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Abstract:

• In this paper, and in a context of regularly varying tails, we suggest new tail index
estimators, which provide interesting alternatives to the classical Hill estimator of the
tail index γ. They incorporate some extra knowledge on the pattern of scaled top
order statistics and seem to work generally pretty well in a semi-parametric context,
even for cases where a second order condition does not hold or we are outside Hall’s
class of models. We shall give particular emphasis to a class of statistics dependent
on a tuning parameter τ , which is merely a change in the scale of our data, from X
to X/τ . Such a statistic is non-invariant both for changes in location and in scale,
but compares favourably with the Hill estimator for a class of models where it is not
easy to find competitors to this classic tail index estimator. We thus advance with a
slight “controversial” argument: it is always possible to take advantage from a non-
invariant estimator, playing with particular tuning parameters — either a change in
the location or in the scale of our data —, improving then the overall performance of
the classical estimators of extreme events parameters.
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1. INTRODUCTION AND PRELIMINARIES

Let X1, X2, ..., Xn be independent random variables (r.v.’s) with common

distribution function (d.f.)F , with a heavy upper tail, i.e., for large x, there exists

γ > 0 such that

F (x) := 1 − F (x) = x−1/γL
F
(x) ,

where L
F
(x) is a slowly varying function, i.e., for every x > 0, L

F
(tx)/L

F
(t) → 1

as t→ ∞. F is thus in the max-domain of attraction of an ExtremeValue (EV )

d.f.,

EVγ(x) :=





exp
{
−(1+ γ x)−1/γ

}
, 1 + γ x > 0 if γ 6= 0

exp
(
− exp(−x)

)
, x ∈ R if γ = 0

,

with γ > 0. We shall denote this fact by F ∈ D
M

(EVγ).

Recall that, for γ > 0,

(1.1) F ∈ D
M

(EVγ) iff F ∈ RV−1/γ iff U ∈ RVγ ,

where U(t) := F←(1−1/t), t > 1 (Gnedenko, 1943; de Haan, 1970). RVα stands

for the class of regularly varying functions at infinity with index of regular vari-

ation equal to α, i.e., positive functions g with infinite right endpoint, and such

that limt→∞ g(tx)/g(t) = xα, for all x > 0, and the notation F← is used for the

generalized inverse function of F , i.e., F←(t) = inf{x : F (x) ≥ t}.

The function A(t) measures the rate of convergence of {lnU(tx) − lnU(t)}
towards {γ lnx} in (1.1), and it is a function of constant sign, such that

(1.2) lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ − 1

ρ
,

for every x > 0, where ρ (≤ 0) is a second order parameter. The limit function in

(1.2) must be of the stated form, and |A(t)| ∈ RVρ (Geluk and de Haan, 1987).

1.1. The new estimation procedures

Let Xi:n denote the i-th ascending order statistic (o.s.), 1 ≤ i ≤ n, associ-

ated to the sample Xn = (X1, X2, ..., Xn). Under the validity of the first order

framework in (1.1), with U(t) = tγ L
U
(t), L

U
∈RV0, and for intermediate k, i.e.,

(1.3) k = kn → ∞, k/n→ 0, as n→ ∞ ,
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the classic tail index estimator for a positive γ is Hill’s estimator (Hill, 1975),

with the functional expression

(1.4) γ̂H
n (k) :=

1

k

k∑

i=1

[
lnXn−i+1:n − lnXn−k:n

]
.

For this estimator, and whenever (1.3) holds, we have the validity of the distri-

butional representation,

γ̂H
n (k)

d
= γ +

γ√
k
Pk +

1

1 − ρ
A(n/k)

(
1+ op(1)

)
,

with Pk asymptotically standard normal (de Haan and Peng, 1998).

Also, under the validity of (1.3), it is possible to scaleXn−k:n (orXn−k+1:n),

with an = U(n), so that

(1.5) ln
Xn−k+1:n

an
+ γ ψ(k)

p−→
n→∞

0 .

And for every fixed i, 1 ≤ i < n, there exists a non-degenerate r.v. ǫi, such that

E[ǫi] = 0, and

(1.6) ln
Xn−i+1:n

an
+ γ ψ(i)

d−→
n→∞

ǫi .

As usual, ψ denotes the digamma function, i.e. ψ(t) = d ln Γ(t)/dt = Γ′(t)/Γ(t),

being Γ the complete Gamma function, Γ(t) =
∫∞
0 xt−1e−x dx, t > 0. For a jus-

tification of these results see Lemma 4.1. For details on the Γ and ψ functions,

see Abramowitz and Stegun (1975??).

Let us then think on the least-squares’ type estimators of γ and b := ln a,

which come from the minimization, jointly in γ and b, of

k∑

i=1

{
lnXn−i+1:n − b+ γ ψ(i)

}2
.

Straightforward computations lead us to

(1.7) b̃n(k) = l̃n a(k) =
1

k

k∑

i=1

lnXn−i+1:n + γ̃n(k)

(
1

k

k∑

i=1

ψ(i)

)
,

with

(1.8) γ̃n(k) =

(
k∑

i=1
ψ(i)

)(
k∑

i=1
lnXn−i+1:n

)
− k

k∑
i=1

ψ(i) lnXn−i+1:n

k
k∑

i=1
ψ2(i) −

(
k∑

i=1
ψ(i)

)2 .
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Remark 1.1. Notice that the replacement of ψ(i) by {ln i} in the

γ-estimator in (1.8) leads us to the estimator, based on a QQ-plot, studied in

Kratz and Resnick (1996) and independently in Schultze and Steinbach (1996),

and given by

(1.9) γ̃(K)
n (k) :=

(
k∑

i=1
ln i

)(
k∑

i=1
lnXn−i+1:n

)
− k

k∑
i=1

(ln i) lnXn−i+1:n

k
k∑

i=1
ln2 i−

(
k∑

i=1
ln i

)2 .

Since ψ(x) = lnx+O(1/x), as x→ ∞, the difference between the estimators

γ̃n and γ̃(K)
n is asymptotically negligible. However, for finite samples, their per-

formance differs significantly, because the approximation in terms of the digamma

function ψ(i) is usually better than the use of {ln i} for all i between 1 and k.

We may easily simplify the expressions of b̃n(k) and of γ̃n(k) in (1.7)

and (1.8), respectively, through the use of the following relations involving the

digamma function,

(1.10)
k∑

j=1

ψ(j) = k ψ(k) − (k−1) = k
(
ψ(k+1) − 1

)
,

k∑

j=1

ψ2(j) = k ψ2(k+1) + 2k − (2k + 1)ψ(k+1) + ψ(1)

and

k

j∑

j=1

ψ2(j) −
( k∑

j=1

ψ(j)

)2

= k
{
k − ψ(k+1) + ψ(1)

}
= k

k∑

j=1

(
1 − 1

j

)
.

We then get the following linear combination of the top log-observations,

(1.11) γ̃n(k) =

k∑
i=1

(
ψ(k+1) − ψ(i) − 1

)
lnXn−i+1:n

k − ψ(k+1) + ψ(1)
,

and we may also write

(1.12) ãn(k) = Xn−k:n exp
(
γ̂H

n (k) + γ̃n(k)
(
ψ(k+1) − 1

))
,

where γ̂H
n (k) and γ̃n(k) are given in (1.4) and (1.11), respectively.

