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1. INTRODUCTION

In many statistical applications it is necessary to make inferences about
the tail of a distribution, where little data is available. For instance, one is often
interested in the probability that the maximum of n random variables exceeds a
given threshold or, vice versa, one wants to determine a level such that the ex-
ceedance probability is below a given small value. As an example, an hydraulics
engineer has to estimate the necessary height of a dike such that the probability
of a flooding in a given year is less than 10−4 (cf. Dekkers and de Haan, 1989).
This interest has given rise to a rapid development of extreme value theory
in the last thirty years (see e.g. Galambos, 1978, Leadbetter et al., 1983).
The traditional approach to the analysis of extreme values in a given popula-
tion is based on the family of generalized extreme value (GEV) distributions.
More precisely, Gnedenko (1943) showed that the limit distribution of the max-
imum Xn,n of a sample of independent and identically distributed variables
X,X1, ..., Xn from a distribution F , properly centred and normalized, is neces-
sarily of extreme value type, i.e. for some γ ∈ R, there exists sequences of con-
stants σn > 0 and αn∈ R such that

lim
n→∞

P
(
Xn,n − αn

σn
≤ x

)
−→ Hγ(x) ,(1.1)

for all continuity points of the extreme value distribution function Hγ , defined as

Hγ(x) =





exp
(
− (1 + γx)

− 1
γ
)

for γ 6= 0 and 1 + γx > 0 ,

exp
(
− exp(−x)

)
for γ = 0 and x ∈ R .

The distribution function F is said to belong to the maximum domain of
attraction of Hγ . The real-valued parameter γ is referred to as the extreme value
index (EVI) of F . Most common continuous distribution functions satisfy this
weak condition. Distributions with γ > 0 are called heavy-tailed, as their tail
F̄ typically decays slowly as a power function. Examples in this Fréchet class
are the Pareto, Burr, Student’s t, α-stable (α < 2) and loggamma distributions.
The Gumbel class of distributions with γ = 0 encompasses the exponential, nor-
mal, lognormal, gamma and classical Weibull distributions, the tail of which
diminishes exponentially fast. Finally, the Weibull class consists of distributions
with γ < 0, which all have a finite right endpoint s+(F ) := sup{x : F (x) < 1}.
Examples in this class are the uniform and reverse Burr distributions.

The problem of estimating the so-called extreme value index γ, which de-
termines the behaviour of the underlying distribution function F in its upper tail,
has received much attention in the literature. An extensive motivation of this
estimation problem can be found in Galambos (1978). The GEV distribution is
appropriate when the data consist of a set of maxima. However, there has been
some criticism of this approach, because using only maxima leads to the loss of
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information contained in other large sample values in a given period. This prob-
lem is remedied by considering several of the largest order statistics instead of
just the largest one: that is, considering all values larger than a given threshold.
The differences between these values and a given threshold are called excesses
over the threshold. Denote by Fu(x) := P(X− u ≤ x | X>u) the distribution of
the excesses of X over u, given that u is exceeded, and by Gγ,σ the generalized
Pareto distribution (GPD) defined, for all x ≥ 0, as

Gγ,σ(x) =





1−
(
1 +

γx

σ

)− 1
γ

for γ 6= 0 and 1 + γx/σ > 0 ,

1− exp
(
− x

σ

)
for γ = 0 ,

where σ and γ are the scale and shape parameters.

Pickands’ and Balkema and de Haan’s result (see Pickands (1975) and
Balkema and de Haan (1974)) on the limiting distribution of excesses over a
high threshold states that condition (1.1) holds if and only if

lim
u→s+(F )

sup
0<x<s+(F )−u

∣∣Fu(x)−Gγ,σ(u)(x)
∣∣ = 0

for some positive scaling function σ(u) depending on u.

Thus, if, for some n, one fixes a high threshold un and selects from a
sample X1, ..., Xn only those observations Xi1 , ..., XiNn that exceed un, a GPD
with parameters γ and σn = σ(un) is likely to be a good approximation for the
distribution Fun of the Nn excesses Yj := Xij− un, j =1, ..., Nn. This is called
the Peaks-Over-Threshold (P.O.T.) method.

Several methods have been proposed for estimating the parameters of the
GPD, for example the method of moments, of the probability-weighted moments
introduced by Hosking and Wallis (1987) or the maximum likelihood method
(Smith, 1987). In this paper, we look in more details at the maximum likeli-
hood estimators, but also we derive the more general conditions required on the
estimators (γ̂n, σ̂n) in order to obtain our results.

In all the sequel, we denote by

An,un(x) =
1

Nn

Nn∑

j=1

1l{Yj≤x}

the empirical distribution function of the excesses.

