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the concept of likelihood in statistics and in clinical diagnostic tests. This contradicts
what is usually stated.
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1. INTRODUCTION

The likelihood function plays a central role in parametric statistical infer-

ence since it contains all the information in the observed data. It is used in

both frequentist antagonistic approaches, Fisherian and Neyman–Pearson–Wald

(NPW), but in neither methodology it is the main tool. On the other hand, the

only experimental source of information to the ones fond of Bayesian methodology

is exactly the likelihood function. Hence, for Bayesians using uniform (proper or

improper) densities, the only relevant tool for analysis is the likelihood function.

Most Bayesians and frequentists may disagree with the views presented here

(see [2] and [21]) since they are close to the ideas described by Ronald Fisher in

his last and controversial book, [12]. We believe that it is closer to the Bayesian

perspective than to the standard frequentist approaches. A recent revival of

interest in the likelihood approach is in action; see [23], [25], [30], [39], [40],

and [41] for instance. The site http://www.stat.unipd.it/LIKASY/biblio.html

presents a comprehensive list of references.

A brief history is presented in Section 2. The likelihood perspective is pre-

sented and discussed in Sections 3 and 4. In Section 5, diagnostic tests results

are compared to the contingencies of statistical results of the different views.

In Section 6 we present an index for the diagnostic ability of a clinical test.

Section 7 contains the likelihood view of a diagnostic test with a graphical illus-

tration. Finally, in Section 8 we present a real example to illustrate the ideas

discussed in previous sections.

2. STATISTICAL TESTS — A BRIEF HISTORY

Some of the material of this section can be found in [42]. The idea of

significance tests was proposed by Fisher, who introduced the p-value as an index

of agreement between the data and the null hypothesis: the greater the p-value,

the greater the evidence in favor of the null hypothesis. A p-value of 5% is

commonly used as a standard threshold for deciding against H (p < 0.05) or in

favor of H (p> 0.05). However, we strongly support the idea that the choice of

the threshold should depend on the problem currently faced by the scientist, the

sample size, and the amount and type of information being collected. This is in

fact the idea of significance tests as prescribed by [7] and [22].

The subjective judgment of an observed p-value to decide against or in

favor of H led Neyman and Pearson ([29]) and Wald ([43] and [44]) to proposing

the theory of Test of Hypotheses. This theory, contrarily to Fisher’s significance
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tests, was designed to replace the subjective judgment of the strength of evidence

in favor of the null hypothesis, provided by a p-value judgment, with an objective

decision-theoretical approach. By fixing, in advance, the Type I error rate, α,

and minimizing the Type II error rate, β, the number of wrong decisions, made

over many different repetitions of the experiment, would be limited. This may

generate some controversy since only in very few medical applications repetitions

are possible.

Originally, the NPW theory required the specification of single point null,

H, and alternative, A, hypotheses. By fixing Type I and Type II error rates, the

sample size could be determined. Sample size determination is an area in which

NPW theory has been appropriately used in medicine (and also in industrial

quality control), although a confuse mixture of the Fisher and NPW approaches

to hypothesis testing may be found in the medical literature. Statements such

as “p-values smaller than 5% were considered statistically significant”, without

specifying the alternative hypothesis and the Type II error rate, are common.

It is usual to have a table with p-values and intervals obtained by summing and

subtracting twice the sample standard error from the sample mean.

Jeffreys [20] attacked the problem under a Bayesian perspective. Let x

denote the observations, π and π(x) the prior and posterior probabilities for H.

Alternatively the corresponding probabilities for A are (1− π) and [1− π(x)].

Defining the prior and posterior odds by

ρ = π(1− π)−1 and ρ(x) = π(x)
[

1− π(x)
]−1

,

Jeffreys proposed to look at the posterior odds, also called Bayes Factor, as the

index of evidence in favor of H.

In the case of single point hypotheses, let fH(x) and fA(x) be the two al-

ternative densities being compared. The likelihood ratio is R(x) = fH(x)/fA(x).

Hence, one can easily prove that ρ(x) = ρR(x). Also, for π = 1/2 we would have

ρ(x) = R(x). Hence, for the case of single point hypotheses, judging H based

on the likelihood ratio corresponds to a Bayesian judgment with very particular

prior choices. On the other hand, recall that the likelihood ratio is the function

used by the Neyman–Pearson theorem of optimal decision. Also, note that one

can use R(x) to order the sample space, [8], [28] and [38]. If the computation

of the p-value were performed under this ordering, the alternative hypothesis

would be taking into consideration. As one may see, the three methods have

their conclusions based on the likelihood ratio, R(x).

