EXACT FORMULAS FOR THE MOMENTS OF THE FIRST PASSAGE TIME OF REWARD PROCESSES

Authors: G.A. Parham
- Department of Statistics, Shahid Chamran University, Ahwaz, Iran (Parham_g@cua.ac.ir)
A.R. Soltani
- Department of Statistics, Shiraz University, Shiraz, Iran

Received: November 2004 Revised: January 2005 Accepted: January 2005

Abstract:

- Let $\left\{\mathcal{Z}_{\rho}(t), t \geq 0\right\}$ be a reward process based on a semi-Markov process $\{\mathcal{J}(t), t \geq 0\}$ and a reward function ρ. Let T_{z} be the first passage time of $\left\{\mathcal{Z}_{\rho}(t), t \geq 0\right\}$ from $\mathcal{Z}_{\rho}(0)=0$ to a prespecified level z. In this article we provide the Laplace transform of the $E\left[T_{z}^{k}\right]$ and obtain the exact formulas for $E T_{z}, E T_{z}^{2}$ and $\operatorname{var}\left(T_{z}\right)$. Formulas for certain type I counter models are given.

Key-Words:

- Semi-Markov process; reward process; Laplace transform; first passage time.

AMS Subject Classification:

- $49 \mathrm{~A} 05,78 \mathrm{~B} 26$.

1. INTRODUCTION

Let $\{\mathcal{J}(t), t \geq 0\}$ be a semi-Markov process with a Markov renewal process $\left\{\left(\mathcal{J}_{n}, \mathcal{T}_{n}\right), n=0,1,2, \ldots\right\}$. The state space of $\left\{\mathcal{J}_{n}\right\}$ is assumed to be $\mathcal{N}=$ $\{0,1,2, \ldots, N\}$. A reward process is a certain functional that is defined on a semi-Markov process (Markov renewal process) by

$$
\begin{equation*}
\mathcal{Z}_{\rho}(t)=\sum_{n: \mathcal{T}_{n+1}<t} \rho\left(\mathcal{J}_{n}, \mathcal{T}_{n+1}-\mathcal{T}_{n}\right)+\rho(\mathcal{J}(t), X(t)) \tag{1}
\end{equation*}
$$

where $X(t)$ is the age process. The function ρ in (1) is a real function of two variables; $\rho: \mathcal{N} \times R \rightarrow R$, and $\rho(i, \tau)$ measures the excess reward when time τ is spent in the state i. The process $\mathcal{Z}_{\rho}(t)$ given by (1) provides the cumulative reward at time t, under the given reward function ρ. This process was introduced and studied in [4], for general ρ. For $\rho(i, \tau)=i \tau$, the reward process $\mathcal{Z}_{\rho}(t)$ has been treated by different authors, see [1] [2] [5]. Let T_{z} be the first passage time of $\mathcal{Z}_{\rho}(t)$ from $\mathcal{Z}_{\rho}(0)=0$ to a prespecified level z. Asymptotic behaviors of $E T_{z}, E T_{z}^{2}$ as $z \rightarrow \infty$, were obtained in [5] for $\rho(i, x)=i x$, and in [3] for general ρ. In this article we provide exact formulas for $E T_{z}, E T_{z}^{2}$ and $\operatorname{var}\left(T_{z}\right)$, under general ρ. We apply our formulas to certain type I counter models and provide precise results. The main results are Theorems 2.1, 3.1, Corollary 3.1, Remark 3.1, and formulas (23), (24).

2. NOTATION AND PRELIMINARIES

Let $\{\mathcal{J}(t), t \geq 0\}$ be a semi-Markov process and $\left\{\left(\mathcal{J}_{n}, \mathcal{T}_{n}\right), n=0,1,2, \ldots\right\}$ be a Markov renewal process, where \mathcal{J}_{n} is a Markov chain in discrete time on state space $\mathcal{N}=\{0,1,2, \ldots, N\}$, and \mathcal{T}_{n} is the n-th transition epoch with $\mathcal{T}_{0}=0$. The behavior of the Markov renewal process is governed by a semi-Markov matrix $A(x)=\left[A_{i j}(x)\right]$, where

$$
\begin{equation*}
A_{i j}(x)=P\left\{\mathcal{J}_{n+1}=j, \mathcal{T}_{n+1}-\mathcal{T}_{n} \leq x \mid \mathcal{J}_{n}=i\right\} \tag{2}
\end{equation*}
$$

We assume that the stochastic matrix $P=\left[P_{i j}\right]=A(\infty)$ governing the embedded Markov chain $\left\{\mathcal{J}_{n}: n=0,1,2, \ldots\right\}$ is aperiodic and irreducible. For convenience let,

$$
A_{k: i j}=\int_{0}^{\infty} x^{k} A_{i j}(d x)
$$

$$
\begin{equation*}
A_{k: i}=\int_{0}^{\infty} x^{k} A_{i}(d x), \quad k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

if they exist, where

$$
A_{i}(x)=\sum_{j \in \mathcal{N}} A_{i j}, \quad \bar{A}_{i}(x)=1-A_{i}(x)
$$

We note that $A_{i}(x)=P\left\{\mathcal{T}_{n+1}-\mathcal{T}_{n} \leq x \mid \mathcal{J}_{n}=i\right\}$ is the cumulative distribution function of the dwell time of the semi-Markov process at state i, and $\bar{A}_{i}(x)$ is the corresponding survival function. Let $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$. We define,

$$
\begin{gather*}
A_{D}(x)=\left[\delta_{i j} A_{j}(x)\right], \quad \bar{A}_{D}(x)=\left[\delta_{i j} \bar{A}_{j}(x)\right], \\
A_{k}=\left[A_{k: i j}\right], \quad A_{D: k}=\left[\delta_{i j} A_{k: i}\right], \quad k=0,1,2, \ldots . \tag{4}
\end{gather*}
$$

