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Abstract:

• We consider a set of n individuals described by p standardised variables, and we sup-
pose that the individuals are previously selected from a population and the variables
are a sample of variables assumed to come from a mixture of k bipolar Watson dis-
tributions defined on the hypersphere. In this context we provide the identification
of the mixture through the EM algorithm and we also carry out a simulation study
to compare the maximum likelihood estimates obtained from samples of moderate
size with the respective asymptotic estimates. Our simulation results revealed good
performance of the EM algorithm for moderate sample sizes.
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1. INTRODUCTION

We consider multivariate data with n individuals described by p variables.

In the classical approach it is usual to assume that the p variables are fixed and

the n individuals are randomly selected from a population of individuals. Now, we

consider that the n individuals are fixed and the p variables are randomly selected

from a population of variables. We standardise the variables to be points on the

unit sphere in Rn, denoted by Sn−1 = {x ∈ Rn : x′x = 1}.

We suppose that the group of available variables on Sn−1 is composed of

k subgroups of variables and each subgroup comes from a bipolar Watson distri-

bution. So we associate the sample of variables to a mixture of k bipolar Watson

distributions defined on the hypersphere, as in Gomes [9]. This author consid-

ers an approach, based on the sampling of variables, and introduces some new

results concerning the estimation of the parameters of the bipolar Watson distri-

bution, taking into account not a sample of individuals but, a sample of variables.

This type of ideas was referred to by Hotelling [10] who, in the context of Princi-

pal Components, studied the convergence of the eigenvalues and eigenvectors of

the covariance matrix of groups of variables randomly chosen from a population

of variables, when the dimension of the groups increases. Escoufier [5] also pro-

posed a new coefficient for evaluating the proximity of two groups of variables,

but supposing that the variables are observed.

For the identification of the mixture, we use the well-known EM algo-

rithm proposed in Dempster, Laird and Rubin [3] (see Redner and Homer [14]).1

This algorithm was developed to solve the likelihood equations in problems of

incomplete data and we apply it to estimate the parameters of a mixture of

k bipolar Watson distributions (see Figueiredo [7]).

The bipolar Watson distribution has been much used for axial data on the

sphere (see Watson [16], Fisher, Lewis and Embleton [8] and Mardia and Jupp

[13]). This distribution is denoted by Wn(u, ξ) and it has density probability

function given by

(1.1) f(x) =

{
1F1

(
1

2
,
n

2
, ξ

)}
−1

exp
{

ξ
(
u′x
)2}

, x ∈ Sn−1, u ∈ Sn−1, ξ > 0 ,

where the normalising constant is the reciprocal of a confluent hipergeometric

function defined by

(1.2) 1F1

(
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2
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n

2
, ξ

)
=

Γ
(

n
2

)

Γ
(

1
2

)
Γ
(

n−1
2

)
1∫

0

eξt t−0.5(1 − t)(n−3)/2 dt .

1Another possible method for the identification of the mixture is the k-means method pro-
posed in Diday and Schroeder [15] (see Gomes [9]).
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This distribution has two parameters: a directional parameter u and

a concentration parameter ξ, which measures the concentration about ±u.

As ξ increases, the distribution becomes more concentrated about ±u. This is

a rotationally symmetric distribution about the principal axis ±u and it is

bimodal, with modes u and −u.

Let X =
[
x1|x2|...|xp

]
be a random sample of variables from the bipolar

Watson distribution Wn(u, ξ). The maximum likelihood estimator of u is the

eigenvector associated with the largest eigenvalue ŵ of XX ′=
p∑

i=1
xi xi ′, that

is, û is defined by (XX ′) û = ŵ û. So, it follows that the maximum likelihood

estimator of the directional parameter u based on the sample of variables is the

first principal component of the sample. The maximum likelihood estimator of ξ

is the solution of the equation Y (ξ̂) = ŵ/p, where the function Y (ξ) is defined by

Y (ξ) = d
dξ ln 1F1(1/2, n/2, ξ).

The estimators ξ̂ and ŵ have asymptotic Gaussian distribution (see Gomes

[9] and Bingham [1]):

(1.3) ξ̂
.
∼ N

(
ξ,

1

p Y 2
11(ξ)

)
and

ŵ

p

.
∼ N

(
Y (ξ),

Y 2
11(ξ)

p

)
.

where the function Y 2
11(ξ) is defined by Y 2

11(ξ) = d2

dξ2 ln 1F1(
1
2 , n

2 , ξ).

In this study we consider the particular case of a bipolar Watson distri-

bution. If we had assumed ξ < 0 in (1.1), we would obtain a girdle Watson

distribution and the study of this distribution would be similar to the one that

is done in this paper.