It is of course very important to measure the error between F̄un := 1−Fun
(unknown) and its estimator Ḡγ̂n,σ̂n := 1 − Gγ̂n,σ̂n . This error can be splitted
into two parts: an approximation error and an estimation error. The first one,
also called bias of approximation, is justified by the fact that the distribution of
the excesses over un is only approximated by a GPD, which implies a systematic
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error studied in Worms (2000). Since the distribution of the excesses over un is
Fun and not Gγ,σn , the error due to the estimation of (γ, σn) is also divided into
an approximation error due to the bias of approximation and a random term due
to fluctuations.

Note that Nn follows a binomial distribution B(n, 1−F (un)). We suppose,
in all the sequel, that n(1− F (un))→∞ as n→∞, that is Nn →∞ in proba-
bility. In such a case, Nn

n(1−F (un))
→ 1 in probability, as n→∞.

Let

F ∗un(y) = Fun(σny) and A∗n,un(y) = An,un(σny)

for all y ∈ R+. We will study the asymptotic behaviour of

F̄un(x)− Ḡγ̂n,σ̂n(x)

where γ̂n and σ̂n are the maximum likelihood estimators, or other regular esti-
mators with properties specified later on.

In what follows, we suppose that F is twice differentiable and that its
inverse F−1 exists. Let V and A be two functions defined as

V (t) = F̄−1(e−t) and A(t) =
V ′′(ln t)
V ′(ln t)

− γ .

We suppose the following first and second order conditions:

lim
t→+∞

A(t) = 0 ,(1.2)

and

A is of constant sign at ∞ and there exists ρ≤0 such that |A|∈RVρ ,(1.3)

(see Bingham et al., 1987).

Under these assumptions, it is proved in Worms (2000) (Theorem 1.4, p. 43)
that as un→ s+(F )

F̄un(σny)− Ḡγ(y) = anDγ, ρ(y) + o(an), as n→ +∞ ,(1.4)

for all y, when

σn := σ(un) = V ′
(
V −1(un)

)
, an := A

(
eV

−1(un)
)

Ḡγ(y) := 1−Gγ, 1(y) ,

and

Dγ,ρ(y) =





C0,ρ(y), if γ = 0 ,

Cγ,ρ

(
1

γ
ln(1 + γy)

)
if γ 6= 0 ,
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where

Cγ,ρ(y) := e−(1+γ)y Iγ,ρ(y) and Iγ,ρ(y) :=

∫ y

0
eγu
∫ u

0
eρs ds du .

We also assume that

lim
n→∞

√
n (1−F (un)) an = λ ∈ R .(1.5)

This is equivalent to suppose that
√
Nn an tends to λ in probability,

as n→∞.

The main result of this paper is the following. For a regular class of es-
timators, when ρ is equal to 0, the error due to the fact that F̄un is replaced
by Ḡγ̂n,σ̂n is of smaller order than the same error in the case ρ 6= 0. This re-
sult is closely linked to the penultimate approximation for the distribution of the
excesses established in Worms (2002) (Gomes and de Haan (2000), generalizing
Cohen (1982), Gomes (1984) and Gomes and Pestana (1987), studied penulti-
mate approximation for the distribution of the maximum). At first sight, it can
appear a bit strange since it is well known that, if we consider only the problem
of the estimation of the index γ, the smaller |ρ|, the more difficult it is to estimate
the index. This problem of bias in the estimation of the index has been widely
studied recently in the literature and justified in particular the work on regression
model by Beirlant et al. (1999). This paper proves that, on the contrary, if we
consider the problem of the estimation of the tail distribution, we do not need
to construct asymptotically unbiased estimators, which is essential in the other
estimation problem.

The remainder of our paper is organized as follows. In Section 2, we give
our main results and the general conditions on the estimators (γ̂n, σ̂n) that we
need to obtain our results. Then, in Section 3, we study the asymptotic bias and
also the functional bias of the estimated GPD in the case of maximum likelihood
estimation with γ > 0. The details of the proofs are postponed to the appendix.

2. MAIN RESULT

We restrict our attention to a class of estimators that we call “regular
estimators” of the couple (γ, σ). We say that an estimator is regular if it has the
form T (Ān,un) =: (T1(Ān,un), T2(Ān,un)), where T satisfies:

(A1) T (Ḡγ, σ) =
(
T1(Ḡγ, σ), T2(Ḡγ, σ)

)
= (γ, σ).