Note that $A_{D: 0}=I$. The Laplace-Stieltjes transform of $A(x)$ is denoted by

$$
\begin{equation*}
\alpha(s)=\left[\alpha_{i j}(s)\right], \quad \alpha_{i j}(s)=\int_{0}^{\infty} e^{-s x} A_{i j}(d x) \tag{5}
\end{equation*}
$$

Laplace-Stieltjes transforms $\alpha_{i}(s), \alpha_{D}(s)$, etc. are defined similarly. We define n-fold convolution $A(x)$ by

$$
\begin{aligned}
A^{(n)}(x) & =\int_{0}^{x} A\left(d x^{\prime}\right) A^{(n-1)}\left(x-x^{\prime}\right) \\
A_{j k}^{(0)}(t) & = \begin{cases}0 & \text { if } t<0 \\
\delta_{j k} & \text { if } t \geq 0\end{cases}
\end{aligned}
$$

and

$$
A_{j k}^{(n)}(t)= \begin{cases}0 & \text { if } t<0 \\ \sum_{\nu} \int_{0}^{t} A_{j \nu}(d y) A_{\nu k}^{(n-1)}(t-y) & \text { if } t \geq 0\end{cases}
$$

if M is a matrix of measures and N is a matrix of measurable functions, the convolution of M and N (written $M * N)$ is defined by $M * N(t)=\left[(M * N)_{i k}(t)\right]$, where

$$
M * N_{j k}(t)=\sum_{\nu} \int_{0}^{t} M_{j \nu}(d y) N_{\nu k}(t-y)
$$

Let $A(x)$ be a semi-Markov matrix. Then

$$
\mathcal{A}(x)=\sum_{n=0}^{\infty} A^{(n)}(x)
$$

is called the Markov renewal matrix corresponding to $A(x)$. Also denote the Laplace transform of the Markov renewal matrix by

$$
\mathcal{L}_{s}[\mathcal{A}]=\frac{1}{s}[I-\alpha(s)]^{-1}
$$

The transition probability matrix of $J(t)$ is denoted by $P(t)$, i.e.,

$$
\begin{equation*}
P(t)=\left[P_{i j}(t)\right], \quad P_{i j}(t)=P\{J(t)=j \mid J(0)=i\} \tag{6}
\end{equation*}
$$

The state probability vector at time $t, p^{\prime}(t)=\left(p_{0}(t), p_{1}(t), \ldots, p_{N}(t)\right)$, is given by $p^{\prime}(t)=p^{\prime}(0) P(t)$, where $p^{\prime}(0)$ is the initial probability vector. In this article \underline{e} is the unit vector, i.e., $\underline{e}=(1, \ldots, 1)^{\prime}$.

Let $X(t)$ be the age process, i.e., the time elapsed at time t since the last transition of $J(t), X(t)=t-\mathcal{T}_{n}$, where $n=\sup \left\{m: \mathcal{T}_{m} \leq t\right\}$. The joint distributions corresponding to the bivariate process $\{(\mathcal{J}(t), X(t)), t \geq 0\}$ and the trivariate process $\left\{\left(\mathcal{J}(t), X(t), \mathcal{Z}_{\rho}(t)\right), t \geq 0\right\}$, respectively, are given by

$$
\begin{align*}
G_{i j}(x, t) & =P\{\mathcal{J}(t)=j, X(t) \leq x \mid \mathcal{J}(0)=i\} \\
F_{i j}(x, z, t) & =P\left\{\mathcal{J}(t)=j, X(t) \leq x, \mathcal{Z}_{\rho}(t) \leq z \mid \mathcal{J}(0)=i\right\} \tag{7}
\end{align*}
$$

The Laplace transform of $F_{i j}(x, z, t)$ is denoted by

$$
\begin{equation*}
\phi_{i j}(v, \omega, s)=\int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} e^{-v x-\omega z-s t} F_{i j}(d x, d z, t) d t \tag{8}
\end{equation*}
$$

in the matrix form $\phi(v, \omega, s)=\left[\phi_{i j}(v, \omega, s)\right]$. It is demonstrated in [4] that the following informative transform formula plays a crucial role in studying the statistical properties of the reward process (1), see also [5],

$$
\begin{equation*}
\phi(v, \omega, s)=[I-C(\omega, s)]^{-1} E_{D}(\omega, v+s), \tag{9}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
C(w, s) & =\left[C_{k j}(\omega, s)\right], & C_{k j}(w, s) & =\int_{0}^{\infty} e^{-\omega \rho(k, x)-s x} A_{k j}(d x) \tag{10}\\
E_{D}(\omega, s) & =\left[\delta_{k j} E_{j}(\omega, s)\right], & E_{j}(\omega, s)=\int_{0}^{\infty} e^{-\omega \rho(j, x)-s x} \bar{A}_{j}(x) d x
\end{array}
$$

Let z be a given level, then the first passage time of the level z for $\mathcal{Z}_{\rho}(t)$, given $\mathcal{Z}_{\rho}(0)=0$, is defined by

$$
T_{z}=\inf \left\{t>0: \mathcal{Z}_{\rho}(t)=z \mid \mathcal{Z}_{\rho}(0)=0\right\}
$$

Clearly

$$
\begin{equation*}
P\left\{T_{z}>t\right\}=P\left\{\mathcal{Z}_{\rho}(t)<z\right\} \tag{11}
\end{equation*}
$$

Let $H(z, t)$ be the distribution of T_{z}, and denote the Laplace transform of $E\left[e^{-s T_{z}}\right]$ by

$$
\begin{equation*}
\psi(\omega, s)=\int_{0}^{\infty} e^{-\omega z} E\left[e^{-s T_{z}}\right] d z \tag{12}
\end{equation*}
$$

Similarly we denote the Laplace transform of the survival function $\bar{H}(z, t)=$ $P\left\{T_{z}>t\right\}$ by $\bar{\psi}(\omega, s)$. We recall from [5] that,

$$
\begin{equation*}
\psi(\omega, s)=1-s \bar{\psi}(\omega, s) \tag{13}
\end{equation*}
$$

where $s \in D_{0}=\{u: \operatorname{Re}(u)>0\}$ and $\omega \in \operatorname{Im}=\{u: u=i t, t \in R\}$. The following theorem was provided in [2] for $\rho(i, x)=i x$, and in [3] for general ρ.