In Section 2 we present the identification of the mixture of k bipolar Watson

distributions through the EM algorithm. In Section 3 we carry out a simu-

lation study to compare the behaviour of the estimators obtained through the

EM algorithm for moderate samples with the respective asymptotic estimators.

In Section 4 we give some concluding remarks.

2. IDENTIFICATION OF A MIXTURE OF k BIPOLAR WAT-

SON DISTRIBUTIONS DEFINED ON THE HYPERSPHERE

The density function of a mixture of k bipolar Watson components C1, ..., Ck

defined on the hypersphere, whose identifiability was proved by Kent [12], is given

by

g(x|φ) =
k∑

j=1

πjf(x|θj) , x∈Sn−1, 0<πj <1, j =1, ..., k,
k∑

j=1

πj =1 ,

(2.1)
φ=

(
u1, ...,uk, ξ1, ..., ξk, π1, ..., πk

)
, θj =(uj , ξj) ,
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where (π1, ..., πk) are the proportions of the mixture and f(x|θj) is the density

function corresponding to the Cj component.

As a mixture of distributions may be seen as a problem of incomplete

data (see Everitt and Hand [6]), the EM algorithm may be applied to solve the

likelihood equations in the estimation of the parameters of a mixture of k bipolar

Watson distributions.

Let
[
x1|x2|...|xp

]
be a random sample from the mixture and let Z =

[
z1|...|zp

]

be the missing data, where the indicator vector zi = (Zi1, Zi2, ..., Zik) with

Zij =

{
1 if xi∈Cj

0 if xi /∈Cj
,

k∑
j=1

Zij = 1 indicates the component of the variable xi of

the mixture.

The log likelihood associated with the complete sample
[
x1|...|xp|Z

]
is given

by

(2.2) L
(
φ|x1, ...,xp, Z

)
=

p∑

i=1

k∑

j=1

tj(x
i) ln

{
πjf
(
xi|θj

)}
,

where tj(x
i) is the posterior probability of xi belonging to Cj defined by

(2.3) tj(x
i) =

πj f(xi|θj)
k∑

h=1

πh f(xi|θh)

.

The log likelihood associated with the complete sample given by (2.2) may

be written as

L
(
φ|x1, ...,xp, Z

)
= L

(
φ1|x

1, ...,xp, Z
)

+ L
(
φ2|x

1, ...,xp, Z
)

,

where

L
(
φ1|x

1, ...,xp, Z
)

=

p∑

i=1

k∑

j=1

tj(x
i) ln f(xi|θj) , φ1 = (θ1, ..., θk)

and

L
(
φ2|x

1, ...,xp, Z
)

=

p∑

i=1

k∑

j=1

tj(x
i) lnπj , φ2 = (π1, ..., πk) .

To estimate the vector of unknown parameters φ of the mixture, the

EM algorithm proceeds iteratively in two steps:

E – Estimation and M – Maximisation .

The algorithm starts with the initial solution:

φ0 =
(
u0

1, ...,u
0
k, ξ

0
1 , ..., ξ

0
k, π0

1, ..., π
0
k

)
.
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In the m-th iteration, the two steps are:

E -Step

Use estimates φ(m) of the parameters of the mixture in the m-th iteration

for j =1, ..., k and i=1, ..., p to estimate the posterior probability of xi belonging

to the j -th component of the mixture

(2.4) t
(m)
j (xi) =

π
(m)
j f

(
xi|θ

(m)
j

)

k∑
h=1

π
(m)
h f

(
xi|θ

(m)
h

) .

M -Step

Use estimates t
(m)
j (xi) to maximise the logarithm of the likelihood function

L(φ1|x
1, ...,xp, Z).

First, we consider the function L(φ1), subject to the constraint u′

juj = 1:

L(φ1) =

p∑

i=1

k∑

j=1

t
(m)
j (xi)

[
− ln

{
1F1(1/2, n/2, ξj)

}
+ ξj(u

′

jx
i)2
]
− λ1(u

′

juj − 1) ,

where λ1 is a Lagrange multiplier and t
(m)
j (xi) is defined in (2.4).

The maximum likelihood estimate of uj is the solution of the following

equation:

(2.5)
∂L(φ1)

∂uj
=

p∑

i=1

t
(m)
j (xi) 2 ξj xixi ′uj − 2 λ1uj = 0 .

We premultiply the last expression by uj ′ to obtain

λ1 = ξj

p∑

i=1

t
(m)
j (xi)uj ′x

ixi ′uj .