(A2) A form of Hadamard differentiability, namely the existence of linear forms
DT (Ḡγ) =: (DT1(Ḡγ), DT2(Ḡγ)), where

DTk(Ḡγ)[H] =

∫ ∞

0
H dµk,γ , k = 1, 2 ,(2.1)
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for some Borelian measures µk,γ and all H ∈ L1(R+, µ1,γ) ∩ L1(R+, µ2,γ)
such that under assumption (1.5) we have

lim
n→+∞

T (F̄ ∗un)− T (Ḡγ)

an
= DT (Ḡγ)[Dγ, ρ] ,(2.2)

lim
n→+∞

√
Nn

(
T

(
F̄ ∗un+

1√
Nn

αNn◦ F̄ ∗un
)
− T (F̄ ∗un)

)
= DT (Ḡγ) [B ◦ Ḡγ ] ,(2.3)

in distribution, where αk denotes the uniform empirical process and
B a Brownian bridge, and

lim
n→+∞

T (Ḡγ+an)− T (Ḡγ)

an
= DT (Ḡγ)

[
∂Ḡγ

∂γ

]
.(2.4)

Clearly, condition (A2) requires that Dγ,ρ, B ◦ Ḡγ and
∂Ḡγ

∂γ are in

L1(R+, µ1,γ) ∩ L1(R+, µ2,γ) .

(A3) A scale invariance property, namely for all F̄ such that T (F̄ ) is defined
and all σ > 0,

T1

(
F̄
( •
σ

))
= T1(F̄ ) and T2

(
F̄
( •
σ

))
= σ T2(F̄ ) .(2.5)

As in the Introduction, we use the notation σn= σ(un). Then, if we denote
by (γbn, σ

b
n) = T (F̄un) the values of γ and σ obtained when Ḡγ,σn has been

substituted by the true distribution function F̄un of the excesses, we deduce from
(2.2)–(2.5) that

1

an

(
γbn − γ,

σbn
σn
− 1

)
−→ DT (Ḡγ)[Dγ, ρ] =:

(
L1(γ, ρ), L2(γ, ρ)

)
,(2.6)

and

√
Nn

(
γ̂n − γbn,

σ̂n
σn
− σbn
σn

)
d−→(2.7)

d−→
(∫ ∞

0
B ◦ Ḡγ dµ1,γ ,

∫ ∞

0
B ◦ Ḡγ dµ2,γ

)
=: (Z1, Z2) .

Consequently,

√
Nn

(
γ̂n − γ,

σ̂n
σn
− 1

)
d−→ (Z1, Z2) + λ

(
L1(γ, ρ), L2(γ, ρ)

)
.(2.8)

Note that (2.6) contains the bias of approximation of γ and σ, whereas
(2.7) involves the limiting distribution of γ̂n and σ̂n. This shows that the bias of
approximation on the parameters is of order an and under (1.5), γ̂n and σ̂n/σn are
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asymptotically biased when λ 6= 0. In this paper, we will focus on the asymptotic
functional bias of approximation, defined as:

AE(x) := lim
n→∞

F̄ ∗un(x)− Ḡγbn, σ
b
n/σn

(x)

an
.

This quantity is important since it measures the first order non stochastic
discrepancy between the unknown target tail function, F̄ ∗un , and its observable
counterpart, Ḡγ̂n,σ̂n/σn . This bias is important to statisticians who are more
interested in estimating small tail probabilities than in estimating γ (as Drees
(1998) and Drees et al. (2004) who have studied the asymptotic behaviour of the
maximum likelihood estimators (γ̂n, σ̂n)).

Using (1.4) and a Taylor expansion, it can easily be proved that

AE(x) = Dγ, ρ(x) − L1(γ, ρ)
∂Ḡγ

∂γ
(x) + L2(γ, ρ)x

∂Ḡγ

∂x
(x) .(2.9)

This expression contains both the bias of approximation (1.4) and the error of
approximation on the parameters (2.6).

This result has been first established in Diebolt et al. (2003) in the spe-
cial case of the probability-weighted moments estimators of Hosking and Wallis
(1987).

Our main result is summarized in the following theorem.

Theorem 1. Under assumptions (A1)–(A3) and (1.5), we have

AE ≡ 0 when ρ = 0 .

Proof: From (A1), we clearly have that
∂T (Ḡγ,σ)

∂γ = (1, 0) and from (2.4)

we deduce that
∂T (Ḡγ,1)

∂γ = DT (Ḡγ)
[
∂Ḡγ

∂γ

]
. Therefore, in the case ρ = 0,

since Dγ,0 =
∂Ḡγ

∂γ , we derive that L1(γ, 0) = 1 and L2(γ, 0) = 0. Consequently,

AE(x) = Dγ,0(x) − ∂Ḡγ

∂γ (x) = 0 in the case ρ = 0. This explains why as soon
as we use estimators which satisfy (A1)–(A3), the function AE becomes the null
function for ρ = 0.