Theorem 2.1.

$$
\begin{equation*}
\bar{\psi}(\omega, s)=\frac{1}{\omega} p^{\prime}(0)[I-C(\omega, s)]^{-1} E_{D}(\omega, s) \underline{e}, \quad \omega, s \in D_{0} \tag{14}
\end{equation*}
$$

For deriving the moments of T_{z}, we first note that

$$
\begin{gathered}
\left(\frac{\partial}{\partial s}\right)^{k} \bar{\psi}(\omega, s)=(-1)^{k} \int_{0}^{\infty} e^{-\omega z}\left(\int_{0}^{\infty} t^{k} e^{-s t} P\left\{T_{z}>t\right\} d t\right) d z \\
\left.(-1)^{k}(k+1)\left(\frac{\partial}{\partial s}\right)^{k} \bar{\psi}(\omega, s)\right|_{s=0}=\int_{0}^{\infty} e^{-\omega z} E\left[T_{z}^{k+1}\right] d z
\end{gathered}
$$

$0 \leq k \leq K$, where $E\left[T_{z}^{K+1}\right]<\infty$ is assumed. Hence from the formula given above and Theorem 2.1,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\omega z} E\left[T_{z}^{k+1}\right] d z=(k+1)(-1)^{k} \frac{1}{\omega} p^{\prime}(0)\left\{\left.\left(\frac{\partial}{\partial s}\right)^{k} \phi(0, \omega, s)\right|_{s=0}\right\} \underline{e} \tag{15}
\end{equation*}
$$

In next section we use (15) to derive exact formulas for $E\left[T_{z}^{k}\right]$.

3. EXACT FORMULAS

In this section we apply (15) in order to derive formulas for $E T_{z}, E T_{z}^{2}$, and $\operatorname{var}\left(T_{z}\right)$. Throughout this section we assume that ρ satisfies the following condition.
(A) For each $k, \rho(k, x):[0, \infty) \rightarrow[0, \infty)$ is one to one, admits a continuously differential inverse, and $\rho(k, 0)=0$.

We also introduce the following matrices:

$$
\begin{aligned}
F(t) & =\left[\delta_{k j}\left(\rho^{-1}(k, t)\right)^{\prime} \bar{A}_{k}\left(\rho^{-1}(k, t)\right)\right] \\
\mathcal{B}(t) & =\sum_{n=0}^{\infty} B^{(n)}(t) \\
K(t) & =\left[\delta_{k j} \rho^{-1}(k, t)\left(\rho^{-1}(k, t)\right)^{\prime} \bar{A}_{k}\left(\rho^{-1}(k, t)\right)\right] \\
D(t) & =\left[\int_{0}^{t} \rho^{-1}(k, x) d B_{k j}(x)\right]
\end{aligned}
$$

where B is the matrix with entries $B_{k j}(z)=A_{k j}\left(\rho^{-1}(k, z)\right)$ and $B^{(n)}$ is n-fold convolution of B.

Theorem 3.1. Let T_{z} be the first passage time of the reward process $\mathcal{Z}_{\rho}(t), t \geq 0$, given by (1) with a reward function $\rho(k, x), k \in \mathcal{N}, x \geq 0$, that satisfying condition (A). If $\mathcal{B}(t)$ exist then
(a) $E T_{z}=p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * F(x) d x\right\} \underline{e}$,
(b) $E T_{z}^{2}=2 p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * K(x) d x\right\} \underline{e}+2 p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * D * \mathcal{B} * F(x) d x\right\} \underline{e}$,
(c) $\operatorname{var}\left(T_{z}\right)=2 p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * K(x) d x\right\} \underline{e}+2 p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * D * \mathcal{B} * F(x) d x\right\} \underline{e}$

$$
-\left\{p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * F(x) d x\right\} \underline{e}\right\}^{2}
$$

Proof: (a): By using (15) and (9) we obtain that

$$
\begin{equation*}
\mathcal{L}_{\omega}\left(E T_{z}\right)=\frac{1}{\omega} p^{\prime}(0)[I-C(\omega, 0)]^{-1} E_{D}(\omega, 0) \underline{e}, \tag{16}
\end{equation*}
$$

where

$$
C(\omega, 0)=\left[C_{k j}(\omega, 0)\right],
$$

with

$$
C_{k j}(\omega, 0)=\int_{0}^{\infty} e^{-\omega \rho(k, x)} d A_{k j}(x)
$$

Now for each k, j, let $B_{k j}(\Delta)=A_{k j}\{x \in[0, \infty): \rho(k, x) \in \Delta\}, \Delta \subset[0, \infty)$, then $B_{k j}($.$) is a probability distribution on [0, \infty)$ and it follows by change of variable that,

$$
\begin{aligned}
C_{k j}(\omega, 0) & =\int_{0}^{\infty} e^{-\omega t} d B_{k j}(t) \\
& =\beta_{k j}(\omega) .
\end{aligned}
$$