Then, the maximum likelihood estimator of uj ′ in the (m+1)-th iteration,

û
(m+1)
j is the eigenvector associated with the eigenvalue ŵj , that is

(2.6)

(
p∑

i=1

t
(m)
j (xi)xixi ′

)
û

(m+1)
j = ŵj û

(m+1)
j , j = 1, .., k ,

where ŵj is a eigenvalue of
p∑

i=1
t
(m)
j (xi)xixi ′ and it is given by

ŵj =

p∑

i=1

t
(m)
j (xi) û

(m+1)
j ′ xixi ′ û

(m+1)
j .
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Next, we show that we maximise L(φ1) if we consider the largest eigenvalue

of the matrix. In fact, the function L(φ1) can be written in the form

L(φ1) = −

p∑

i=1

k∑

j=1

t
(m)
j (xi) ln

{
1F1(1/2, n/2, ξj)

}
+

k∑

j=1

ξj ŵj .

As ln 1F1(1/2, n/2, ξj) > 0, we have
p∑

i=1

k∑
j=1

t
(m)
j (xi) ln 1F1(1/2, n/2, ξj) > 0.

We also have ŵj ≥ 0 because
p∑

i=1
t
(m)
j (xi)xixi ′ is a positive definite matrix.

Consequently, the function L(φ1) is maximised if ŵj is maximum.

Second, the maximum likelihood estimator of ξj is the solution of the fol-

lowing equation

∂L(φ1)

∂ξj
=

p∑

i=1

t
(m)
j (xi)

{
−Y (ξj) + (uj ′x

i)2
}

= 0 ,

where the function Y (.) is defined in Section 1. The solution of this equation

leads to the maximum of L(φ1) as we show that ∂2L(φ1)/∂ξ2
j < 0, ∀ξj

. In fact,

∂2L(φ1)/∂ξ2
j = −

p∑
i=1

t
(m)
j (xi) dY (ξj)/ξj and Y (ξ) is an increasing function (see

Gomes [9]).

Then, the maximum likelihood estimator of ξj in the (m+1)-th iteration,

ξ̂
(m+1)
j , is the solution of the equation

(2.7) Y
(
ξ̂
(m+1)
j

)
=

ŵj
p∑

i=1
t
(m)
j (xi)

, j = 1, ..., k .

Third, we consider the function L(φ2), subject to the constraint
k∑

j=1
πj = 1:

L(φ2) =

p∑

i=1

k∑

j=1

t
(m)
j (xi) lnπj − λ2

( k∑

j=1

πj − 1

)
,

where λ2 is a Lagrange multiplier. The maximum likelihood estimator of πj

is the solution of the following equation

∂L(φ2)

∂πj
=

p∑
i=1

t
(m)
j (xi)

πj
− λ2 = 0 .

We sum the last equation for j from 1 to k to obtain λ2 = p. Then, the

maximum likelihood estimator of πj in the (m+1)-th iteration, π̂
(m+1)
j is given by

(2.8) π̂
(m+1)
j =

p∑
i=1

t
(m)
j (xi)

p
, j = 1, ..., k .
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The estimation of the parameters uj and ξj associated with the j -th com-

ponent gives us a privileged direction as well as a measure of dispersion of the

j -th cluster around this direction.

A partition (P1, ..., Pk) of the sample of variables is obtained assigning the

variable xj to the component for which the posterior probability is the largest,

that is,

(2.9) Pj =
{
xi : tj(x

i) = max
h

th(xi), h=1, ..., k
}

and when tj(x
i) = th(xi) consider xi∈Pj if j <h.

3. SIMULATION STUDY

We considered a mixture with equal proportions (π1 = π2 = 0.5) of two

bipolar Watson distributions: Wn(u1, ξ1) and Wn(u2, ξ2), with ξ1 = ξ2 = ξ,

u1 = (0, ..., 0, 1) and u2 = (0, ...0, (1−cos2 θ)1/2, cos θ), where θ is the angle be-

tween u1 and u2. The bipolar Watson distribution is rotationally symmetric

about the directional parameter, so if we had used, for each θ, other directional

parameters u1 and u2, we would have obtained the same results in our study. For

the simulation of the bipolar Watson distribution we used a rejection-type method

(see Huo [11] and Bingham [2]). We considered two dimensions of the sphere

n=10,30. For each n, we assumed equal samples size p1 = p2 = p = 30(10)100 ,

several values of the concentration parameter ξ=10(10)50,100 and several val-

ues of the angle θ = 18◦, 54◦, 90◦. For each case, we considered 2500 replicates of

the EM algorithm. In each replicate, we used a randomly chosen initial solution

and a sufficiently large number of iterations (100 ) to obtain the final solution.

We supposed that the algorithm converged, in a certain replicate, if the condition:

∣∣∣∣
(
L
(
φ(m+1)

)
− L

(
φ(m)

))/
L
(
φ(m+1)

)∣∣∣∣ ≤ 10−5

holds in the last five iterations, where L(φ(m)) denotes the likelihood of the sample

in the m-th iteration. For each n and p, the EM algorithm converged in most

part of the replicates, it did not converge only in very few replicates when ξ is

very small or θ is small.