Real controversial problems emerge with the consideration of composite

hypotheses. Many of the practical problems in medicine involve sharp null hy-

potheses. That is, the dimension of the subspace where H is defined is smaller

than the dimension of the subspace where A is defined. Let us consider the well-

known standard problem of the test for independence in a 2×2 contingency table.
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Let C1 and C2 be two populational characteristics and x = (x11, x12, x21, x22) be

the vector of the sample frequencies for the respective combination of the levels

of categories C1 and C2. The parameter space associate with this experiment is

the simplex

Θ =

{

(

θ11, θ11, θ11, θ11

) ∣

∣ θij>0,
2
∑

i,j=1

θij = 1

}

and the null hypothesis is defined by the subset

ΘH =

{

[

pq, p(1− q), (1− p)q, (1− p) (1− q)
]

∣

∣ 0<p, q<1

}

.

Note that the two hypotheses are composite and that p = θ11 + θ12 and

q = θ11 + θ21. The sets that define the null and the alternative hypotheses, ΘH

and ΘA = Θ−ΘH , have different dimensions, i.e., dim(Θ) = 3 > dim(ΘH) = 2.

Letting f(x|θ) denote the likelihood function, frequentists will define SH(x)

and SA(x) as the suprema of f(x|θ) under H and A, respectively. The profile

likelihood ratio is defined as PR(x) = SH(x)/SA(x). Bayesians, on the other

hand, in addition to the prior probabilities for H and A, namely π(H) and

[1−π(H)] = π(A), define densities over ΘH and ΘA. Considering these densities

as weighing systems — systems indexes that defines a preference order on the

points of the space — and taking the weighted likelihood averages, MH(x) and

MA(x), under ΘH and ΘA respectively, they define the Bayes Factor BF (x) =

ρMR(x) where ρ = π(1−π)−1 is the prior odds and MR(x) =MH(x)/MA(x)

is the weighted likelihood ratio. To compute the weighted averages one must

uses the weighing systems considered for ΘH and ΘA. [18] uses this approach

for a Bayesian version of the McNemar test for also comparing two composite

hypotheses of different dimensions in a 2×2 contingency table. NPW (Jeffreys’s

Bayesian) approach for hypothesis testing consists of the evaluation of PR(x)

[BF (x)]. The Fisher approach for testing independence is a modification based

on a conditional distribution of the data in the basic cells of the table given

the marginal cells. It does not seem appropriate to consider that the marginal

cells are known before the data were observed. For example, consider an overall

frequency of 20 for the contingency table. The number of possible tables (the

sample space size) in this case is 1771. If a marginal total is 5, for instance, the

number of possible tables with this marginal is 6. That is, for considering a given

marginal we reduce our sample space from 1771 possibilities to only 6 possibilities

and the p-value could be much greater than it should be. For a detailed discussion

on this matter see [17] and [35].

The fourth approach to hypothesis tests is that of (pure) likelihood, which

is described in the next section.
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3. LIKELIHOOD APPROACH

The deductive nature of probability versus the inductive nature of statisti-

cal inference is clearly reflected in the dual concepts of probability distributions

and likelihood ([24] and [11]). Given a probability model and the corresponding

Population Sample

Deduction: Probability

Induction: Inference

Figure 1: Probability and Statistics Harmonization.

parameter values, we may calculate the probabilities associated to all possible

observations, x. Suppose that before observing the performance of the next 10

patients that will be submitted to a drug known to have efficacy of 60%, a doctor

writes his probability model function for “the number of recovered patients, X”

as:

f(x|.6) = Pr
{

X= x|θ = 0.6
}

=

(

10

x

)

(.6)x (.4)10−x .

The probability of having 7 recovered patients is f(7|.6) = .215. Note that f(x|θ)

is a function of two variables: x, the observation, and θ, the parameter. For fixed θ,

f is a probability function of x and for fixed x, f is a function of θ called likelihood

function associated to the observed value, x. Suppose that we observe 7 success

and 3 failures for this sample of 10 patients. The likelihood function is

L
(

θ|X= 7
)

= Pr
{

X= 7|θ
}

=

(

10

7

)

θ7(1− θ)3 = (120) θ7(1− θ)3 .

In order to illustrate the differences between probability and likelihood

functions, in Figure 2 we present the corresponding probability functions for

θ = .6 and for θ = .3, while in Figure 3 we present the likelihood functions for

x = 7 and for x = 2.