Therefore $C_{k j}(\omega, 0)$ is the Laplace transform of the distribution $B_{k j}$, and in matrix form

$$
\begin{equation*}
[I-C(\omega, 0)]^{-1}=[I-\beta(\omega)]^{-1} \tag{17}
\end{equation*}
$$

Also note that

$$
E_{D}(\omega, 0)=\left[\delta_{i j} E_{j}(\omega, 0)\right]
$$

where

$$
E_{j}(\omega, 0)=\int_{0}^{\infty} e^{-\omega \rho(j, x)} \bar{A}_{j}(x) d x
$$

and it follows by change of variable that

$$
\begin{aligned}
E_{j}(\omega, 0) & =\int_{0}^{\infty} e^{-\omega t}\left(\rho^{-1}(j, t)\right)^{\prime} \bar{A}_{j}\left(\rho^{-1}(j, t)\right) d t \\
& =\int_{0}^{\infty} e^{-\omega t} F(j, t) d t
\end{aligned}
$$

Therefore in matrix form we have

$$
\begin{equation*}
E_{D}(\omega, 0)=\int_{0}^{\infty} e^{-\omega t} F(t) d t \tag{18}
\end{equation*}
$$

If we replace (17) and (18) in (16) we obtain

$$
\begin{aligned}
\mathcal{L}_{\omega}\left(E T_{z}\right) & =p^{\prime}(0) \frac{1}{\omega}[I-\beta(\omega)]^{-1} \mathcal{L}_{\omega}(F(t)) \underline{e} \\
& =p^{\prime}(0) \frac{1}{\omega} \mathcal{L}_{\omega}(\mathcal{B}(t)) \mathcal{L}_{\omega}(F(t)) \underline{e}
\end{aligned}
$$

or equivalently

$$
E T_{z}=p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * F(t) d t\right\} \underline{e},
$$

giving (a).
(b): It follows from (15) that

$$
\begin{equation*}
\mathcal{L}_{\omega} E\left[T_{z}^{2}\right]=-2 \frac{1}{\omega} p^{\prime}(0)\left\{\left.\frac{\partial}{\partial s} \phi(0, \omega, s)\right|_{s=0}\right\} \underline{e} . \tag{19}
\end{equation*}
$$

But from (9),

$$
\begin{align*}
\frac{\partial \phi(0, \omega, s)}{\partial s}= & {[I-C(\omega, s)]^{-1} \frac{\partial C(\omega, s)}{\partial s}[I-C(\omega, s)]^{-1} E_{D}(\omega, s) } \\
& +[I-C(\omega, s)]^{-1} \frac{\partial E_{D}(\omega, s)}{\partial s} \tag{20}
\end{align*}
$$

where

$$
\begin{aligned}
C_{k j}(\omega, s) & =\int_{0}^{\infty} e^{-\omega \rho(k, x)-s x} d A_{k j}(x), \\
\left.\frac{\partial C_{k j}(\omega, s)}{\partial s}\right|_{s=0} & =-\int_{0}^{\infty} x e^{-\omega \rho(k, x)} d A_{k j}(x) .
\end{aligned}
$$

Again it follows by change of variable that

$$
\left.\frac{\partial C_{k j}(\omega, s)}{\partial s}\right|_{s=0}=-\int_{0}^{\infty} e^{-\omega t} \rho^{-1}(k, t) d B_{k j}(t) .
$$

Therefore in matrix form

$$
\begin{align*}
\left.\frac{\partial C(\omega, s)}{\partial s}\right|_{s=0} & =-\int_{0}^{\infty} e^{-\omega t} \rho_{D}^{-1}(t) d B(t) \tag{21}\\
& =-\mathcal{L}_{\omega}(D)
\end{align*}
$$

where

$$
\begin{aligned}
D(\Delta) & =\int_{\Delta} \rho_{D}^{-1}(t) d B(t) \\
\rho_{D}^{-1}(t) & =\left[\delta_{k j} \rho^{-1}(k, t)\right]
\end{aligned}
$$

On the other hand

$$
\left.\frac{\partial E_{k}(\omega, s)}{\partial s}\right|_{s=0}=-\int_{0}^{\infty} x e^{-\omega \rho(k, x)} \bar{A}_{k}(x) d x
$$

and using change of variable

$$
\begin{aligned}
\left.\frac{\partial E_{k}(\omega, s)}{\partial s}\right|_{s=0} & =-\int_{0}^{\infty} e^{-\omega t} \rho^{-1}(k, t)\left(\rho^{-1}(k, t)\right)^{\prime} \bar{A}_{k}\left(\rho^{-1}(k, t)\right) d t \\
& =-\int_{0}^{\infty} e^{-\omega t} K(k, t) d t
\end{aligned}
$$

Therefore in matrix form

$$
\begin{align*}
\left.\frac{\partial E_{D}(\omega, s)}{\partial s}\right|_{s=0} & =-\int_{0}^{\infty} e^{-\omega t} K(t) d t \tag{22}\\
& =-\mathcal{L}_{\omega}(K)
\end{align*}
$$

By replacing (17), (18), (21) and (22) in (20), we obtain from (19) that

$$
\begin{aligned}
\mathcal{L}_{\omega}\left(E T_{z}^{2}\right)= & 2 p^{\prime}(0) \frac{1}{\omega}[I-\beta(\omega)]^{-1} \mathcal{L}_{\omega}(D(t))[I-\beta(\omega)]^{-1} \mathcal{L}_{\omega}(F(t)) \underline{e} \\
& +2 p^{\prime}(0) \frac{1}{\omega}[I-\beta(\omega)]^{-1} \mathcal{L}_{\omega}(K(t)) \underline{e},
\end{aligned}
$$

or

$$
E T_{z}^{2}=2 p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * K(x) d x\right\} \underline{e}+2 p^{\prime}(0)\left\{\int_{0}^{z} \mathcal{B} * D * \mathcal{B} * F(x) d x\right\} \underline{e} .
$$

Part (c) Follows from (a) and (b).