We shall next assume that we are in Hall’s class of models (Hall and Welsh,

1985), where

(1.13) U(t) = C tγ
(

1 +
A(t)

ρ

(
1+ o(1)

))
, A(t) = γ β tρ, as t→ ∞ ,



86 Orlando Oliveira, M. Ivette Gomes and M. Isabel Fraga Alves

or equivalently that the tail function is of the type

1 − F (x) =
( x
C

)−1/γ
{

1 +
β

ρ

( x
C

)ρ/γ
+ o
(
xρ/γ

)}
, as x→ ∞ ,

where γ > 0, C > 0, ρ < 0 and β 6= 0.

We may then choose a = an = C nγ , as n→ ∞, and, from (1.12), we get

a least-squares’ estimator of C given by

C̃n(k) := Xn−k:n exp

{
γ̂H

n (k) − γ̃n(k)
(
lnn− ψ(k+1) + 1

)}
(1.14)

∼ Xn−k:n

(
k

n

)eγn(k)

exp
{
γ̂H

n (k) − γ̃n(k)
}
, as k → ∞ ,(1.15)

again with γ̂H
n (k) and γ̃n(k) given in (1.4) and (1.11), respectively.

Although aware that C is a parameter of the model, which may be estimated

for instance through any of the asymptotically equivalent estimators in (1.14) or

(1.15), we shall consider τ ≡ C as a tuning parameter. This has been done in a

way similar to the one used by Csörgő and Viharos (1998), when they consider a

kernel estimator as a function of a tuning parameter τ ≡ ρ, also a model parame-

ter, the second order parameter in (1.2). Notice that if UX(t) = C tγ(1 + o(1)),

then for Y = X/C, UY (t) = tγ (1+ o(1)). This means that a proper scaling of

our data enables us to choose a = nγ , i.e., γ = ln a/ lnn, a particular situation

which will merely help us to build a class of statistics, dependent of the control

parameter τ = C, which should be regarded as a possible change in the scale of

our data. Such a class is got from the least-squares type estimator of {ln a} in

(1.7), and is given by

˜̃γ(τ)

n (k) :=
1

k lnn

{
k∑

i=1

ln
Xn−i+1:n

τ
+ γ̃n(k)

k∑

i=1

ψ(i)

}

=
1

lnn

{
ln
Xn−k:n

τ
+
(
ψ(k+1) − 1

)
γ̃n(k) + γ̂H

n (k)

}
.(1.16)

As a particular member of the class in (1.16), we shall consider the estimator

(1.17) ˜̃γn(k) ≡ ˜̃γ(1)
n (k) =

lnXn−k:n +
(
ψ(k+1) − 1

)
γ̃n(k) + γ̂H

n (k)

lnn
.

We shall also consider the estimation of C, and its use in the class of

statistics in (1.16), but we are aware that then we are going to get a poorer

estimator of the tail index γ, unless the C-estimator is highly efficient. For

instance, should we have used C̃n(k), in (1.14), as τ , in (1.16), would we have

been led to γ̃n in (1.11), i.e., ˜̃γ( eCn(k))

n (k) ≡ γ̃n(k). We have here decided to follow

Hall and Welsh (1985), and to consider the C-estimator

(1.18) Ĉn(k) :=

(
k

n

)bγH
n (k)

Xn−k:n .
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Since in Hall’s class of models, in (1.13), the mean squared error of both non-

degenerate limiting distributions of γ̂H
n (k) and Ĉn(k) are minimized by taking

k0 =

(
(1 − ρ)2

−2 ρ β2
n−2ρ

)1/(1−2ρ)

(Theorem 4.1 in Hall and Welsh, 1985), we shall also consider, in the simulations,

and whenever we are in Hall’s class of models in (1.13), the estimator of the tail

index γ, given by

(1.19) ˜̃γ( bC)

n (k), where Ĉ = Ĉn(k̂0), k̂0 =

(
(1−ρ̂)2

−2 ρ̂ β̂2
n−2bρ)1/(1−2bρ)

,

with Ĉn given in (1.18) and ρ̂ and β̂ adequate estimators of ρ and β, respectively,

already considered in Gomes and Martins (2002). In the simulations of models

outside Hall’s class, due to the difficulties in the estimation of k0, we shall exhibit

the behaviour of

(1.20) ˜̃γ( bC0)

n , where Ĉ0 = Ĉn(k0), k0 = arg min
k

MSE
[
γ̂H

n (k)
]
,

again with Ĉn given in (1.18) and k0 obtained through simulation.

Remark 1.2. In practice, it is sensible to consider τ in (1.16) as a tuning

parameter, choosing τ through a data-driven estimation of the mean squared

error of ˜̃γ(τ)

n (k) as a function of k, for adequately chosen fixed values of τ (Oliveira,

2002). The value of τ may be any value τ∗ such that

M̂SE
[
˜̃γ(τ∗)

n (k)
]
≤ M̂SE

[
γ̂H

n (k)
]
, for every k .

When we consider

k(τ∗)

n0 := arg min
k

M̂SE
[
˜̃γ(τ∗)

n (k)
]
,

it is then sensible to choose the value τ∗0 providing the minimum

M̂SE
[
˜̃γ(τ∗)

n

(
k(τ∗)

n0

)]
, i.e.,

τ∗0 := arg min
τ∗

M̂SE
[
˜̃γ(τ∗)

n

(
k

(τ∗)
n0

)]
.

We choose then (see also Remark 5.1)

k̂n0 = k
τ∗0
n0 and ˜̃γn0 := ˜̃γ(τ∗0 )

n

(
k̂n0

)
.

This is an open problem, beyond the scope of the present paper, where we

intend essentially to present the potentialities of the class of statistics in (1.16)

to estimate a positive tail index.
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In section 2, we shall briefly review the Peaks Over Threshold (POT )

methodology, a classical method of estimation of a tail index, to be also com-

pared with the new estimation procedures considered, as well as the estimation

of the second order parameters ρ and β in A(t) = γ β tρ. In section 3 we shall

compare asymptotically the estimator in (1.11) (or equivalently, the estimator in

(1.9)) with the Hill estimator in (1.4). Section 4 is devoted to the asymptotic

behaviour of the class of estimators in (1.16). Sections 5 and 6 are devoted to

the illustration of the behaviour of these estimators for finite samples, through

the use of Monte Carlo simulation techniques.

2. REVIEW OF WELL-ESTABLISHED ESTIMATION PROCE-

DURES OF FIRST AND SECOND ORDER PARAMETERS

2.1. The link between the Hill estimator and the POT methodology

Let us think on the excesses over a high random threshold Xn−k:n,

Vik := Xn−i+1:n −Xn−k:n , 1 ≤ i ≤ k .

Since X
d
= U(Y ), Y a standard unit Pareto r.v. with d.f. 1 − 1/y, y ≥ 1,

Yn−i+1:n/Yn−k:n
d
= Yk−i+1:k, 1≤ i≤k, and, for k intermediate, Yn−k:n =

(n/k)(1+op(1)), we may write, under the validity of the first order condition

in (1.1),

Vik = Xn−i+1:n −Xn−k:n = Xn−k:n

(
Xn−i+1:n/Xn−k:n − 1

)

d
= Xn−k:n

(
U
(
Yn−k:n Yk−i+1:k

)/
U(Yn−k:n) − 1

)

d
= Xn−k:n

(
Y γ

k−i+1:k

(
1+op(1)

)
− 1
)

= Xn−k:n

((
Y γ

k−i+1:k − 1
) (

1+op(1)
)

+ op(1)
)
.