Note that the two probability functions in Figure 2 are discrete. Since

the parameter space Θ is the interval [0; 1], the likelihood functions depicted in

Figure 3 are continuous. A statistical model has two arguments, the possible

observations and the possible values of the parameter. The likelihood function is

not a probability density function. However, dividing it by its integral over the
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parameter space (whenever this integral exists), the resulting normalized likeli-

hood is a probability density over Θ, and corresponds to the Bayesian posterior

density under a uniform prior. Areas under this curve define probabilities of

subsets of the parameter space.

Figure 2: Binomial probability functions for n = 10.

The likelihood function, L, induces an ordering of preferences about the

possible parameter points. Note that this order is not changed if a proportional

function is defined. This means that we can divide L by any constant without

modifying the conclusions about parameter point preferences. We can divide L

by its integral obtaining the normalized likelihood, the Bayesian way, or divide

it by the maximum value of L whenever it exists, obtaining what we call relative

likelihood. Comparing two parameter values, we would say that the one with

higher (normalized or relative) likelihood is more plausible than the other.

An important feature of the Likelihood approach is that it is independent of

stopping rules. That is, it does not violate the likelihood principle, [1], [3] and [5].

For instance, suppose that another doctor in another clinic decided to start his

analysis only when he obtain 3 failures, i.e., 3 patients that do not recover.

As soon he obtained his 3rd failure, corresponding to the 10th patient, he realizes

that he had 10 patients with 7 successes and 3 failures. Although he has the same

results as his colleague, the underlying statistical model is completely different

but his (normalized) relative likelihood is equal to the one obtained from the

previous models. Here the probability model is a negative binomial distribution.

That is, the random variable is the number Y of failures to be observed since the

number of failures k was fixed in advance. The model here is given by

P
{

Y = y|θ
}

=

(

y + k − 1

y

)

θy(1− θ)k .
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For the sample with k = 3 and y = 7, the likelihood is proportional to the one

illustrated in Figure 3. Figure 4 shows the negative binomial probability distri-

butions for k = 3, θ = .6 and θ = .3.

Figure 3: Binomial likelihood functions for n = 10.

Note that for both Figures 2 and 4, the probabilistic models, Binomial

and Negative Binomial, have their sample space well defined since the stopping

rules were defined previously. However there are many cases in medical statistics

Figure 4: Negative Binomial probability function for k = 3.

where the sample space is not well defined. For instance, suppose that a doctor

wants to write a paper and decides to look at the data he has collected up to
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that moment. In this case, neither the sample size nor the number of success (or

failures) was fixed a priori. However, if he had observed 7 recoveries in 10 patients,

his likelihood would be proportional to θ3(1− θ)7, which is proportional to both

observed Binomial and Negative Binomial likelihoods. Hence, in all 3 cases, the

relative (normalized) likelihoods are exactly the same and then the inference

would be the same as prescribed by the likelihood principle. We emphasize that

the normalized likelihood for the example of 3 failures and 7 successes is a beta

density with parameters a = 4 and b = 8. The relative likelihood is the beta

density divided by the density evaluated at its mode, which is the maximum

likelihood estimate, 3/10 = .3.

In Figure 5 we illustrate the relative likelihood for 3 failures and 7 successes,

with a solid line intercepting it at points with plausibility equal to 1/3 (relative

to the maximum) and a dotted line at points with plausibility equal to .8057.

Figure 5: Relative Likelihood, and 1/3 and .8057 Plausible Levels.

Recall that the maximum of the likelihood function is attained at θ = .7. Also,

at θ = .6, the suggested drug efficacy, the plausibility is .8057. Note that both

θ1= .4681 and θ2 = .8770 have plausibility equal to 1/3. Any parameter point in-

side (outside) the interval I(1/3)=[.4681; .8771] has palusibility larger (smaller)

than 1/3. If one uses the normalized likelihood as the posterior density, the

(posterior) probability that the unknown parameter θ lies in I(1/3) is equal

to .8859. That is, I(1/3) is a credible interval for θ with credibility 88.59%.

This probability (or credibility) is calculated by computing the area under the

curve limited by the vertical segments at .4681 and .8771 divided by the total

area under the curve.
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Consider the other point, θ00 = .7886, with the same plausibility as the sug-

gested drug efficacy, θ0 = .6. These two points have plausibility equal to .8057

and the interval I(.8057) = [.6000; .7886] has credibility 51.65%. Considering

now θ0 = .4, the corresponding parameter point with the same plausibility is

θ00 = .9124. These points have plausibility equal to .1592 and the interval

I(.1592) = [.4000; .9124] has credibility 95.90%.