In each replicate we determined the following estimates ξ̂j , ŵj/pj , j =1, 2,

θ̂, π̂j , j = 1, 2 of the parameters ξj , Y (ξj), j = 1, 2, θ, πj , j = 1, 2, respectively,

where pj is the dimension of the j -th group, which is equal to
p∑

i=1
tj(x

i). Then,

we calculated the average and the standard deviation of the estimates obtained

in all replicates, denoted by ξ̂j , ŵj/pj , j =1, 2, θ̂, π̂j , j =1, 2 and s(ξ̂j), s(ŵj/pj),

j = 1, 2, s(θ̂), s(π̂j), j = 1, 2, respectively. If in a replicate the EM algorithm
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did not converge we excluded that replicate for calculating the average and the

standard deviation of the estimates.

By (1.3) the asymptotic expected value of ξ̂j and ŵj/pj are ξj and Y (ξj)

respectively, j = 1, 2. In Table 1 and Figure 1, we indicate the values of Y (ξ) 2

for each n and ξ.

Table 1: Values of Y (ξ) for each n and ξ.

n�ξ 10 20 30 40 50 60 70 80 90 100

10 0.500 0.766 0.847 0.886 0.909 0.924 0.935 0.943 0.950 0.955
30 0.074 0.241 0.496 0.630 0.706 0.756 0.791 0.817 0.838 0.854

�

Figure 1: Values of Y (ξ) for n = 10 and n = 30.

As expected for each n, Y (ξ) is an increasing function with ξ, which tends

to 1, when ξ increases (see Gomes [9], p. 43–45). For each ξ, the function Y (ξ)

increases when n decreases.

We determined the estimated relative bias of the estimators given by the

expressions: (ξ̂j− ξj)/ξj , (ŵj/pj−Y (ξj))/Y (ξj), j =1, 2, (θ̂−θ)/θ, (π̂j− πj)/πj ,

j =1,2 and the estimated mean squared error (MSE ) given by: s2(ξ̂j)+(ξ̂j−ξj)
2,

s2(ŵj/pj)+(ŵj/pj−Y (ξj))
2, j =1, 2, s2(θ̂)+(θ̂−θ)2, s2(π̂j)+(π̂j−πj)

2, j =1, 2.

2We obtained the function Y (ξ) using the Kummer function, which is defined by M(a, b, z) =

1 +
∞P

i=1

�
a(a + 1)...(a + i − 1)zi

	Æ�
b(b + 1)...(b + i − 1) i!

	
or by the integral M(a, b, z) =

Γ(b)
Æ�

Γ(b− a)Γ(a)
	 R

1

0
ezt ta−1(1− t)b−a−1dt, where 1F1(1/2, n/2, ξ) = M(1/2, n/2, ξ).
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We indicate the results of our simulation study in the Tables A1–A4 of the

Appendix and in the Figures 2–8. In the tables of the Appendix, the algorithm

converged in all replicates for each case. We have also produced another 4 tables,

which were not included: two tables for the relative bias (for n=10 and n=30 )

and two tables for the MSE (for n=10 and n=30 ) of the estimators when the

concentration parameter ξ varies.

In Figure 2 we observe that

• As expected, the estimators ξ̂1 and ξ̂2 are asymptotically unbiased, that

is the estimated relative bias of these estimators tends to 0 as the sample

size p increases. For fixed ξ and p, the relative bias of ξ̂1 and ξ̂2 tends

to decrease when θ increases. For an angle θ = 90◦ or θ = 54◦, the bias

of the estimators ξ̂1 and ξ̂2 is relatively small and when θ = 90◦ the bias

is not greater than 10% of the true value of the concentration parameter

(for n=10,30, ξ=30,100 and p=30(10)100 ).

�

Figure 2: Relative bias of the estimators ξ̂1 and ξ̂2 when p varies
(in top: n = 10, in bottom: n = 30 and from left to right:
angle 90◦, 54◦, 18◦).
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In Figure 3 we observe that

• As expected, in general the estimators ξ̂1 and ξ̂2 become more efficient

as p increases. When the angle is large or moderate (θ = 90◦ or θ = 54◦)

and ξ = 30, these estimators have relatively small MSE and become less

efficient when ξ increases.

�
Figure 3: Mean squared error of the estimators ξ̂1 and ξ̂2 when p varies

(in top: n = 10, in bottom: n = 30 and from left to right:
angle 90◦, 54◦, 18◦).

In Figure 4 we observe that

• When the angle is moderate or large (θ = 54◦ or θ = 90◦), the bias of ξ̂1

and ξ̂2 is very small and maintains approximately constant or increases

slightly as ξ increases for ξ ≥ 20 when n = 10 and for ξ ≥ 30 when n = 30.