Consequently, we may say that there exists δ such that we have approximately

Vik/δ ≈
(
Y γ

k−i+1:k−1
)
/γ, i.e., Vik, 1 ≤ i ≤ k, are approximately the k o.s. of

a sample of size k from a Generalized Pareto (GP) model,

GPγ(x; δ) = 1 −
(
1 + γ x/δ

)−1/γ
, x ≥ 0 (γ, δ > 0) .

The estimation of γ through maximum likelihood (ML) in a GP model has been

thoroughly studied in Davison (1984) and Smith (1984a,b). Davison (1984)

suggested a re-parameterization of the GP model in (γ, α) = (γ, γ/δ), which

enables us to get only one ML equation to be solved iteratively. Such a re-

parameterization has also been used in Gomes and Oliveira (2003a), where a com-

putational study of this methodology has been undertaken. The ML-estimator
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of γ has, with such a re-parameterization, an explicit expression as a function of

the ML-estimator α̂ of α = γ/δ and the sample of the excesses. We have

(2.1) γ̂GP
n (k) :=

1

k

k∑

i=1

ln
(
1 + α̂ Vik

)
,

and α is such that αVik ≈ Y γ
k−i+1:k−1. Notice that an obvious choice for α is

1/Xn−k:n. Then 1 + αVik = Xn−i+1:n/Xn−k:n, and the estimator in (2.1) is the

Hill estimator γ̂H
n (k) in (1.4). Smith (1987) has got the asymptotic behaviour of

the estimator in (2.1) for a fixed threshold u. The conclusion of his Theorem

3.2 may be easily rephrased in this set-up (Gomes, 2002; Drees et al., 2004), and,

under the second order framework in (1.2), we get the asymptotic distributional

representation

(2.2) γ̂GP
n (k)

d
= γ +

(1 + γ)√
k

Qk +
(1 + γ) (γ + ρ)A(n/k)

γ (1 − ρ) (1 − ρ+ γ)

(
1 + op(1)

)
,

with Qk asymptotically standard normal.

Remark 2.1. Note that the result in (2.2), although appearing to produce

a different bias term, agrees with the one in Drees et al. (2004). Indeed, whereas

we here assume (1.2), the most common second order condition for heavy-tailed

models, Drees et al. (2004) consider the general case γ ∈ R, and assume that there

exists a∗(·) and A∗(·) such that

U(tx)−U(t)
a∗(t) − xγ−1

γ

A∗(t)
−→
t→∞

1

ρ∗

(
xγ+ρ∗− 1

γ + ρ∗
− xγ − 1

γ

)
.

If we consider ρ∗ < 0, we may then guarantee that, with A0(t) = A∗(t)/ρ∗ and

a0(t) = a∗(t) (1 −A∗(t)/ρ∗), we get,

(2.3)

U(tx)−U(t)
a0(t) − xγ−1

γ

A0(t)
−→
t→∞

xγ+ρ∗− 1

γ + ρ∗
.

For γ > 0 (and ρ∗< 0), condition (2.3) is equivalent to saying that, as t→ ∞,

(2.4) U(t) = C tγ
(
1 +Atρ∗ + o

(
tρ∗
))

.

Then

U(tx) − U(t) = C γ tγ

(
xγ − 1

γ
+
A(γ + ρ∗) tρ

∗

γ

(
xγ+ρ∗− 1

γ + ρ∗

)
+ o
(
tρ∗
)
)
.

If γ + ρ∗ 6= 0, we then need to choose a0(t) = C γ tγ , A0(t) = A(γ+ρ∗) tρ
∗

/γ.

Then

U(tx)

U(t)
= 1 +

U(tx) − U(t)

C tγ

(
1 −Atρ

∗

+ o
(
tρ

∗))

= xγ
(
1 +Atρ

∗(
xρ∗− 1

)
+ o
(
tρ

∗))

= xγ

(
1 +Aρ∗ tρ

∗

(
xρ∗− 1

ρ∗

)
+ o
(
tρ

∗))
,
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and consequently,

lnU(tx) − lnU(t) = γ lnx+Aρ∗ tρ
∗

(
xρ∗− 1

ρ∗

)
+ o
(
tρ

∗)
,

i.e., provided that γ + ρ∗ 6= 0, and with A(t) = γ ρ∗A0(t)
γ+ρ∗ ,

(2.5)
lnU(tx) − lnU(t) − γ lnx

A(t)
−→
t→∞

xρ∗− 1

ρ∗
=
xρ − 1

ρ
,

i.e., ρ∗ in (2.3) is equal to ρ in (1.2). Consequently, if
√
k A(n/k) → λ,√

k A0(n/k) → λ(γ+ρ)/(γ ρ). The bias provided in Drees et al. (2004) for the

POT-ML tail index estimator is then

λ(γ + ρ)

γ ρ

(
ρ(1 + γ)

(1 − ρ) (1 − ρ+ γ)

)
=

λ(1 + γ) (γ + ρ)

γ(1 − ρ) (1 − ρ+ γ)
,

the values provided in both Smith (1987) and Gomes (2002).

We shall now make explicit the term o(tρ
∗

) in (2.4), assuming that

U(t) = C tγ
(
1 +Atρ∗ +B tρ∗+ρ′ + o

(
tρ∗+ρ′

))
, ρ′ < 0 .

If γ + ρ∗ = 0, i.e., ρ∗ = −γ,

U(tx) − U(t) = C γ tγ

(
xγ − 1

γ
+

2B ρ∗ tρ
∗+ρ′

γ

(
xρ∗+ρ′− 1

ρ∗ + ρ′

)
+ o
(
tρ

∗+ρ′
)
)
,

and

a0(t) = C γ tγ , A0(t) =
2B ρ∗ tρ

∗+ρ′

γ
.

But for the model in (2.4), we may choose for any ρ < 0, A(t) = ρA tρ, and

we get

lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ − 1

ρ
.

If
√
k A(n/k) → λ,

√
k A0(n/k) → 0. So, both from Smith (1987) and from

Drees et al. (2004), we get a null dominant component for the bias term of the

POT-ML tail index estimator, whenever γ + ρ∗ = 0, as expected.
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2.2. Estimators of the second order parameters ρ and β

The estimation of the second order parameter ρ, in A(t) = γ β tρ, is

going to be done through particular members of the class of ρ-estimators in

Fraga Alves et al. (2003). Those estimators are given by

(2.6) ρ̂(i)
n (k) := min

(
0 ,

3
(
T (i)

n (k) − 1
)

T (i)
n (k) − 3

)
, i = 0, 1 ,

where

T (i)
n (k) :=





M (1)
n (k) −

(
M (2)

n (k)/2
)1/2

(
M (2)

n (k)/2
)1/2 −

(
M (3)

n (k)/6
)1/3

if i = 1

ln
(
M (1)

n (k)
)
− 1

2 ln
(
M (2)

n (k)/2
)

1
2 ln
(
M (2)

n (k)/2
)
− 1

3 ln
(
M (3)

n (k)/6
) if i = 0

.

The statistics is (2.6) are consistent for the estimation of ρ whenever the

second order condition (1.2) holds and k is such that k → ∞, k = o(n) and√
k A(n/k) → ∞, as n→ ∞.

Remark 2.2. The theoretical and simulated results in Fraga Alves et al.