Observing the low (high) probability of having a parameter value with

more plausibility than .6 (.4), we would say that the hypothesis H : θ = .6

(H : θ = .4) should be not rejected (accepted). We suggest that the credibility

of the interval [θ0; θ00] may be interpreted as an index of evidence against the null

sharp hypotheses H : θ = θ0 or H : θ = θ00. The probability of the complement of

this credibility interval is an index (like a p-value) of evidence in favor of H; see

[37] and [27] for more on this measure of evidence. For the two cases presented

here, the evidence in favor of H is 48.35% for H : θ = .6 and 4.10% for H : θ = .4.

We end this section by stating a rule to be used by Pure Likelihood followers.

Pure Likelihood Law: If the relative likelihood function of two points,

θ0 and θ1, satisfy RL(θ0) >(<)RL(θ1), we say that θ0 is more (less) plausible

than θ1. We say they have the same plausibility if equality of the likelihood

functions holds. For single point hypotheses H : θ = θ0 versus A : θ = θ1 if

RL(θ0) <(>)RL(θ1), we reject (accept) H. The strength of evidence of the data

x in favor of H against A is measured by the likelihood ratio, LR(θ0; θ1) =

RL(θ0)/RL(θ1).

For the example above, we have LR(.6; .7)= .8057 and LR(.6; .4)=5.0625.

4. LADDER OF UNCERTAINTY AND CONTROVERSIES

Tests of hypotheses are decision procedures based on judgments and one

can only judge something in relation to the alternatives. The concept of statistical

evidence of some data, x, in favor or against some hypothesis must be relative in

nature. We should not talk about evidence for or against H without mentioning

the alternative A. Pereira & Wechsler ([38]) show how to build a p-value that

takes the two antagonistic hypotheses into consideration.

An implication of the pure law of likelihood is that: “uncertainty about

x given θ” and “statistical evidence in x about θ” have different mathematical

forms. The statistical model is based on a trinity of mathematical elements: the

sample space X, the parameter space Θ and a function f(·|·) of two arguments
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(x, θ) ∈ X×Θ. For every fixed θ ∈ Θ, f(·|θ) is a probability (density) function

on X and for every fixed x ∈ X, f(x|·) = L(·|x) is the likelihood function.

The following sets characterize the statistical model:

i) = =
{

f(x|θ) | x ∈ X, θ ∈ Θ
}

is the overall statistical model,

ii) ∀ θ ∈ Θ, =θ =
{

f(x|θ) | x ∈ X
}

are the probability models, and

iii) ∀x ∈ X, =x =
{

f(x|θ)=L(θ|x) | θ ∈ Θ
}

are the likelihood functions.

Uncertainty is measured by probabilities, =θ, and evidence is measured

by the likelihood, =x. This is a critical insight: the measure of the strength of

evidence and the frequency with which such evidence occurs are distinct mathe-

matical quantities, [6]. [39] clearly explains alternative areas of Statistics where

these concepts appear. Suppose a patient has a positive result in a diagnostic

test, the physician might draw one of the following conclusions:

1. The person probably has the disease,

2. The person should be treated for the disease,

3. The test results are evidence that the person has the disease.

These possible attitudes front the tests results may represent, respectively,

answers to different questions:

1′. What should I believe?

2′. What should I do?

3′. How should I interpret this body of observation as evidence about

having the disease against not having the disease?

These questions involve distinct aspects of statistical methods, namely:

frequentist or Bayesian inference, decision theory and, lastly, interpretation of

statistical data as containing evidence, the significance test of hypothesis.

The correctness of the answer for the first question requires, the additional

information of the behavior of the test in other (exchangeable) patients or the

personal opinion about the probability of the disease before the test (prior prob-

ability). For the second question, in addition to the requirements of the first, one

also needs knowledge about the costs or utilities of the decisions to be made.

Only the third one does not require additional information other than data.

[4] considers these arguments to suggest that the role of the likelihood in Statistics

is equivalent to the role of diagnostic tests used in Medicine.

Royall ([39]) also discusses a possible paradox in the use of the pure likeli-

hood approach through the following example:

“We pick a card at random out of a deck of 52 cards and observe

an ace of clubs. Then consider two alternative hypotheses H: it is

a deck with 52 aces of clubs or A: it is a standard deck of cards.

The likelihood ratio of H against A is 52. Some find this disturbing.
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What this result shows is that this strong evidence is not strong

enough to overcome the prior improbability of H. A Martian faced

with this problem would find H most appealing.”

Clearly, the Martian’s ignorance about card decks does not permit him to

use the tools used by both Bayesian and frequentist statisticians. These peo-

ple may achieve stronger results than pure likelihood statisticians do, but at the

price of more assumptions in their applications. [30] tentatively tries some rec-

onciliation among the different approaches using the Fisherian idea of ladder of

uncertainty. It remains to be proved that his ideas will succeed in Statistics by

means of practical applications.