When n = 10 and θ = 18◦, the bias of the estimators is relatively large,

but it decreases when ξ increases.
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�
Figure 4: Relative bias of the estimators ξ̂1 and ξ̂2 when ξ varies (in top: n = 10,

in bottom: n = 30 and from left to right: angle 90◦, 54◦, 18◦).

In Figure 5 we observe that

• When the angle is moderate or large (θ = 54◦ or θ = 90◦), the MSE of the

estimators ξ̂1 and ξ̂2 increases when ξ increases for ξ ≥ 30 and so these

estimators become less efficient.

• The estimators ŵ1/p1 and ŵ2/p2 are unbiased or have very small bias for

every p and ξ. When θ = 90◦ the bias of these estimators is not greater

than approximately 3% of the respective parameter. The estimators ŵ1/p1

and ŵ2/p2 are asymptotically unbiased, that is, the estimated relative bias

of the estimators tends to 0 as the sample size p increases. See Tables

A1–A2 of the Appendix.

In Figure 6 we observe that

• The estimators ŵ1/p1 and ŵ2/p2 have bias approximately equal to 0 for

ξ ≥ 20 when n = 10 and for ξ ≥ 30 when n = 30.

• As the MSE of the estimators ŵ1/p1 and ŵ2/p2 are 0 or approximately 0,

these estimators are very efficient. See Tables A3–A4 of the Appendix.
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�
Figure 5: Mean squared error of the estimators ξ̂1 and ξ̂2 when ξ varies (in top: n=10,

in bottom: n = 30 and from left to right: angle 90◦, 54◦, 18◦).

�Figure 6: Relative bias of the estimators ŵ1/p1 and ŵ2/p2 when ξ varies (in top: n=10,
in bottom: n = 30 and from left to right: angle 90◦, 54◦, 18◦).
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In Figure 7 we observe that

• The estimator θ̂ has relatively small MSE, except for n = 30 and ξ = 30
when the relative bias and the standard deviation of θ̂ are relatively large.
The MSE of the estimator θ̂ decreases when p increases.

�

Figure 7: Mean squared error of the estimator θ̂ when p varies
(from left to right: angle 90◦, 54◦, 18◦).

In Figure 8 we observe that

• For every θ and ξ ≥ 20, the MSE of the estimator θ̂ decreases when
ξ increases.

• The estimators π̂1 and π̂2 are unbiased or present very small bias for the
analysed cases, except in some cases when θ = 18◦. See Tables A1–A2 of
the Appendix.

• The estimators π̂1 and π̂2 have MSE equal to 0 or approximately 0, and
so these estimators are very efficient. See Tables A3–A4 of the Appendix.

�

Figure 8: Mean squared error of the estimator θ̂ when ξ varies
(from left to right: angle 90◦, 54◦, 18◦).
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4. CONCLUSION

The simulation study has revealed a good identification of a mixture of
bipolar Watson distributions defined on the hypersphere through the EM algo-
rithm.

The performance of this algorithm is good for moderate sample sizes, es-
sentially on the estimation of the prior probabilities and on the estimation of the
directional parameters of the mixture. For a large or moderate angle θ between
the directional parameters of the mixture, the efficiency of the estimators of the
concentration parameters of the mixture is better for moderate values (neither
very small nor very large) of the true concentration parameters. The estimation
of the angle θ is very efficient in general and the efficiency of θ̂ improves as the
concentration parameter increases.
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[5] Escoufier, Y. (1968). Le traitement des variables vectorielles, Biometrics, 29,
31–47.

[6] Everitt, B.S. and Hand, D.J. (1981). Finite Mixture Distributions, Chapman
and Hall, Ltd, London.

[7] Figueiredo, A. (2000). Classificação de variáveis no contexto de um modelo
probabiĺıstico definido na n-esfera, Tese de Doutoramento, Faculdade de Ciências
da Universidade de Lisboa.

[8] Fisher, N.I.; Lewis, T. and Embleton, B.J.J. (1987). Statistical Analysis of
Spherical Data, Cambridge University Press.