(2003), together with the use of these estimators in the Generalized Jackknife

statistics of Gomes et al. (2000), as done in Gomes and Martins (2002), has led

these authors to advise the consideration of the level

(2.7) k1 = min
(
n−1,

[
2n/ ln lnn

])

and of the ρ-estimators

ρ̂0 := min
(
0, 3

(
T (0)

n (k1) − 1
)/(

T (0)
n (k1) − 3

))
if ρ ≥ −1 ,(2.8)

and

ρ̂1 := min
(
0, 3

(
T (1)

n (k1) − 1
)/(

T (1)
n (k1) − 3

))
if ρ < −1 .(2.9)

For the estimation of β we have here considered the estimator of β

in Gomes and Martins (2002) and based on the scaled log-spacings Ui =

i {lnXn−i+1:n − lnXn−i:n}, 1 ≤ i ≤ k. Let us denote ρ̂ any of the estimators

either in (2.8) or in (2.9) (or even in (2.6)). The β-estimator is given by

(2.10) β̂(k) :=
1

nbρ (
k∑

i=1
i−bρ)( k∑

i=1
Ui

)
− k

(
k∑

i=1
i−bρ Ui

)

(
k∑

i=1
i−bρ)( k∑

i=1
i−bρ Ui

)
− k

(
k∑

i=1
i−2bρ Ui

) .

We have then considered β̂ = β̂(k1), k1 given in (2.7).
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3. ASYMPTOTIC PROPERTIES OF γ̃n

3.1. The estimator γ̃n as a linear combination of Hill’s estimators

We first state the following:

Lemma 3.1. A semi-parametric estimator of the tail index γ which is a

linear combination of the k top log-observations, i.e.,

(3.1) γn(k) =
k∑

i=1

ai lnXn−i+1:n

is scale invariant if and only if
k∑

i=1
ai = 0.

Proof: If we consider a change in scale, moving from X to X/C, C > 0,

C 6= 1, the estimator in (3.1) changes to
∑k

i=1 ai lnXn−i+1:n − lnC
∑k

i=1 ai,

which equals γn(k) =
∑k

i=1 ai lnXn−i+1:n if and only if
∑k

i=1 ai = 0.

Lemma 3.2. A semi-parametric estimator of the type (3.1) may be ex-

pressed as a linear combination of Hill’s estimators, i.e.,

(3.2) γn(k) =
k∑

i=1

ai lnXn−i+1:n =
k−1∑

j=1

bj γ̂
H
n (j) ,

where

(3.3) bj = −aj+1 −
1

j+1

k∑

i=j+2

ai, j=1, ..., k−2 , bk−1 = −ak ,

if and only if it is scale invariant, i.e., if and only if
∑k

i=1 ai = 0.

Proof: We may write

k−1∑

j=1

bj γ̂
H
n (j) =

k−1∑

j=1

bj

{
1

j

j∑

i=1

lnXn−i+1:n − lnXn−j:n

}

=
k−1∑

i=1

(
k−1∑

j=i

bj
j

)
lnXn−i+1:n −

k∑

i=1

bi−1 lnXn−i+1:n (b0 ≡ 0)

=
k−1∑

i=1

(
k−1∑

j=i

bj
j
− bi−1

)
lnXn−i+1:n − bk−1 lnXn−k+1:n ,
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i.e., ai =
∑k−1

j=i bj/j − bi−1, 1 ≤ i ≤ k−1, and ak = −bk−1. This linear system

has a unique and possible solution if and only if
∑k

i=1 ai = 0. Then we just need

to solve the linear system of equations:




a2

a3

· · ·
ak


 =




−1 1
2

1
3 · · · 1

k−1

0 −1 1
3 · · · 1

k−1

· · · · · · · · · · · · · · ·
0 0 0 · · · −1







b1
b2
· · ·
bk−1


 =: A b .

Since the inverse matrix of A is

A−1 =




−1 −1
2 −1

2 · · · −1
2

0 −1 −1
3 · · · −1

3
· · · · · · · · · · · · · · ·
0 0 0 · · · −1


 ,

the result follows.

Then, from the relation (1.10) and from Lemma 3.2, it follows straightfor-

wardly that:

Proposition 3.1. The estimator in (1.11), which may be written as

(3.4) γ̃n(k) =
k∑

i=1

ai lnXn−i+1:n , ai =
ψ(k+1) − ψ(i) − 1

k − ψ(k+1) + ψ(1)
, 1≤ i≤k ,

is scale invariant, i.e.
k∑

i=1
ai = 0, and we may write it as the following linear

combination of Hill’s estimator,

(3.5) γ̃n(k) =
k−1∑

j=1

bj γ̂
H
n (j) , bj =

j

(j+1)
(
k − ψ(k+1) + ψ(1)

) .

3.2. The asymptotic behaviour of γ̃n(k)

Theorem 3.1. Under the first order framework (1.1) and for k such that

(1.3) holds, the estimator in (1.11) is a consistent estimator of γ. Moreover,

under the second order framework in (1.2), we have the validity of the following

distributional representation,

(3.6) γ̃n(k)
d
= γ +

γ
√

2√
k
Pk +

1

(1 − ρ)2
A(n/k)

(
1 + op(1)

)
,

where Pk is asymptotically standard normal.
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Proof: Since in the linear combination in (3.5),
∑k−1

j=1 bj = 1, γ̃n(k) is,

under the conditions of the theorem, a consistent estimator of γ. The linear

combination of Hill’s estimators,
∑k−1

j=1 bj γ̂
H
n (j) may be written as

k−1∑

j=1

bj γ̂
H
n (j) =

k−1∑

j=1

bj
j

j∑

i=1

i
[
lnXn−i+1:n − lnXn−i:n

]

=
k−1∑

i=1

i

(
k−1∑

j=i

bj
j

)[
lnXn−i+1:n − lnXn−i:n

]
,

and consequently, with {Ei}i≥1 i.i.d. standard exponential r.v.’s, we may write

k−1∑

j=1

bj γ̂
H
n (j)

d
= γ

k−1∑

i=1

(
k−1∑

j=i

bj
j

)
Ei(3.7)

+ A(n/k) kρ
k−1∑

i=1

i1−ρ

(
k−1∑

j=i

bj
j

)
eρEi/i− 1

ρ

(
1 + op(1)

)
.

For the particular linear combination under study we have

k−1∑

i=1

(
k−1∑

j=i

bj
j

)
=

k−1∑

j=1

bj = 1 ,
k−1∑

j=i

bj
j

=
ψ(k+1) − ψ(i+1)

k − ψ(k+1) + ψ(1)
,

and

k−1∑

i=1

(
k−1∑

j=i

bj
j

)2

=
2k − ψ2(k+1) +

(
2ψ(1)−1

)
ψ(k+1) + ψ(1) − ψ2(1)

(
k − ψ(k+1) + ψ(1)

)2

=
2

k

(
1 + o(1)

)
.

Since E
{(
eρEi/i− 1

)
/ρ
}

= 1/(i− ρ), and
∑k−1

i=1 i
−ρ
{
ψ(k + 1) − ψ(i+ 1)

}
=

O(k−ρ+1)/(1 − ρ)2, we finally get (3.6).

Remark 3.1. The result in Theorem 3.1 has already been obtained for

the estimator in (1.9) by Csörgő and Viharos (1997), who have shown that for in-

termediate sequences k, and with µn(k) = −n
k

∫ k/n
0 (1 + ln(ns/k)) lnU(1/s) ds,

√
k
{
γ̃(K)

n (k) − µn(k)
}

d−→
n→∞

Normal (0, 2γ2) .