5. DIAGNOSTIC TESTS AND STATISTICAL VEREDICTS

The inadequacy in relying only and strongly on p-values in medicine has

been widely emphasized in recent years. Worst yet, is the lack of understand-

ing of what p-values are. In this section we present quantities that may be of

more interest to medicine than the p-values are. For more discussion on the

subject we refer to [9] and [32]. We use the following notation: D+= Disease,

D−= No Disease, T+= Positive test result and T−= Negative test result.

For the populational parameters let N(++) be the frequency of units in category

(D+T+), N(+−) the units in category (D+T−), N(−+) the units in category

(D−T+), and N(−−) the units in category (D−T−). N(+•) denote the num-

ber of units with the disease, N(−•) the number of units without the disease,

N(•+) the number of units with positive test result, and N(•−) the number of

units with negative test result.

The following quantities are of great interest for physicians evaluating

patients. For a randomly selected unit from the population we define the fol-

lowing quantities:

a. Sensitivity is the conditional probability of responding positively

to the test given that the patient has the disease, i.e., S = Pr{T+|D+} =

N(++)/N(+•).

b. Specificity is the conditional probability of responding negatively to

the test given the absence of the disease, i.e., E = Pr{T−|D−} = N(−−)/N(−•).

c. Prevalence is the probability that the patient has the disease, i.e.,

π = Pr{D+} = N(+•)/N . Alternatively, (1− π) = Pr{D−} is the probability

that the patient does not have the disease.
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d. Test Positivity and Test Negativity are the probabilities of positive

and negative test results, i.e., τ = Pr{T+} = N(•+)/N and (1− τ) = N(•−)/N .

e. Diagnostic Parameters are the posterior probabilities of the states

of a patient given the response to the clinical test:

PPV: Positive Predictive Value is the conditional probability of presence

of disease given positive test response: π(T+) = Pr{D+|T+} =

N(++)/N(•+) and

NPV: Negative Predictive Value is the conditional probability of absence

of disease given negative test response: [1−π(T−)]=Pr{D−|T−}=

N(−−)/N(•−).

The quantities of higher interest in clinical practice are the predictive val-

ues, PPV and NPV. Using Bayes formula, we obtain important relations be-

tween the predictive values and the other terms of the model, namely

PPV = π(T+) =
πS

πS + (1− π) (1−E)
=

{

1 +

[(

π

1− π

)(

S

1−E

)]−1
}−1

and

NPV =
[

1−π(T+)
]

=
(1− π)E

(1− π)E + π(1−S)
=

{

1 +

[(

1− π

π

)(

E

1−S

)]−1
}−1

.

Denoting the likelihood ratio for positive results by LR(+) = S/(1−E),

the likelihood ratio for negative results by LR(−) = (1−S)/E and the prevalence

odds by ρ = π/(1− π) we have:

PPV =
{

1 +
[

ρLR(+)
]−1
}−1

and PPV =
{

1 + ρLR(−)
}−1

.

Considering ρ as the prior odds in favor of the disease and 1/ρ as the prior

odds against it, the posterior odds in favor and against the disease become

ρ(+) = PPV ÷ (1−PPV) and ρ(−) = NPV ÷ (1−NPV). Relating all these

quantities we obtain the following interesting formulas:

ρ(+) = ρLR(+) =
[

(prior odds)× (likelihood ratio for +)
]

,

ρ(−) =
[

ρLR(−)
]−1

=
[

(prior odds)× (likelihood ratio for −)
]−1

,

ρ(+) =
prevalence

1− prevalence
×

sensitivity

1− specificity
,

ρ(−) =
1− prevalence

prevalence
×

specificity

1− sensitivity
,

PPV = ρ(+)
[

1 + ρ(+)
]−1

and NPV = ρ(−)
[

1 + ρ(−)
]−1

.
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The important question for a physician working with diagnostic tests is to

decide what to do when the result is positive (or negative). In fact, measures

of sensitivity and specificity, when available, would be of great help to him since

they may yield other valuable quantities, see [9] and [32]. Note that if there

is a big change from prior to posterior odds the test will be considered of great

value. In the next section we discuss a way of defining diagnostic power of clinical

evaluations. This index is of great value to state an order of preference in a set

of clinical procedures

6. DIAGNOSABILITY

In this section we discuss the diagnostic power of a medical test. To evaluate

the diagnostic ability of a test T , we should focus on the change from ρ to

ρ(+) and from (1− ρ) to [1− ρ(−)]. This is related with the weight of evidence

provided by T+ (T−) in favor of D+ (D−) and denoted by ω+ = ω(D+;T+)

[ω−= ω(D−;T−)]. Good ([14]) showed that the function ω, to follow reasonable

requirements, ought to be an increasing function of the odds ratio — the ratio of

posterior to prior odds — or, equivalently, an increasing function of the likelihood

ratio. That is, ω+ and ω− must be increasing functions of ρ(x) ρ−1= LR(+) =

S(1−E)−1 and ρρ(−) = [LR(−)]−1= E(1−S)−1, respectively.