Corollary 3.1. Let $\rho(k, x)=g_{n}(k) x^{n}, k \in \mathcal{N}, x \in[0, \infty)$ and $g_{n}(k)>0$. If $\mathcal{B}(t)$ exists, then the formulas (a), (b) and (c) of Theorem 3.1 are satisfied. Moreover

$$
\begin{aligned}
& F(t)=\left[\delta_{i j} \frac{1}{n \sqrt[n]{\rho_{j} t^{n-1}}} \bar{A}_{j}\left(\sqrt[n]{\frac{t}{\rho_{j}}}\right)\right] \\
& B(t)=\left[B_{i j}\right], \quad B_{i j}(t)=A_{i j}\left(\sqrt[n]{\frac{t}{\rho_{j}}}\right) \\
& K(t)=\left[\delta_{i j} \frac{1}{n \sqrt[n]{\rho_{j}^{2} t^{n-2}}}\left(1-A_{j}\left(\sqrt[n]{\frac{t}{\rho_{j}}}\right)\right)\right] \\
& D(t)=\left[\int_{0}^{t} \frac{1}{n \sqrt[n]{\rho_{j}^{2} x^{n-2}}} d A_{i j}\left(\sqrt[n]{\frac{x}{\rho_{j}}}\right)\right]
\end{aligned}
$$

Proof: The reward function satisfies condition (A), therefore Theorem 3.1 can be applied.

Remark 3.1. Let $n=1$ in Corollary 3.1, i.e., the reward function is linear. Then Corollary 3.1 holds with $n=1$.

4. APPLICATIONS TO CERTAIN TYPE I COUNTERS MODELS

Arrivals at a counter form a Poisson process with rate q. An arriving particle that finds the counter free gets registered and locks it for a random duration with distribution function $F(t)$. Arrivals during a locked periods have no effect whatsover. Suppose a registration occurs at $T_{0}=0$, and write $T_{0}, T_{1}, T_{2}, \ldots$ for the successive epochs of changes in the state of the counter. Write $X_{n}=1$ or 0 according as the n-th change locks or frees the counter. Clearly $X_{0}=1$, $X_{1}=0, \quad X_{2}=1, \quad X_{3}=0, \quad \ldots$ and $\left(X_{n}, T_{n}\right)$ is a Markov renewal process. Its semi-Markov matrix is

$$
A(x)=\left[\begin{array}{cc}
0 & 1-e^{-q x} \\
F(x) & 0
\end{array}\right]
$$

Let $F(x)=1-e^{-2 q x}$ and $\mathcal{Z}_{\rho}(t)$ be the reward process that is defined by (1) with reward function $\rho(k, x)=\rho_{k} x, \rho_{0}=1, \rho_{1}=2$. Let T_{z} be the first passage time reward process $\mathcal{Z}_{\rho}(t)$ from $\mathcal{Z}_{\rho}(0)=0$ to a prespecified level z. We apply the formulas of the previous section to give explicit expressions for $E T_{z}$ and $E T_{z}^{2}$. Note that for each k, j

$$
\begin{aligned}
B_{k j}(t) & =A_{k j}\left(\frac{t}{\rho_{k}}\right) \\
B(t) & =\left[\begin{array}{cc}
0 & 1-e^{-q t} \\
1-e^{-q t} & 0
\end{array}\right] \\
B^{(0)}(t) & =I
\end{aligned}
$$

By induction it follows that

$$
B^{(2 n+1)}(t)=\left[\begin{array}{cc}
0 & B_{01}^{(2 n+1)} \\
B_{10}^{(2 n+1)} & 0
\end{array}\right]
$$

where

$$
B_{01}^{(2 n+1)}=B_{10}^{(2 n+1)}=1-e^{-q t}-q t e^{-q t}-\frac{q^{2} t^{2}}{2!} e^{-q t}-\cdots-\frac{q^{2 n} t^{2 n}}{2 n!} e^{-q t}
$$

$$
\begin{aligned}
& \qquad B^{(2 n)}(t)=\left[\begin{array}{cc}
B_{00}^{(2 n)} & 0 \\
0 & B_{11}^{(2 n)}
\end{array}\right] \\
& B_{00}^{(2 n)}=B_{11}^{(2 n)}=1-e^{-q t}-q t e^{-q t}-\frac{q^{2} t^{2}}{2} e^{-q t}-\frac{q^{3} t^{3}}{3!} e^{-q t}-\cdots-\frac{q^{2 n-1} t^{2 n-1}}{(2 n-1)!} e^{-q t} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathcal{B}_{00}(t) & =\sum_{n=0}^{\infty} B_{00}^{(n)}(t)=1+\sum_{n=1}^{\infty}\left[1-e^{-q t} \sum_{k=0}^{2 n-1} \frac{(q t)^{k}}{k!}\right] \\
\mathcal{B}_{00}(t) & =\mathcal{B}_{11}(t) \\
\mathcal{B}_{01}(t) & =\sum_{n=0}^{\infty} B_{01}^{(n)}(t)=\sum_{n=0}^{\infty}\left[1-e^{-q t} \sum_{k=0}^{2 n} \frac{(q t)^{k}}{k!}\right] \\
\mathcal{B}_{01}(t) & =\mathcal{B}_{10}(t) \\
\mathcal{B}_{00}(t) & =1+\sum_{n=0}^{\infty}[1-P(Y \leq 2 n+1)] \\
& =1+\sum_{n=0}^{\infty} P(Y>2 n+1) \\
\mathcal{B}_{01}(t) & =\sum_{n=0}^{\infty}[1-P(Y \leq 2 n)] \\
& =\sum_{n=0}^{\infty} P(Y>2 n)
\end{aligned}
$$

where Y is a Poisson random variable with $\lambda=q t$. Therefore

$$
\mathcal{B}(t)=\left[\begin{array}{cc}
1+\sum_{n=0}^{\infty} P(Y>2 n+1) & \sum_{n=0}^{\infty} P(Y>2 n) \\
\sum_{n=0}^{\infty} P(Y>2 n) & 1+\sum_{n=0}^{\infty} P(Y>2 n+1)
\end{array}\right]
$$