[9] Gomes, P. (1987). Distribution de Bingham sur la n-sphere: une nouvelle appro-
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APPENDIX

Table 2: Relative bias of the estimators for n=10 with the sample size p

ξ θ p bξ1
bξ2 bw1/p1 bw2/p2

bθ bπ1 bπ2

30 0.071 0.071 0.008 0.008 0.000 0.005 −0.005
40 0.041 0.041 0.004 0.004 −0.001 −0.001 0.001
50 0.027 0.024 0.002 0.002 −0.001 0.004 −0.004

90◦ 60 0.018 0.017 0.001 0.001 0.000 −0.005 0.005
70 0.011 0.009 0.000 0.000 0.000 0.001 −0.001
80 0.008 0.005 0.000 −0.001 0.001 0.001 −0.001
90 0.003 0.002 −0.001 −0.001 0.000 0.000 0.000

100 0.001 −0.001 −0.001 −0.002 0.002 0.001 −0.001

30 0.061 0.109 0.006 0.013 −0.002 0.002 −0.002
40 0.042 0.080 0.004 0.010 −0.002 0.001 −0.001
50 0.025 0.065 0.002 0.008 −0.004 0.000 0.000

30 54◦ 60 0.020 0.051 0.001 0.006 −0.005 −0.002 0.002
70 0.011 0.044 0.000 0.005 −0.006 0.000 0.000
80 0.002 0.040 −0.001 0.005 −0.007 0.000 0.000
90 0.002 0.037 −0.001 0.005 −0.007 −0.001 0.001

100 −0.004 0.033 −0.002 0.005 −0.007 −0.001 0.001

30 0.152 0.398 0.011 0.030 0.256 0.116 −0.116
40 0.116 0.331 0.006 0.027 0.192 0.086 −0.086
50 0.086 0.269 0.003 0.023 0.157 0.070 −0.070

18◦ 60 0.070 0.262 0.004 0.022 0.125 0.061 −0.061
70 0.055 0.259 0.000 0.018 0.107 0.049 −0.050
80 0.044 0.173 −0.001 0.016 0.086 0.030 −0.030
90 0.034 0.161 −0.002 0.016 0.077 0.031 −0.031

100 0.018 0.132 −0.004 0.014 0.068 0.020 −0.020

30 0.088 0.092 0.002 0.003 0.000 0.000 0.000
40 0.059 0.063 0.002 0.002 0.000 −0.003 0.003
50 0.045 0.046 0.001 0.001 0.000 0.003 −0.003

90◦ 60 0.035 0.038 0.001 0.001 0.000 0.001 −0.001
70 0.027 0.029 0.001 0.001 0.000 0.000 0.000
80 0.024 0.024 0.000 0.000 0.000 0.000 0.000
90 0.021 0.019 0.000 0.000 0.000 0.002 −0.002

100 0.016 0.017 0.000 0.000 0.000 −0.001 0.001

30 0.088 0.156 0.002 0.005 −0.003 0.000 0.000
40 0.057 0.125 0.001 0.004 −0.003 0.002 −0.002
50 0.048 0.109 0.001 0.004 −0.004 −0.001 0.001

100 54◦ 60 0.036 0.099 0.001 0.003 −0.004 0.000 0.000
70 0.027 0.091 0.001 0.003 −0.004 0.001 −0.001
80 0.022 0.083 0.000 0.003 −0.005 0.000 0.000
90 0.018 0.081 0.000 0.003 −0.005 −0.001 0.001

100 0.014 0.080 0.000 0.003 −0.005 −0.001 0.001

30 0.103 0.116 0.003 0.003 0.041 −0.001 0.001
40 0.064 0.081 0.002 0.002 0.032 0.000 0.000
50 0.054 0.064 0.001 0.002 0.027 −0.002 0.002

18◦ 60 0.040 0.052 0.001 0.001 0.023 −0.001 0.001
70 0.029 0.046 0.001 0.001 0.021 0.001 −0.001
80 0.024 0.037 0.000 0.001 0.019 0.000 0.000
90 0.020 0.034 0.000 0.001 0.018 −0.002 0.002

100 0.015 0.032 0.000 0.001 0.017 −0.002 0.002
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Table 3: Relative bias of the estimators for n=30 with the sample size p

ξ θ p bξ1
bξ2 bw1/p1 bw2/p2

bθ bπ1 bπ2

30 0.036 0.038 0.029 0.031 −0.001 0.001 −0.001
40 0.017 0.018 0.012 0.012 0.000 0.000 0.000
50 0.009 0.007 0.005 0.003 0.001 0.003 −0.003

90◦ 60 0.001 0.000 −0.004 −0.005 0.000 0.004 −0.004
70 −0.004 −0.002 −0.008 −0.006 0.000 −0.001 0.001
80 −0.006 −0.008 −0.011 −0.020 0.001 −0.005 0.005
90 −0.011 −0.010 −0.015 −0.014 0.000 0.001 −0.001

100 −0.011 −0.013 −0.016 −0.017 0.000 0.001 −0.001

30 0.040 0.067 0.028 0.053 0.048 0.009 −0.009
40 0.017 0.043 0.008 0.035 0.038 0.008 −0.008
50 0.003 0.026 −0.012 0.019 0.031 0.006 −0.006