But under the second order framework in (1.2), µn(k) may be written as

µn(k) = γ +
A(n/k)

(1 − ρ)2
(
1 + o(1)

)
,

which agrees with the result in (3.6).

Remark 3.2. Notice that, relatively to the Hill estimator, the asymptotic

variance of γ̃n(k) duplicates, but the bias decreases by a factor 1/(1 − ρ).
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3.3. Asymptotic comparison at optimal levels

Now we proceed to an asymptotic comparison of the estimators γ̃n, γ̂H
n and

γ̂GP
n at their optimal levels in the lines of de Haan and Peng (1998), Gomes et al.

(2000, 2002) for sets of Generalized Jackknife statistics, Gomes and Martins

(2001) and also Caeiro and Gomes (2002), for specifically built “asymptotically

unbiased” estimators of the tail index. Suppose γn(k) is a general semi-parametric

estimator of the tail index, for which the distributional representation

(3.8) γn(k) = γ +
σ√
k
Zk + bA(n/k) + op

(
A(n/k)

)

holds for any intermediate k, and where Zk is an asymptotically standard normal

r.v.; then we have

√
k
[
γn(k) − γ

] d→ N
(
λb, σ2

)
, as n→ ∞ ,

provided k is such that
√
k A(n/k) → λ, finite, as n→ ∞. In this situation

we write Bias∞[γn(k)] := bA(n/k) and Var∞[γn(k)] := σ2/k. The so-called

Asymptotic Mean Squared Error (AMSE ) is then given by

AMSE
[
γn(k)

]
:=

σ2

k
+ b2A2(n/k) .

Using regular variation theory it may be proved that, whenever b 6= 0, there

exists a function ϕ(n), dependent only on the underlying model, and not on the

estimator, such that

lim
n→∞

ϕ(n)AMSE [γn0] =
2ρ− 1

2ρ

(
σ2
)− 2ρ

1−2ρ
(
b2
) 1
1−2ρ := LMSE [γn0] ,

where γn0 := γn(k0(n)), k0(n) := arg mink AMSE [γn(k)].

It is then sensible to consider the following measure of efficiency, defined in

a way that the larger such a measure is the better is the estimator.

Definition 3.1. Given two biased estimators γ(1)
n (k) and γ(2)

n (k), both com-

puted at their optimal levels, and for which distributional representations of the

type (3.8) hold, with constants (σ1, b1) and (σ2, b2), respectively, b1, b2 6= 0, the

Asymptotic Root Efficiency (AREFF ) of γ(2)

n0 relatively to γ(1)

n0 is

AREFF2|1 ≡ AREFF
γ
(2)
n0 |γ

(1)
n0

:=
√

LMSE
[
γ(1)

n0

]
/LMSE

[
γ(2)

n0

]

=

((
σ1

σ2

) ∣∣∣∣
b1
b2

∣∣∣∣

) 1
1−2ρ

.

The comparison of the estimator γ̃n with the Hill estimator γ̂H
n , both com-

puted at their optimal levels, leads us to the following result:
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Proposition 3.2. The asymptotic root efficiency of γ̃n relatively to the

Hill estimator γ̂H
n , both computed at their optimal levels, is given by

(3.9) AREFFeγn|bγH
n

=
(
2ρ(1 − ρ)

) 1
1−2ρ ,

being thus greater than 1 iff ρ > −1, and equal to 1 at ρ = 0 and ρ = −1.

The comparison of the three estimators γ̃n, γ̂H
n and γ̂GP

n is done graphically

in Figure 1, where the “best” estimator, in terms of minimum LMSE at the

optimal level, is exhibited. As expected, all depends on the region (γ, ρ), but

for values of ρ close to 0, say ρ > −1, a region where Hill’s estimator exhibits

“disturbing” sample paths, the new estimator γ̃n, at its optimal level, not only

overpasses the Hill estimator for all γ, as stated in Proposition 3.2, but also

overpasses the GP -estimator, at their respective optimal levels, for a wide region

of (γ, ρ)-values.

Figure 1: Mimum LMSE among the estimators γ̂H , γ̃ and γ̂GP

in (1.4), (1.11) and (2.1), respectively.

4. THE ASYMPTOTIC BEHAVIOUR OF ˜̃γ(τ)

n (k)

Notice first of all that we no longer have linear combinations of the top

log-observations, unless τ = 1, and then:

Proposition 4.1. If we consider τ=1 in (1.16), the statistic ˜̃γ(k)≡ ˜̃γ(1)

n (k),

in (1.17), may be written as

(4.1) ˜̃γn(k) =
k∑

i=1

a∗i lnXn−i+1:n ,
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where

(4.2) a∗i =
1

k lnn

{
1 +

k
(
ψ(k+1) − 1

) (
ψ(k+1) − ψ(i) − 1

)

k − ψ(k+1) + ψ(1)

}
.

The statistic ˜̃γn(k) is only asymptotically scale invariant, and consequently can-

not be expressed as a linear combination of Hill’s estimators.

Proof: To get the coefficients of the linear combination in (4.1) we just

need to use again Lemma 3.2. Since
∑k

i=1 a
∗
i = 1

ln n 6= 0, but converging towards 0,

as n→∞, ˜̃γn(k) is not scale invariant, but it is asymptotically scale invariant.

The asymptotic behaviour of ˜̃γ(τ)

n (k) in (1.16) is not directly related to that

of the Hill estimator. Indeed the dominant term of ˜̃γ(τ)

n (k) is {lnXn−k:n}, and

we shall base the proof of the asymptotic behaviour of this estimator on the

following:

Lemma 4.1. If i ≥ 1 is fixed, and under the first order condition (1.1),

(4.3) ln
Xn−i+1:n

U(n)

d−→
n→∞

γ Wi ,

where Wi is a non-degenerate r.v. with a probability density function (p.d.f.)

gi(w) = Λ(w) (− lnΛ(w))i/Γ(i), Λ(w) = e−e−w
, w ∈ R. For k intermediate, and

under the validity of the second order condition (1.2), the distributional repre-

sentation

(4.4) ln
Xn−k:n

U(n/k)
=

γ√
k
Bk + op

(
A(n/k)

)

holds, with Bk an asymptotically standard normal r.v.

Proof: The result in (4.3) is well-known from the field of Extreme Value

Theory (see, for instance, Galambos, 1987). Indeed, since Yn−i+1:n/n converges

towards a non-degenerate r.v. Zi = exp(Wi), and

ln
Xn−i+1:n

U(n)
= ln

U
(
n(Yn−i+1:n/n)

)

U(n)
= γ lnZi + op(1) ,

(4.3) follows.

For k intermediate (Ferreira et al., 2003),

Xn−k:n

U(n/k)
=

U(Yn−k:n)

U(n/k)
= 1 +

γ√
k
Bk + op

(
A(n/k)

)
,

with Bk asymptotically standard normal r.v., and consequently (4.4) holds true.
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Remark 4.1. Notice that Wi
d
= − lnGama(i), where Gama(i) denotes

a gamma r.v., with p.d.f. f(w) = wi−1 exp(−w)/Γ(i), w ≥ 0. Consequently

E(Wi) = −ψ(i), and hence (1.6). The relation (1.5) is also a direct consequence

of (4.4), together with the fact that ψ(k) = ln k +O(1/k), as k → ∞.