The usual cross-product ratio (in the context of contingency tables), useful

in measuring association, is simply

R =
LR(+)

LR(−)
=

SE

(1−S) (1−E)
=

(PPV) (NPV)

(1−PPV) (1−NPV)
.

As we will see in the sequel, the larger R is, the better the test for detecting

disease D, i.e., the better its diagnosability.

As a consequence of the requirement of additivity of information, [13] proves

that the weights of evidence, ω+ and ω−, are the natural logarithms of LR(+)

and LR(−). [13] also points out that the expected value of the weight of evidence

is more meaningful than the likelihood ratio. Hence, the measure of the ability of

a medical test, T , to discriminate in favor of D+ (D−), given that the true state

of nature is D+ (D−) is the conditional expectation of ω+ (ω−) given S, E and

the state of the patient, D+ or D−. We denote these conditional expectations by

ε+ and ε− Finally, the diagnosability of T is by definition ∆ = ε+ + ε−. Let us

explicitely introduce these formulas:

Weight of Evidence

a) In favor of D+,

ω(D+;T+) = ω+= ln[LR(+)] and ω(D+;T−) = −ω−= ln[LR(−)].
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b) In favor of D−,

ω(D−;T+)=−ω+=− ln[LR(+)] and ω(D−;T−)=ω−=− ln[LR(−)].

Average Weight of Evidence

c) In favor of D+ = ε+ = Sω+ − (1−S)ω− .

d) In favor of D− = ε− = Eω− − (1−E)ω+ .

Diagnosability Index

e) ∆ = (S+E−1) lnR.

We would like to call the attention to the fact that all these indices depend

strongly on the values of many parameters that are in fact not completely known.

Usually the prevalence, the sensitivity and the specificity have to be estimated

with sample data. [36] introduced Bayesian techniques for such purposes. They

also consider the case where a set of clinical tests are observed in the same subject

and show how a combination of them improves the diagnosability of the medical

procedure. In a predictivist context, [33] and [34] show that if we look at a

particular patient, the computation of her/his posterior probability of having the

disease simplifies significantly the diagnostic calculus.

In order to decide if a new (possibly expensive) test must be considered

in lieu of some other test, one must collect, observe, and analyze a new sample.

Usually the size of a sample of patients, known to have the disease, is the number

of patients under treatment at the clinic and the test is applied to all possible

patients. A control group of units without the disease is also selected and tested

after all ethical procedures have been fulfilled. Based on the two samples, S and

E are estimated. Estimates of LR(+), LR(−), and R are then obtained.

The association measure R plays the most important role in the determi-

nation of the diagnostic power of a test T . In the next section, we present plots

that will help to use only the likelihood ratios to define situations where a test is

of interest for the clinician. We end this section with an analogy linking different

schools of statistics and the clinician’s interest in the properties of diagnostic

tests:

• A Fisherian clinician would be mainly concerned with the false posi-

tive rate, cases where the treatment is harmful for the patients (e.g.

prescribing a surgery when it is not necessary).

• A Neyman–Pearson–Wald clinician would be concerned with the false

positive and false negative rates.

• A Bayesian clinician would be concerned with the positive and negative

predictive values.

• A likelihood clinician view would be concerned with positive and nega-

tive likelihood ratios, which will be discussed further in the next section.
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7. LIKELIHOOD ANALYSIS OF A DIAGNOSTIC TEST AND

LIKELIHOOD RATIO PLOTS

For a given diagnostic test we have defined, respectively, the likelihood

ratios of positive and negative test results as LR(+) and LR(−). We also show

how to measure the diagnosability of a test, which is based on the change of

the pre-test to the post-test odds ratios. According to [19], the directions and

magnitudes of the pre to post changes using likelihood ratio values as a rough

guide are as follows:

1. LR’s larger than 10 or smaller than 0.1 generate conclusive changes.

2. LR’s in the interval (5; 10] or [0.1; 0.2) generate moderate shifts.

3. LR’s in the interval (2; 5] or [0.2; 0.5) generate small (important some-

times) shifts.

4. LR’s in the interval (1; 2] or [0.5; 1) generate small (rarely important)

shifts.

