1.0000

From the results of Table 6 we have P [6.4 ≤ ∧
µ ≤ 7.1] = 0.978.
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6. CONCLUDING REMARKS

The theory for exponential dispersion models cannot be applied to estimate
the parameters µ, σ2, that specify the lognormal distribution of the individual
claim value (Z), and λ, the occurrence rate of claims, because the lognormal dis-

tribution and, consequently, the joint distribution of Y (w) =
∑N(w)

i=1 Zi I(N(w)>0)

and N(w) does not belong to the class of the exponential dispersion model.

However, from the joint distribution of X+(w) =
N(w)∑
i=1

log(Zi) I(N(w)>0) and N(w),

maximum likelihood estimates of µ, σ2 and λ can be defined and applied to an
insurance portfolio dataset, in which N(w) follows a Poisson(wλ) distribution
and Z is lognormally distributed.
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