We thus have, for every τ > 0, consistency of ˜̃γ(τ)

n (k) for the estimation of

the tail index γ, but we cannot guarantee asymptotic normality. We may however

state the following:

Theorem 4.1. In Hall’s class of models, where (1.13) holds, and both for

fixed and intermediate k, ˜̃γ(τ)

n (k) is consistent for the estimation of γ, for every

τ > 0. For intermediate k we have

(4.5) ln n
{
˜̃γ(τ)

n (k) − γ
}

p−→
n→∞

ln
{
C/τ

}
,

i.e., ˜̃γ(τ)

n (k) exhibits a degenerate behaviour. For models where C=1 (or if we

scale our data, dividing them by the appropriate scale C 6=1, so that we have a

unit scale), we get

(4.6)

√
k lnn

ln k

(
˜̃γ(1)

n (k) − γ
)

d
= γ

√
2 Pk +

√
k A(n/k)

(1 − ρ)2
(
1 + op(1)

)
,

i.e., ˜̃γ(1)

n (k) is asymptotically normal, at a rate of convergence of the order of

ln k/(
√
k lnn), with an asymptotic variance equal to 2 γ2 and an asymptotic bias

equal to λ/(1 − ρ)2, whenever
√
k A(n/k) −→

n→∞
λ, finite.

Proof: The expression of ˜̃γ(τ)

n (k) in (1.16) enables us to get, for fixed k,

˜̃γ(τ)

n (k)
d
= γ +

lnC − ln τ + γ
(
Wk + H̃k +Hk

)
+ op(1)

ln n
,

with Wk, H̃k and Hk non-degenerate r.v.’s. Hence, consistency follows.

For intermediate k,

˜̃γ(τ)

n (k)
d
= γ +

lnC − ln τ

lnn
+ γ

√
2

ln k√
k lnn

Pk +
ln k A(n/k)

(1−ρ)2 lnn

(
1 + op(1)

)
.

Consequently (4.5) follows and, for C = 1, (4.6) follows, as well as the remaining

of the theorem.

Remark 4.2. Note again that the value C = 1 may be achieved through

a change in the scale of our data. Indeed, as said from the beginning, if for the

original r.v. X we have a quantile function UX(t) = C tγ(1 + o(1)), for Y =X/C,

UY (t) = UX(t)/C = tγ(1 + o(1)), and (4.6) holds.

Remark 4.3. Note also that the rate of convergence in (4.6) is of the

order of ln k/(
√
k lnn), which is a o(1/

√
k), for k intermediate and such that

ln k = o(lnn). The rate of convergence 1/
√
k is the usual rate of convergence for

the most common tail index estimators. The rate of convergence here is also the

usual one, whenever k = O(nǫ).
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5. PATTERNS OF MEAN VALUES AND MEAN SQUARE ER-

RORS OF THE ESTIMATORS

From Figure 2 till Figure 7, and with the obvious notation H, GP , H̃

and
˜̃
H instead of γ̂H

n , γ̂GP
n , γ̃n and ˜̃γn, respectively, we present, in the top, the

simulated mean values and MSE ’s of γ̃(K)
n , γ̃n and γ̂GP

n in (1.9), (1.11) and (2.1),

respectively. In the bottom part of each figure we picture the same characteristics

of ˜̃γ(1)

n |C = 0.5, ˜̃γ(C)

n ≡ ˜̃γ(1)

n |C = 1 and ˜̃γ(1)

n |C = 2, as well as of ˜̃γ( bC)

n , in (1.19),

for models in Hall’s class and ˜̃γ( bC0)

n , in (1.20), for models outside Hall’s class.

We place in all Figures the same characteristics of the Hill estimator γ̂H
n , for

an easier comparison. Simulations related to these Figures are based on 2000

runs, due to the computational time associated to the Peaks Over Threshold

methodology. For some of the models, and due the erratic behaviour of the

GP estimator for small values of k, we picture its mean value only for k ≥ 100.

The sample size is n = 1000 and we have considered the following set of models:

1. the Fréchet model, F (x;C) = exp
(
−(x/C)−1/γ

)
, x ≥ 0, with γ = 1 and

C = 0.5, 1 and 2, for which ρ = −1 (Figure 2);

Figure 2: Fréchet parent with γ = 1.

When we look at Figure 2, we immediately notice that the expected changes

have obviously occurred, despite the asymptotic scale invariance of ˜̃γn(k).

Indeed, the changes in C induce a “shift” in the sample paths of our es-

timator. Note that for a scale C, we should get a dominant term of bias
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given by lnC/ lnn = −0.10, 0 and+0.10 for C = 0.5, 1 and 2, respectively,

which really agrees with the simulated mean values’ patterns presented in

Figure 2 (bottom, left).

Remark 5.1. Looking at the mean squared error patterns, presented also

at the Figure 2 (bottom, right), we think that we may play with the tuning

parameter τ in our benefit, in the lines of the work developed in Gomes

and Oliveira (2003b), where, the use of a control parameter {a}, which

is merely a shift, artificially imposed to the data, and the choice of the

adequate value of {a} improves greatly the performance of our original

estimator. The criterion used there for the choice of {a} is a stability

criterion of sample paths. Here the methodology must be different, and

further research is under development, but we have already the adequate

methodologies to deal with this problem. As said before, in Remark 1.2,

we think that the best way to proceed (Oliveira, 2002) is to estimate the

mean squared errors of our estimators as functions of k, merely on the

basis of the available sample, proceeding next to the adaptive choice of the

k and τ -values providing the minimum mean squared error: we already

have access to suitable procedures of estimation of MSE(k), either through

the regression diagnostic methodology of Beirlant et al. (1996a, 1996b) or

through the use of the bootstrap methodology in Draisma et al. (1999),

Danielsson et al. (2001) and Gomes and Oliveira (2001). Such a computer

intensive study is however beyond the scope of this paper.

2. the Burr model, F (x;C) = 1−
(
1+(x/C)−ρ/γ

)1/ρ
, x≥0, γ>0, ρ<0, with

γ=1, C=0.5, 1 and 2 and for ρ =−0.5, −1 and −2 (Figures 3, 4 and 5);

Figure 3: Burr parent with γ = 1 and ρ = −.5.
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Figure 4: Burr parent with γ = 1 and ρ = −1.

Figure 5: Burr parent with γ = 1 and ρ = −2.

a model outside Hall’s class,

3. the Out-Hall model, with a quantile function F←(1−t) = C t−1 e−2t(ln t−1),

for all 0 < t ≤ 1, C = 0.5, 1 and 2 (Figure 6);
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Figure 6: Out-Hall parent with γ = 1.

and the following model for which the second order condition in (1.2) does not

hold:

4. the sin-Burr model, with a quantile function given by F←(1 − t) =

C
(
tρ − sin(tρ)

)−γ/ρ
, 0 < t ≤ 1, with γ = 1, C = 0.5, 1 and 2 and for

ρ = −0.5 (Figure 7).

Figure 7: Sin-Burr parent with γ = 1 and ρ = −.5.
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Figures 8 and 9 are equivalent to the previous figures, but for standard

models with C 6= 1, in (1.13) — the Student models with ν = 4, and 2 de-

grees of freedom. Notice that for the Student model with ν degrees of freedom,

Figure 8: Student(4) parent with γ = .25 and ρ = −.5 (C = 1.32).