The derivation of $\mathcal{B}(t)$ can be simplified by noting that if

$$
p_{k}=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

where $\lambda=q t$, then

$$
P_{E} \equiv P\{Y \text { even }\}=\sum_{k \in\{0,2,4, \ldots\}} p_{k}
$$

and

$$
P_{O} \equiv P\{Y \text { odd }\}=\sum_{k \in\{1,3,5, \ldots\}} p_{k}
$$

implying that (after simplication)

$$
\begin{aligned}
\sum_{n=0}^{\infty} P(Y>2 n+1) & =\left(p_{2}+2 p_{4}+3 p_{6}+\ldots\right)+\left(p_{3}+2 p_{5}+3 p_{7}+\ldots\right) \\
& =\frac{\lambda}{2} P_{O}+\left\{\frac{\lambda}{2}\left(P_{E}-e^{-\lambda}\right)-\frac{1}{2}\left(P_{O}-\lambda e^{-\lambda}\right)\right\} \\
& =\frac{\lambda}{2}-\frac{P_{O}}{2}
\end{aligned}
$$

similarly

$$
\begin{aligned}
\sum_{n=0}^{\infty} P(Y>2 n) & =\left(p_{1}+2 p_{3}+3 p_{5}+\ldots\right)+\left(p_{2}+2 p_{4}+3 p_{6}+\ldots\right) \\
& =\frac{1}{2}\left\{\lambda P_{E}+P_{O}\right\}+\frac{\lambda}{2} P_{O} \\
& =\frac{\lambda}{2}+\frac{P_{O}}{2}
\end{aligned}
$$

Now if $P(s)=\sum_{k=0}^{\infty} p_{k} s^{k}=e^{-\lambda+\lambda s}$, then

$$
\begin{aligned}
P(1) & =p_{0}+p_{1}+p_{2}+p_{3}+\ldots=1=P_{O}+P_{E} \\
P(-1) & =p_{0}-p_{1}+p_{2}-p_{3}+\ldots=e^{-2 \lambda}=P_{E}-P_{O}
\end{aligned}
$$

implying $P_{E}=\frac{1}{2}\left(1+e^{-2 \lambda}\right)$ and $P_{O}=\frac{1}{2}\left(1-e^{-2 \lambda}\right)$. Hence

$$
\begin{aligned}
\sum_{n=0}^{\infty} P(Y>2 n+1) & =\frac{\lambda}{2}-\frac{1}{4}+\frac{e^{-2 \lambda}}{4}=\frac{q t}{2}-\frac{1}{4}+\frac{e^{-2 q t}}{4} \\
\sum_{n=0}^{\infty} P(Y>2 n) & =\frac{\lambda}{2}+\frac{1}{4}-\frac{e^{-2 \lambda}}{4}=\frac{q t}{2}+\frac{1}{4}-\frac{e^{-2 q t}}{4}
\end{aligned}
$$

and

$$
\begin{gathered}
\mathcal{B}(t)=\left[\begin{array}{cc}
\frac{q t}{2}+\frac{3}{4}+\frac{e^{-2 q t}}{4} & \frac{q t}{2}+\frac{1}{4}-\frac{e^{-2 q t}}{4} \\
\frac{q t}{2}+\frac{1}{4}-\frac{e^{-2 q t}}{4} & \frac{q t}{2}+\frac{3}{4}+\frac{e^{-2 q t}}{4}
\end{array}\right] \\
F(t)=\left[\begin{array}{cc}
e^{-q t} & 0 \\
0 & \frac{1}{2} e^{-q t}
\end{array}\right], \quad K(t)=\left[\begin{array}{cc}
t e^{-q t} & 0 \\
0 & \frac{t}{4} e^{-q t}
\end{array}\right] \\
d D(t)=\left[\begin{array}{cc}
0 & q t e^{-q t} \\
\frac{q t}{2} e^{-q t} & 0
\end{array}\right] \\
\mathcal{B} * F(t)=\int_{0}^{t} d \mathcal{B}(x) F(t-x)
\end{gathered}
$$

hence

$$
\mathcal{B} * F(t)=\left[\begin{array}{cc}
\frac{1}{2}\left\{1-2 e^{-q t}+e^{-2 q t}\right\} & \frac{1}{4}\left\{1-e^{-2 q t}\right\} \\
\frac{1}{2}\left\{1-e^{-2 q t}\right\} & \frac{1}{4}\left\{1-2 e^{-q t}+e^{-2 q t}\right\}
\end{array}\right]
$$

and

$$
\int_{0}^{z} \mathcal{B} * F(x) d x=\left[\begin{array}{cc}
\frac{z}{2}-\frac{3}{4 q}+\frac{1}{q} e^{-q z}-\frac{1}{4 q} e^{-2 q z} & \frac{z}{4}-\frac{1}{8 q}+\frac{1}{8 q} e^{-2 q z} \\
\frac{z}{2}-\frac{1}{4 q}+\frac{1}{4 q} e^{-2 q z} & \frac{z}{4}-\frac{3}{8 q}+\frac{1}{2 q} e^{-q z}-\frac{1}{8 q} e^{-2 q z}
\end{array}\right]
$$