Jaeschke et al. ([19]) also presented a modification of a monogram suggested

by [10]. The monogram is as an old calculus rule where in the left side we have

values for the prevalence, in the middle the likelihood ratio and in the right side

the PPV values. By drawing a straight line from the prevalence value throughout

the likelihood ratio value and ending the line at the right side, the value obtained

at this end is just the PPV observed.

Biggerstaff ([4]) presented another interesting graphical method for com-

paring diagnostic tests. A large value of LR(+) indicates that the test has good

sensitivity and a small value of LR(−) means that the test has good specificity.

If both situations hold we have that R is large and the test has a high diagnostic

ability or equivalently high diagnosability. In many situations, due to costs or

the health conditions of a patient, one must choose among a set of diagnostic

tests a subset that will be performed. In this way ordering the tests by their

diagnosability becomes important. To order a set of diagnostic tests according

to their diagnostic ability one should have in mind the risks, the costs and the

likelihood ratio values. Note that ordering the tests according to LR(+), high to

low values, is equivalent to ordering them based on the values of their PPV’s.

On the other hand, ordering the tests according to LR(−), low to high values,

is equivalent to ordering them based on the values of their NPV’s.

Similarly to the ROC (Receiver Operator Characteristic Curve), in Figure 6

we plot, for a diagnostic test T1, the point A = (1−E1;S1). That is, the false

positive rate, X= (1−E1), against the true-positive rate, Y = S1. Additionally

we draw two lines through this point; (i) a solid line-segment through (0; 0) and A,

ending in the horizontal line (X; 1) and (ii) a dotted line-segment through (1; 1)
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and A, ending in the vertical line (0;Y ). It is not difficult to prove that the

slopes of the solid and the dotted lines are, respectively, LR1(+) and LR1(−),

the likelihood ratios for the test T1. The diagonal line delimitates the area where

Figure 6: Regions of Preference: A = (1−E;S) = (.4, .7).

a test is useful. Also, it is easy to show that, for a test, if the point A is below the

diagonal line the test is useless. We end this section with the following example:

Example: Consider a diagnostic test T1 where S1 = .7 and E1 = .6.

For this case we have A=(.4; .7), the solid line is Y = 1.75X and the dashed line is

Y = (1+X)/2. We have then LR1(+) = 1.75 and LR1(−) = .5. If a new test T2

is considered we have four possible locations for the point A2= (1−E2;S2):

i. A2 ∈ Region 1, which implies that T2 is better than T1 overall, since

LR2(+) > LR1(+) and LR2(−) < LR1(−) ;

ii. A2 ∈ Region 2, which implies that T2 is better (worse) than T1 for

confirming absence (presence) of the disease, since

LR2(−) < LR1(−)
[

and LR2(+) < LR1(+)
]

;

iii. A2 ∈ Region 3, which implies that T2 is better (worse) than T1 for

confirming presence (absence) of the disease, since

LR2(+) > LR1(+)
[

and LR2(−) > LR1(−)
]

;

iv. A2 ∈ Region 4, which implies that T2 is worse than T1 overall, since

LR2(+) < LR1(+) and LR2(−) > LR1(−) .
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8. FINAL REMARKS

We would like to end this report with an optimistic view for the future of

pure likelihood approach of Statistics. Let us recall that the work of a statistician

lies in a trinity of problems; design of experiments, estimation, and hypotheses

testing. We want to show how the likelihood approach works well for the three

problems.

In the domain of design of experiments, consider the problem of determina-

tion of number of patients to be tested in order to estimate S, the sensitivity of a

clinical test. The maximum of the likelihood is the prescribed estimate. However,

we would also need to fix an interval around this estimate in order to guarantee

the control of our sampling error. For this purpose we use the normalized like-

lihood and would like to have the smallest interval with relative plausibility (or

credibility) around 95%. Since the binomial distribution is an adequate model,

the normalized likelihood follows a beta distribution with parameter (X+1;Y +1)

where X (Y ) is the number of true positive (false negative) results in a sample

of size n, to be determined. Recall that the mean and the variance of this beta

distribution are, respectively, m = (X + 1)/(n+ 2) and v = m(1−m)/(n+ 3).

Note that v ≤ [4(n+3)]−1 since 0≤m≤1. Hence, the worst case (m=1−m= .5)

is a symmetric beta distribution; i.e. X= Y . In this case the mean and the mode

(the maximum likelihood estimate) are equal to .5. Adding and subtracting twice

the standard deviation to m, we obtain a fair plausible interval (as usually we do

when considering normal distributions). Let us represent this interval by [I1; I2],

where

I1 = .5− (n+ 3).5 and I2 = .5 + (n+ 3).5 .