Figure 9: Student(2) parent with γ = .5 and ρ = −1 (C = 0.71).
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C=(−cν ν ν/2)1/ν , where cν is given for instance in Martins (2000). For ν=4, and 2

we have c4 =−3/16, and−1/4, respectively. Consequently, for these models C=

1.32 and 0.71, respectively. Such as in Figure 2, it is clear the existence of a bias

close now to lnC/lnn = 0.04, and −0.05 for ν=4 (Figure 8) and ν=2 (Figure 9),

respectively. For a more exhaustive simulation study see Oliveira (2002).

6. FINITE SAMPLE BAHAVIOUR AND ROBUSTNESS OF THE

ESTIMATORS

The estimators γ̂H
n , γ̃n, γ̃(K)

n and ˜̃γ( bC)

n (or ˜̃γ( bC0)

n , whenever we are outside

Hall’s class) will be also denoted γ(1)
n , γ(2)

n , γ(3)
n and γ(4)

n , respectively. The r.v.
˜̃γ(C)

will be denoted γ(5)
n . For the comparison of γ(j)

n , j = 1, 2, 3, 4 and 5, at their

optimal levels, we have implemented a multi-sample simulation of size 5000×10

in order to guarantee small standard errors (not presented in the tables, but

available from the authors) for the simulated characteristics, the Mean Value

(E•), the Mean Squared Error (MSE•), the Optimal Sample Fraction, k•0/n, with

k•0 := arg mink MSE•(k), and the Relative Efficiency (REFF•), defined as

(6.1) REFF• = REFF
[
γ•n0

]
=
√

MSEs

[
γ(1)

n

(
k(1)

0s (n)
)]/

MSEs

[
γ•n
(
k•0s(n)

)]
,

with γ•n0 = γ•n(k•0s(n)), and where MSEs denotes the simulated MSE of the

estimator at its simulated optimal level. The simulator of for instance k•0(n),

denoted by k•0s(n), is Ê10

[
k
•
0(n)

]
, the average of the 10 independent replicates of

k
•
0(n) = arg mink

∑5000
j=1

(
γ•nj(k) − γ

)2
. The simulated mean values of these five

estimators, at their optimal levels, are presented in Table 1 (Fréchet and Burr

parents), Table 3 (Student parents) and Table 5 (Out-Hall, Sin-Fréchet and Sin-

Burr parents). Tables 2, 4 and 6 are equivalent to tables 1, 3 and 5, respectively,

with simulated mean values replaced by simulated mean squared errors.

Finally in Table 4 we present the REFF’s of the estimator ˜̃γ(1)
at its op-

timal level, for models with a scale C 6= 1. Note that the lost in efficiency

is very high for the Fréchet, Sin-Fréchet and Burr models with a large scale,

as it is the scale C = 2, used here for illustration.
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Table 1: Simulated mean values and mean squared errors of bγH
n , eγn, eγ(K)

n , eeγ( bC)
n , and eeγ(C)

n

at the simulated optimal levels, for Fréchet and Burr parents.

n E(1) E(2) E(3) E(4) E(5) MSE(1) MSE(2) MSE(3) MSE(4) MSE(5)

Fréchet parent: ρ = −1, γ = 1

100 1.0987 1.0863 1.1682 1.0877 1.0347 0.0423 0.0365 0.0624 0.0393 0.0188
500 1.0628 1.0597 1.0958 1.1062 1.0297 0.0135 0.0130 0.0192 0.0131 0.0062

1000 1.0490 1.0487 1.0739 1.0501 1.0252 0.0083 0.0082 0.0115 0.0081 0.0039
2000 1.0380 1.0388 1.0565 1.0453 1.0207 0.0051 0.0050 0.0068 0.0050 0.0024
5000 1.0294 1.0286 1.0397 1.0375 1.0159 0.0027 0.0027 0.0035 0.0027 0.0013

Burr parent: ρ = −0.5, γ = 1

100 1.2920 1.2825 1.4944 1.5005 1.0308 0.2286 0.1966 0.3745 0.2342 0.0329
500 1.1851 1.1785 1.2876 1.2718 1.0342 0.0834 0.0736 0.1245 0.0826 0.0121

1000 1.1545 1.1488 1.2321 1.2147 1.0330 0.0557 0.0500 0.0808 0.0555 0.0083
2000 1.1329 1.1236 1.1872 1.1861 1.0303 0.0374 0.0339 0.0527 0.0379 0.0057
5000 1.1021 1.0980 1.1424 1.0858 1.0266 0.0228 0.0207 0.0306 0.0228 0.0035

Burr parent: ρ = −1, γ = 1

100 1.1361 1.1331 1.2424 1.2034 1.0452 0.0705 0.0648 0.1138 0.0664 0.0246
500 1.0782 1.0776 1.1266 1.1207 1.0336 0.0216 0.0206 0.0316 0.0207 0.0080

1000 1.0640 1.0625 1.0968 1.0699 1.0286 0.0132 0.0128 0.0188 0.0129 0.0050
2000 1.0498 1.0494 1.0741 1.0664 1.0238 0.0082 0.0080 0.0112 0.0079 0.0032
5000 1.0373 1.0368 1.0523 1.0330 1.0185 0.0043 0.0043 0.0057 0.0042 0.0017

Burr parent: ρ = −2, γ = 1

100 1.0660 1.0648 1.1301 1.0179 1.0333 0.0294 0.0295 0.0469 0.0319 0.0181
500 1.0376 1.0385 1.0639 1.0655 1.0232 0.0077 0.0085 0.0118 0.0098 0.0052

1000 1.0290 1.0299 1.0465 1.0534 1.0186 0.0044 0.0049 0.0065 0.0059 0.0030
2000 1.0218 1.0228 1.0338 1.0290 1.0146 0.0025 0.0028 0.0036 0.0030 0.0017
5000 1.0148 1.0160 1.0222 0.9970 1.0103 0.0012 0.0013 0.0016 0.0013 0.0008

Table 2: Simulated mean values and mean squared errors of bγH
n , eγn, eγ(K)

n , eeγ( bC)
n , and eeγ(C)

n

at the simulated optimal levels, for Student parents.

n E(1) E(2) E(3) E(4) E(5) MSE(1) MSE(2) MSE(3) MSE(4) MSE(5)

Student(4) parent: ρ = −0.5, γ = 0.25

100 0.3559 0.3548 0.4400 0.4435 0.2539 0.0316 0.0269 0.0557 0.0395 0.0029
500 0.3171 0.3137 0.3580 0.3287 0.2575 0.0109 0.0095 0.0174 0.0123 0.0010

1000 0.3037 0.3027 0.3365 0.3355 0.2576 0.0072 0.0063 0.0111 0.0081 0.0007
2000 0.2956 0.2939 0.3197 0.3228 0.2574 0.0048 0.0043 0.0072 0.0054 0.0005
5000 0.2860 0.2844 0.3025 0.2947 0.2569 0.0029 0.0026 0.0041 0.0031 0.0003

Student(2) parent: ρ = −1, γ = 0.5

100 0.5988 0.5937 0.6832 0.6047 0.5235 0.0374 0.0329 0.0640 0.0381 0.0081
500 0.5556 0.5545 0.5959 0.5295 0.5187 0.0114 0.0104 0.0174 0.0107 0.0029