30 54◦ 60 −0.005 0.019 −0.012 0.013 0.025 0.007 −0.007
70 −0.010 0.011 −0.017 0.007 0.022 0.006 −0.006
80 −0.014 0.007 −0.021 0.002 0.021 0.006 −0.006
90 −0.018 0.005 −0.025 0.001 0.017 0.006 −0.006

100 −0.020 0.001 −0.027 −0.003 0.016 0.004 −0.004

30 0.085 0.166 0.065 0.113 0.994 0.218 −0.218
40 0.049 0.156 0.033 0.106 0.857 0.243 −0.243
50 0.025 0.157 0.011 0.106 0.773 0.274 −0.274

18◦ 60 0.020 0.153 0.006 0.100 0.700 0.274 −0.274
70 0.009 0.144 −0.006 0.096 0.629 0.286 −0.286
80 −0.003 0.148 −0.018 0.100 0.581 0.292 −0.292
90 −0.005 0.151 −0.021 0.100 0.531 0.290 −0.290

100 −0.006 0.140 −0.023 0.092 0.493 0.275 −0.275

30 0.070 0.074 0.010 0.011 0.000 0.001 −0.001
40 0.049 0.053 0.007 0.008 −0.001 0.005 −0.005
50 0.038 0.039 0.006 0.006 0.000 0.003 −0.003

90◦ 60 0.030 0.031 0.004 0.005 0.000 −0.001 0.001
70 0.026 0.025 0.004 0.004 0.000 0.001 −0.001
80 0.020 0.021 0.003 0.003 0.000 0.003 −0.003
90 0.018 0.017 0.003 0.003 0.000 −0.002 0.002

100 0.015 0.014 0.002 0.002 0.000 0.000 0.000

30 0.075 0.087 0.011 0.012 0.003 0.004 −0.004
40 0.051 0.065 0.008 0.009 0.002 −0.004 0.004
50 0.039 0.052 0.006 0.008 0.001 0.002 −0.002

100 54◦ 60 0.029 0.042 0.004 0.006 −0.001 0.002 −0.002
70 0.025 0.036 0.004 0.006 −0.001 0.002 −0.002
80 0.021 0.033 0.003 0.005 −0.002 0.000 0.000
90 0.018 0.028 0.003 0.004 −0.002 0.000 0.000

100 0.016 0.027 0.002 0.004 −0.002 −0.002 0.002

30 0.078 0.091 0.011 0.013 0.119 0.006 −0.007
40 0.054 0.067 0.008 0.010 0.095 −0.005 0.005
50 0.040 0.052 0.006 0.008 0.080 0.001 −0.001

18◦ 60 0.030 0.041 0.004 0.006 0.066 0.001 −0.001
70 0.026 0.034 0.004 0.005 0.059 0.001 −0.001
80 0.021 0.030 0.003 0.005 0.052 −0.002 0.002
90 0.016 0.025 0.002 0.004 0.047 0.001 −0.001

100 0.015 0.022 0.002 0.003 0.044 −0.004 0.004
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Table 4: Mean squared error of the estimators for n=10 with the sample size p

ξ θ p bξ1
bξ2 bw1/p1 bw2/p2

bθ bπ1 bπ2

30 28.39 29.34 0.001 0.001 8.8 0.01 0.01
40 17.49 18.51 0 0 6.81 0.01 0.01
50 12.99 12.57 0 0 5.47 0.01 0.01

90◦ 60 10.00 10.14 0 0 4.67 0 0
70 8.41 8.52 0 0 3.92 0 0
80 7.14 6.90 0 0 3.25 0 0
90 6.40 6.53 0 0 2.92 0 0

100 5.77 5.47 0 0 2.67 0 0

30 29.61 42.68 0.001 0.001 6.43 0.01 0.01
40 20.20 29.07 0 0.001 4.89 0.01 0.01
50 13.51 21.59 0 0.001 3.80 0 0

30 54◦ 60 11.28 16.18 0 0.001 3.22 0 0
70 8.94 14.29 0 0.001 2.70 0 0
80 7.32 11.97 0 0.001 2.40 0 0
90 6.38 9.97 0 0.001 2.09 0 0

100 5.87 8.59 0 0.001 1.94 0 0

30 188.76 987.30 0.001 0.002 34.48 0.04 0.04
40 163.08 526.42 0.001 0.002 22.30 0.03 0.03
50 120.85 309.95 0.001 0.002 16.37 0.03 0.03

18◦ 60 66.77 299.22 0.001 0.002 10.97 0.03 0.03
70 83.52 214.79 0.001 0.001 9.52 0.03 0.03
80 75.39 167.57 0.001 0.001 7.45 0.02 0.02
90 77.56 133.97 0.001 0.001 6.14 0.02 0.02

100 47.93 86.04 0.001 0.001 5.42 0.02 0.02

30 391.95 393.74 0 0 2.34 0.01 0.01
40 233.19 258.01 0 0 1.82 0.01 0.01
50 172.30 181.35 0 0 1.37 0 0