Let us now fix the length of the interval of highest plausibility as I2− I1 =

2(n+ 3).5 = .1. For this value we obtain n = 397. In order to satisfy the restric-

tion X = Y , we would take n= 298 as the sample size. Note that, for n= 398

the normalized likelihood would be a beta density with parameter (200; 200);

that is, X= Y = 199. Considering this case, the interval [.45; .55] would have

credibility 95.49% and length .1. Now suppose that we perform the experiment

and observe that X= 53 = 398− Y . The parameter of the corresponding beta

density is (54; 346). This is not a symmetric density around its maximum, 53/398,

and the smallest interval with a fixed credibility has equal plausibility in its limits,

I1 and I2. For this non-symmetric case we would have the interval [.1033; .1703]

with credibility 95.01% and length .067. To obtain this interval we recall that a

beta distribution with parameters larger than 1 is uni-modal. Hence, to every pa-

rameter point there is a corresponding one with the same plausibility. Considering

a pair, say I1 and I2, with the same plausibility in such a way that the interval

[I1; I2] has posterior probability equal to the fixed credibility, say 95%, we ob-
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tain our interval. For bi-dimensional parameter spaces, obtaining a set of 95% of

credibility, corresponds to obtaining a level curve where its interior has posterior

probability of 95%.

In the above discussion we have shown how a likelihood approach will solve

the sample size determination and both point and interval estimation problems.

We now discuss the testing problem. We use here real data presented in [36].

Two samples of size 150 were taken respectively from a subpopulation of patients

having a disease D and from a healthy control group. A new clinical test was

applied to these samples. For the patients, we observed x = 20 = 150 − y true

positive cases and for the control sample we obtained x′ = 3 = 150 − y′ false

positive cases. We have here two likelihood functions, one for the sample of pa-

tients and another for the control sample. We want to compare this new test,

T1, with a standard one, T0, know to have sensitivity S0 = .15 and specificity

E0 = .91. To replace T1 for T0, we would like to have S1 > S0 and E1 > E0.

To make a decision about the use of the new test we first identify the set of

parameter points with plausibility higher than S1 = .15 in the sample of patients

and then compute its credibility. For the control sample we identify the set of

parameter points with plausibility higher than E1 = .91 and then compute its

credibility. Note that the normalized likelihood for S1 (E1) obtained in the pa-

tient (control) sample is a beta density with parameters 21 and 131 (148 and 4).

Before we describe the computations let us recall that LR0(+) = 5/3 = 1.67 and

LR0(−) = 85/91 = .93. On the other hand, the maximum likelihood estimates

for the likelihood ratios of the new test are LR1(+) = 20/3 = 6.67 and LR1(−)=

130/147 = .88. The odds ratio for the standard test is R0 = 1.78 and the

maximum likelihood estimate for the odds ratio of the new test is R1= 7.54.

The Good’s weights of evidence are ∆0 = .0347 and ∆1= .2289. These values

already provide evidence that the new test is superior. However, to quantify this

superiority we proceed as follows:

1. For the sample of patients, the set of possible values of S1 with plau-

sibility higher than S0 = .15 is the open interval (.1178; .1500); this

set has credibility 43.92%. Hence, the evidence in favor of H: S1= .15

is 56.09%. With these figures we cannot reject the hypothesis that the

two tests have equivalent sensitivities;

2. For the control sample, the set of possible values of E1 with plausibility

higher than E0 = .91 is the interval (.910; .999); this interval has cred-

ibility 99.95%. Hence, the evidence in favor of H: E1 = .91 is .05%.

The conclusion here is that the new test is far more specific than the

old one; and

3. Finally, constructing a plot like in Figure 2 with A = (1− E0;S0) =

(.09; .15), one would show that the estimated value of A1= (1−E1;S1),

which is
(

1
50
; 2

15

)

, belongs to Region 1, supporting the superiority of the

new test, T1.
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We believe to have covered the three problems without using other elements

than the likelihood function. We did not have to bring into consideration sample

points that could be observed but were not, as in the usual frequentist techniques

of unbiased estimation, confidence interval construction or standard significance

and hypothesis testing. The most important feature of the methods described in

this paper is that the likelihood principle is never violated.

We finalize the paper by presenting p-values for the hypothesis H: S1= .15

and H: E1= .9. In the first case we have 64.78% and in the second case .02% as

exact p-values. Had we used the chi-square test, we would have 56.76% and .42%.

Recall that our evidence values, based only on the likelihood function (defined

on the parameter space, not on possible sample points), for these two hypotheses

are 56.09% and .05%.
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