In the example $X_{0}=1$, the initial probability vector is clearly $p^{\prime}(0)=(1,0)$, then

$$
\begin{gather*}
E T_{z}=\frac{3}{4} z-\frac{7}{8 q}+\frac{1}{q} e^{-q z}-\frac{1}{8 q} e^{-2 q z} \tag{23}\\
\mathcal{B} * D * \mathcal{B} * F(x)=\left[\begin{array}{ll}
\mathcal{B} * D * \mathcal{B} * F_{00}(x) & \mathcal{B} * D * \mathcal{B} * F_{01}(x) \\
\mathcal{B} * D * \mathcal{B} * F_{10}(x) & \mathcal{B} * D * \mathcal{B} * F_{11}(x)
\end{array}\right],
\end{gather*}
$$

where
$\mathcal{B} * D * \mathcal{B} * F_{00}(x)=\frac{1}{8}\left\{3 x-\frac{9}{q}+\frac{9}{q} e^{-2 q x}+12 x e^{-q x}+3 x e^{-2 q x}\right\}$,
$\mathcal{B} * D * \mathcal{B} * F_{01}(x)=\frac{1}{16}\left\{3 x-\frac{10}{q}+\frac{12}{q} e^{-q x}-\frac{10}{q} e^{-2 q x}-3 x e^{-2 q x}+4 q x^{2} e^{-q x}\right\}$,
$\mathcal{B} * D * \mathcal{B} * F_{10}(x)=\frac{1}{8}\left\{3 x-\frac{8}{q}+\frac{16}{q} e^{-q x}-\frac{8}{q} e^{-2 q x}-3 x e^{-2 q x}+2 q x^{2} e^{-q x}\right\}$,
$\mathcal{B} * D * \mathcal{B} * F_{11}(x)=\frac{1}{16}\left\{3 x-\frac{9}{q}+\frac{9}{q} e^{-2 q x}+12 x e^{-q x}+3 x e^{-2 q x}\right\}$.
Also

$$
\mathcal{B} * K(x)=\left[\begin{array}{cc}
\frac{1}{2}\left\{\frac{1}{q}-\frac{1}{q} e^{-2 q x}-2 x e^{-q x}\right\} & \frac{1}{8}\left\{\frac{1}{q}-\frac{2}{q} e^{-q x}+\frac{1}{q} e^{-2 q x}\right\} \\
\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q} e^{-2 q x}-\frac{2}{q} e^{-q x}\right\} & \frac{1}{8}\left\{\frac{1}{q}-2 x e^{-q x}-\frac{1}{q} e^{-2 q x}\right\}
\end{array}\right]
$$

If we replace $\mathcal{B} * D * \mathcal{B} * F(x)$ and $\mathcal{B} * K(x)$ in formula (b) of Corollary 3.1, we get
$E T_{z}^{2}=\frac{1}{16}\left\{9 z^{2}-\frac{36}{q} z+\frac{103}{2 q^{2}}-\frac{48}{q^{2}} e^{-q z}-\frac{7}{2 q^{2}} e^{-2 q z}-\frac{32}{q} z e^{-q z}+\frac{3}{q} z e^{-2 q z}+8 z^{2} e^{-q z}\right\}$.

Remark 4.1. The asymptotic behaviors of $E T_{z}, E T_{z}^{2}$ were derived in [5] for $\rho(k, x)=\rho_{k} x$, and in [3] for general ρ. For the case considered in the Example given above,

$$
\begin{aligned}
& E T_{z}=\frac{m_{1}}{m_{1}^{* *}} z+p^{\prime}(0)\left\{H_{0}^{* *} A_{D: 1}-\frac{1}{2} H_{1}^{* *} \rho_{D: 1} A_{D: 2}\right\} \underline{e}+o(1) \\
& E T_{z}^{2}=\left\{\frac{m_{1}}{m_{1}^{* *}}\right\}^{2} z^{2}-p^{\prime}(0)\left\{2 V_{1}^{* *} A_{D: 1}-\left[V_{2}^{* *}+H_{1}^{* *} A_{D: 2}\right]\right\} \underline{e} z+o(z)
\end{aligned}
$$

as $z \rightarrow \infty$, where $m_{1}=\pi^{\prime} A_{1} \underline{e}, \rho_{D: 1}=$ diagonal matrix of ρ_{i},

$$
\begin{gathered}
B_{k}=\rho_{D: k} A_{k}, \quad m_{1}^{* *}=\pi^{\prime} B_{1} \underline{e}, \quad H_{1}^{* *}=\frac{1}{m_{1}^{* *}} \underline{e} \pi^{\prime}, \quad Z_{0}=\left[I-P+e \pi^{\prime}\right]^{-1} \\
H_{0}^{* *}=\frac{1}{m_{1}^{* *}} \underline{e} \pi^{\prime}\left\{-B_{1}+\frac{1}{2 m_{1}^{* *}} B_{2} \underline{e} \pi^{\prime}\right\}+\left\{Z_{0}-\frac{1}{m_{1}^{* *}} \underline{e} \pi^{\prime} B_{1} Z_{0}\right\}\left\{P-\frac{1}{m_{1}^{* *}} B_{1} \underline{e} \pi^{\prime}\right\} \\
V_{1}^{* *}=\left(H_{1}^{* *} \rho_{D: 1} A_{2}-H_{0}^{* *} A_{1}\right) H_{1}^{* *}-H_{1}^{* *} A_{1} H_{0}^{* *} \\
V_{2}^{* *}=-H_{1}^{* *} A_{1} H_{1}^{* *} \rho_{D: 1} A_{D: 2}
\end{gathered}
$$