90◦ 60 132.61 133.23 0 0 1.17 0 0
70 108.59 118.57 0 0 0.98 0 0
80 94.51 96.45 0 0 0.81 0 0
90 81.51 82.20 0 0 0.81 0 0

100 71.97 72.44 0 0 0.66 0 0

30 380.48 620.53 0 0 1.70 0.01 0.01
40 239.14 407.87 0 0 1.30 0.01 0.01
50 183.84 304.88 0 0 0.98 0.01 0.01

100 54◦ 60 140.48 263.35 0 0 0.88 0 0
70 112.76 209.09 0 0 0.79 0 0
80 93.25 179.25 0 0 0.64 0 0
90 79.89 164.52 0 0 0.64 0 0

100 71.10 150.27 0 0 0.56 0 0

30 554.58 560.82 0 0 2.79 0.01 0.01
40 309.45 342.75 0 0 2.07 0.01 0.01
50 231.62 238.22 0 0 1.51 0.01 0.01

18◦ 60 169.17 186.41 0 0 1.27 0 0
70 138.87 151.15 0 0 1.13 0 0
80 110.62 121.23 0 0 0.92 0 0
90 97.90 106.03 0 0 0.82 0 0

100 83.85 92.72 0 0 0.77 0 0
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Table 5: Mean squared error of the estimators for n=30 with the sample size p

ξ θ p bξ1
bξ2 bw1/p1 bw2/p2

bθ bπ1 bπ2

30 8.99 9.33 0.002 0.002 26.27 0.01 0.01
40 5.36 5.82 0.002 0.002 18.66 0.01 0.01
50 3.83 3.78 0.001 0.001 8.85 0 0

90◦ 60 3.03 3.13 0.001 0.001 7.78 0 0
70 2.52 2.52 0.001 0.001 6.81 0 0
80 2.17 2.10 0.001 0.001 5.92 0 0
90 1.97 1.96 0.001 0.001 5.06 0 0

100 1.74 1.85 0.001 0.001 4.67 0 0

30 13.87 19.54 0.004 0.004 17.86 0.01 0.01
40 8.14 11.07 0.002 0.003 12.06 0.01 0.01
50 5.24 7.29 0.002 0.002 9.08 0.01 0.01

30 54◦ 60 4.14 5.72 0.001 0.002 6.97 0 0
70 3.48 4.12 0.001 0.001 5.58 0 0
80 3.02 3.55 0.001 0.001 5.23 0 0
90 2.92 3.19 0.001 0.001 4.33 0 0

100 2.61 2.73 0.001 0.001 3.83 0 0

30 29.40 84.02 0.005 0.011 370.63 0.03 0.03
40 19.16 74.94 0.004 0.011 265.15 0.03 0.03
50 14.18 77.88 0.003 0.011 226.23 0.04 0.04

18◦ 60 14.27 80.57 0.003 0.011 200.45 0.04 0.04
70 12.62 72.60 0.003 0.011 148.84 0.04 0.04
80 11.84 72.02 0.003 0.010 134.46 0.05 0.05
90 11.80 78.76 0.003 0.011 112.28 0.23 0.23

100 12.62 73.23 0.003 0.010 104.27 0.05 0.05

30 139.69 154.52 0 0 2.92 0.01 0.01
40 85.91 92.13 0 0 2.08 0.01 0.01
50 65.74 65.13 0 0 1.59 0.01 0.01

90◦ 60 48.48 50.47 0 0 1.17 0 0
70 39.77 39.20 0 0 1.17 0 0
80 33.22 32.60 0 0 0.98 0 0
90 28.12 27.72 0 0 0.81 0 0

100 25.01 24.67 0 0 0.81 0 0

30 154.06 189.17 0 0 1.86 0 0
40 89.81 120.39 0 0 1.43 0.01 0.01
50 62.23 84.41 0 0 1.06 0.01 0.01

100 54◦ 60 46.53 63.51 0 0 0.84 0 0
70 40.38 52.90 0 0 0.75 0 0
80 32.60 44.35 0 0 0.67 0 0
90 29.15 37.53 0 0 0.58 0 0

100 25.36 33.66 0 0 0.58 0 0

30 196.39 234.80 0 0 7.18 0.01 0.01
40 113.25 141.25 0 0 4.67 0.01 0.01
50 76.84 96.11 0 0 3.39 0.01 0.01

18◦ 60 58.06 69.951 0 0 2.57 0 0
70 49.88 55.35 0 0 2.15 0 0
80 39.48 45.93 0 0 1.74 0 0
90 33.79 38.03 0 0 1.50 0 0

100 30.11 32.01 0 0 1.37 0 0