1000 0.5448 0.5425 0.5721 0.5426 0.5155 0.0069 0.0063 0.0101 0.0064 0.0018
2000 0.5356 0.5335 0.5546 0.5238 0.5127 0.0042 0.0039 0.0059 0.0040 0.0011
5000 0.5253 0.5235 0.5370 0.5240 0.5096 0.0022 0.0020 0.0029 0.0021 0.0006

Student(1) parent: ρ = −2, γ = 1

100 1.0929 1.0642 1.1866 0.7481 1.0334 0.0608 0.0601 0.1019 0.0261
500 1.0557 1.0551 1.0985 1.0848 1.0305 0.0163 0.0174 0.0258 0.0187 0.0081

1000 1.0410 1.0431 1.0722 1.0340 1.0239 0.0093 0.0101 0.0143 0.0112 0.0048
2000 1.0314 1.0332 1.0526 1.0656 1.0184 0.0053 0.0059 0.0079 0.0066 0.0028
5000 1.0217 1.0231 1.0342 1.0151 1.0132 0.0025 0.0028 0.0036 0.0031 0.0014
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Table 3: Simulated mean values and mean squared errors of bγH
n , eγn, eγ(K)

n , eeγ( bC0)
n , and eeγ(C)

n

at the simulated optimal levels, for Out-Hall, Sin-Fréchet and Sin-Burr parents.

n E(1) E(2) E(3) E(4) E(5) MSE(1) MSE(2) MSE(3) MSE(4) MSE(5)

Out-Hall parent: ρ = −1, γ = 1

100 0.7178 0.7228 0.7881 0.7320 0.9248 0.1574 0.1568 0.1289 0.1517 0.0146
500 0.8255 0.8325 0.8808 0.8368 0.9569 0.0653 0.0644 0.0502 0.0625 0.0103

1000 0.8613 0.8657 0.9062 0.8704 0.9618 0.0437 0.0431 0.0333 0.0418 0.0076
2000 0.8892 0.8922 0.9252 0.8961 0.9669 0.0291 0.0286 0.0220 0.0278 0.0055
5000 0.9166 0.9189 0.9436 0.9220 0.9728 0.0169 0.0166 0.0128 0.0161 0.0034

Sin-Fréchet parent: γ = 1

100 1.0284 1.0680 1.1263 1.0629 1.0391 0.0359 0.0380 0.0593 0.0347 0.0209
500 1.0067 1.0223 1.0372 1.0184 1.0155 0.0073 0.0091 0.0114 0.0078 0.0056

1000 1.0025 1.0133 1.0204 1.0107 1.0098 0.0036 0.0047 0.0055 0.0040 0.0031
2000 1.0011 1.0075 1.0104 1.0060 1.0058 0.0018 0.0024 0.0027 0.0021 0.0016
5000 1.0007 1.0033 1.0041 1.0027 1.0027 0.0007 0.0010 0.0010 0.0009 0.0007

Sin-Burr parent: ρ = −0.5, γ = 1

100 1.0459 1.1088 1.2267 1.0873 1.0382 0.1601 0.1314 0.2380 0.1498 0.0296
500 1.0116 1.0301 1.0480 1.0286 1.0184 0.0323 0.0290 0.0378 0.0277 0.0100

1000 1.0042 1.0168 1.0235 1.0150 1.0115 0.0163 0.0151 0.0179 0.0140 0.0059
2000 1.0030 1.0091 1.0110 1.0078 1.0066 0.0081 0.0077 0.0085 0.0070 0.0033
5000 1.0011 1.0037 1.0041 1.0033 1.0028 0.0032 0.0031 0.0033 0.0028 0.0015

Table 4: Relative efficiencies of eeγ(1)

n relatively to bγH
n , at their optimal levels,

for models with C 6= 1.

n 100 500 1000 2000 5000

Fréchet (γ =1, ρ=−1, C = .5) 1.5713 1.9344 2.0609 2.1933 2.4099

Fréchet (γ =1, ρ=−1, C =2) 0.9726 0.7781 0.7039 0.6304 0.5422

Burr (γ =1, ρ=−.5, C = .5) 2.8678 3.2438 3.4208 3.5979 3.9156

Burr (γ =1, ρ=−.5, C =2) 2.0830 1.7470 1.6127 1.4894 1.3433

Burr (γ =1, ρ=−1, C = .5) 1.9624 2.1431 2.2474 2.3686 2.5641

Burr (γ =1, ρ=−1, C =2) 1.1404 0.9347 0.8472 0.7660 0.6569

Burr (γ =1, ρ=−2, C = .5) 1.3344 1.4941 1.5549 1.6196 1.7241

Burr (γ =1, ρ=−2, C =2) 0.8069 0.6189 0.5436 0.4719 0.3808

Student(4) (γ =0.25, ρ=−0.5, C =1.32) 2.5488 1.9430 1.7554 1.5875 1.3802

Student(2) (γ =0.5, ρ=−1, C = .71) 2.0645 2.4684 2.5236 2.6085 2.7371

Student(1) (γ =1, ρ=−2, C = .32) 0.9243 1.0394 1.3273 1.8245 1.9260

Out-Hall (γ =1, C = .5) 1.9073 1.5357 1.4122 1.2991 1.1562

Out-Hall (γ =1, C =2) 3.2856 3.8498 3.6741 3.6192 3.6691

Sin-Fréchet (γ =1, C = .5) 1.4649 1.4346 1.3653 1.3087 1.2586

Sin-Fréchet (γ =1, C =2) 0.8766 0.6537 0.5592 0.4720 0.3658

Sin-Burr (γ =1, ρ=−.5, C = .5) 2.5707 2.0930 1.9252 1.7945 1.6664

Sin-Burr (γ =1, ρ=−.5, C =2) 1.6669 1.2783 1.1763 1.1088 1.0713
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A few final remarks:

1. The class of statistics ˜̃γ(τ)

n (k) revealed a surprisingly good behaviour among

the estimators considered both for small and for large sample sizes, and

for all the simulated models (most of them in the class of models where

(1.13) holds, with C = 1). Indeed, for every k, we have got MSE
[ ˜̃γn(k)

]

smaller than MSE
[
γH

n (k)
]

and also smaller than MSE
[
γ̃n(k)

]
for all models

simulated. This class of statistics also enables us to find an estimator of the

tail index γ, which behaves better than the maximum lilelihood estimator

based on the Generalized Pareto excesses, for most of the models simulated.

2. Particularly astonishing is the behaviour of ˜̃γ(τ)

n (k) for small values of ρ,

like the value ρ = −2 used herein for illustration, a region where has been

claimed to be difficult to find good competitors for the Hill estimator. Also,

the results obtained for models for which the second order condition does

not hold deserve further investigation, and are interesting from a point of

view of a more general application.

3. It may be claimed that such a good behaviour is due to the fact that
˜̃γn(k) is not only non-invariant for location, like the Hill statistic, but also

non-invariant for scale. The adequate estimation of the parameter C is a

possible way out, but that induces an increase in the variance of our final

tail index estimator, and the nice features of this estimator will disappear.

Alternatively, the best way to proceed is to estimate the mean squared

errors of our estimators as functions of k, merely on the basis of the available

sample, proceeding next to the adaptive choice of the k and a τ -value

providing a mean squared error smaller than that of the Hill estimator for

every k. It is perhaps also sensible to use an extra tuning parameter a,

a shift in the location of our data, like in Gomes and Oliveira (2003b).

All this work is essentially computational, and as said before, overpasses

the scope of this paper.
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