For the semi-Markov $A(x)$ defined above

$$
\begin{gathered}
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], A_{1}=\left[\begin{array}{cc}
0 & \frac{1}{q} \\
\frac{1}{2 q} & 0
\end{array}\right], \quad A_{D: 1}=\left[\begin{array}{cc}
\frac{1}{q} & 0 \\
0 & \frac{1}{2 q}
\end{array}\right] \\
A_{2}=\left[\begin{array}{cc}
0 & \frac{2}{q^{2}} \\
\frac{1}{2 q^{2}} & 0
\end{array}\right], \quad A_{D: 2}=\left[\begin{array}{cc}
\frac{2}{q^{2}} & 0 \\
0 & \frac{1}{2 q^{2}}
\end{array}\right] \\
\pi^{\prime} P=\pi^{\prime} \Longrightarrow \pi^{\prime}=(0.5,0.5) \\
m_{1}=\pi^{\prime} A_{1} \underline{e}=\frac{3}{4 q} \\
\rho_{D: 1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right], \\
B_{1}=\rho_{D: 1} A_{1}=\left[\begin{array}{cc}
0 & \frac{1}{q} \\
\frac{1}{q} & 0
\end{array}\right] \\
m_{1}^{* *}=\pi^{\prime} B_{1} \underline{e}=\frac{1}{q} \\
B_{2}=\rho_{D: 2} A_{2}=\left[\begin{array}{cc}
0 & \frac{2}{q^{2}} \\
\frac{2}{q^{2}} & 0
\end{array}\right] \\
Z_{0}=\left[I-P+e \pi^{\prime}\right]^{-1}
\end{gathered}
$$

therefore

$$
\begin{gathered}
Z_{0}=\frac{1}{2}\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right] \\
H_{1}^{* *}=\frac{1}{m_{1}^{* *}} \underline{e} \pi^{\prime}
\end{gathered}
$$

therefore

$$
H_{1}^{* *}=q\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

$H_{0}^{* *}=\frac{1}{m_{1}^{* *}} \underline{e} \pi^{\prime}\left\{-B_{1}+\frac{1}{2 m_{1}^{* *}} B_{2} \underline{e} \pi^{\prime}\right\}+\left\{Z_{0}-\frac{1}{m_{1}^{* *}} \underline{e} \pi^{\prime} B_{1} Z_{0}\right\}\left\{P-\frac{1}{m_{1}^{* *}} B_{1} \underline{e} \pi^{\prime}\right\}$,
hence

$$
\begin{gathered}
H_{0}^{* *}=\left[\begin{array}{cr}
-\frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right] \\
V_{1}^{* *}=\left(H_{1}^{* *} \rho_{D: 1} A_{2}-H_{0}^{* *} A_{1}\right) H_{1}^{* *}-H_{1}^{* *} A_{1} H_{0}^{* *}
\end{gathered}
$$

therefore

$$
\begin{gathered}
V_{1}^{* *}=\left[\begin{array}{cc}
\frac{12}{16} & \frac{14}{16} \\
\frac{10}{16} & \frac{12}{16}
\end{array}\right] \\
V_{2}^{* *}=-H_{1}^{* *} A_{1} H_{1}^{* *} \rho_{D: 1} A_{D: 2} \\
V_{2}^{* *}=-\left[\begin{array}{cc}
\frac{3}{4 q} & \frac{3}{8 q} \\
\frac{3}{4 q} & \frac{3}{8 q}
\end{array}\right]
\end{gathered}
$$

In the example, $X_{0}=1$, so that the initial probability vector is clearly $p^{\prime}(0)=(1,0)$. Then by replacing values in $E T_{z}, E T_{z}^{2}$, we have

$$
\begin{aligned}
& E T_{z}=\frac{3}{4} z-\frac{7}{8 q}+o(1) \\
& E T_{z}^{2}=\frac{9}{16} z^{2}-\frac{18}{8 q} z+o(z)
\end{aligned}
$$

as $z \rightarrow \infty$, which also can be observed from the formulas (23), (24), as $z \rightarrow \infty$.

Remark 4.2. If one wishes to compare $E T_{z}$ with the asymptotic behaviour it is sensible to allow for a general initial probability vector say $p^{\prime}(0)=$ $\left(p_{0}(0), p_{1}(0)\right)$. In this case

$$
\begin{aligned}
E T_{z} & =\frac{3}{4} z-\frac{7 p_{0}(0)+5 p_{1}(0)}{8 q}+\frac{2 p_{0}(0)+p_{1}(0)}{2 q} e^{-q z}-\frac{p_{1}(0)+p_{0}(0)}{8 q} e^{-2 q z} \\
& =\frac{3}{4} z-\frac{7 p_{0}(0)+5 p_{1}(0)}{8 q}+o(1)
\end{aligned}
$$

This last result is also obtained for the asymptotic expression for $E T_{z}$ with a general initial probability vector.

ACKNOWLEDGMENTS

We acknowledge the valuable suggestions of the referees.

REFERENCES

[1] Mclean, R.A. and Neuts, M.F. (1967). The integral of a step function defined on a semi Markov process, SIAM J. Appl. Math., 15, 726-737.
[2] Masuda, Y. and Sumita, U. (1991). A multivariate reward processes defined on a semi-Markov process and its first passage time distributions, J. Appl. Prob., 28, 360-373.
[3] Parham, G.A. and Soltani, A.R. (1998). First passage time for reward processes with nonlinear reward function: asymptotic behavior, Pak. J. Statist., 14, 65-80.
[4] Soltani, A.R. (1996). Reward Processes with nonlinear Reward Functions, J. Appl. Prob., 33, 1011-1017.
[5] Sumita, U. and Masuda, Y. (1987). An Alternative Approach to the Analysis of Finite Semi-Markov and Related Processes, Commun. Statist.-Stochastic Models, 3, 67-87.