This result is particularly remarkable. Indeed:

• This result means that in the case ρ = 0, although the bias of γ̂n is of
order an, its contribution is cancelled by compensation with Dγ, 0 in the ex-
pression of the function AE . It can be seen that AE remains small whenever
|ρ| is small.
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• The second order parameter ρ is zero for many usual distributions in the
Gumbel domain of attraction (γ = 0): e.g., the normal, lognormal, gamma
and classical Weibull distributions. Hence, our result applies to all of these
distributions. In the Frechet domain of attraction, we also have distribu-
tions with ρ = 0, such as the loggamma distribution.

• This result is closely linked to penultimate approximation in Worms (2002).

• This remarkable behaviour of the error of functional approximation AE

when ρ = 0 contrasts strongly with theoretical and experimental results
concerning the semiparametric estimators of γ, for example the Hill es-
timator (Hill, 1975). Indeed, the bias of these estimators explodes when
ρ tends to 0. This motivates many recent works on exponential regression
model, where estimators with reduced bias are proposed (see, for example,
Beirlant et al., 1999).

3. MAXIMUM LIKELIHOOD ESTIMATION FOR γ > 0

In this section, we will prove the following theorem.

Theorem 2. For γ > 0, the maximum likelihood estimators are regular
in the sense that they satisfy conditions (A1)–(A3).

With this aim, we first establish the local existence and unicity of these
estimators. Then, we prove the regularity of T in the maximum likelihood setting
with γ > 0.

We will need some notation. First, we denote by gθ = gγ, σ the density of
the GPD distribution with parameters θ. Then the score function sθ(x) is the
gradient of ln gθ(x) with respect to θ. It is a function of x taking its values in R2.
The score function sθ(x) is of the form

sθ(x) =
(
s1(x; θ), s2(x; θ)

)T

where, denoting y = x/σ,

s1(x; γ, σ) =





(1 + γy) ln(1 + γy)− (γ + 1)γy

γ2(1 + γy)
if γ > 0 ,

y(y − 2)

2
if γ = 0 ,

(3.1)

and

s2(x; γ, σ) =
y − 1

σ(1 + γy)
if γ ≥ 0 .(3.2)
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Let also ψθ(x) denote the derivative of sθ(x) with respect to x:

ψθ(x) := (sθ)
′(x) :=

(
ψ1(x; θ), ψ2(x; θ)

)T
=

(
x− σ

(σ + γx)2
,

1 + γ

(σ + γx)2

)
.

3.1. Existence and local unicity

We consider the Küllback–Leibler divergence between two densities of prob-
abilities h and g related to a measure of reference ν:

Entg

(
h

g

)
:=

∫
ln

(
h(x)

g(x)

)
h(x) ν(dx) .

It takes, by convention, the value ∞ when the integral is not finite. Let θ ∈ Θ =
{(γ, σ) : γ > 0, σ > 0}. Under our assumptions, F admits a density f and the
two Küllback–Leibler divergences between gθ and f are defined as (note that they
can take the value ∞)

dKL(gθ | f) := Entf

(
gθ
f

)
=

∫ ∞

0
ln

(
gθ(x)

f(x)

)
gθ(x) dx

and

dKL(f | gθ) :=

∫ ∞

0
ln

(
f(x)

gθ(x)

)
f(x) dx .

These quantities are ≥ 0 and dKL(f | g) = 0 if and only if f = g a.e. Similar
properties exist for dKL(g| f). Splitting the logarithm into two parts, we obtain

dKL(f | gθ) =

∫ ∞

0
ln f(x) f(x) dx + ∆(θ, F̄ ) ,

where

∆(θ, F̄ ) :=

∫ ∞

0
ln gθ(x) dF̄ (x) = −

∫ ∞

0
ln gθ(x) f(x) dx .(3.3)

Thus, dKL(f | gθ) is minimal if and only if ∆(θ, F̄ ) is minimal. Here, the family
{gθ : θ ∈ Θ} is identifiable: the distance dKL between gθ and gθ′ is equal to zero
if and only if θ = θ′.

For each F̄ , the function θ 7→ ∆(θ, F̄ ) is continuous on Θ as soon as

(C1)

∫ ∞

1
lnx f(x) dx < ∞ .

Lemma 1 below guarantees the local existence of the maximum likelihood
estimators.
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Lemma 1. Under (C1), the restriction of θ 7→ ∆(θ, F̄ ) to each closed ball
K contained in Θ reaches its minimum value in K and at each point where this
minimum is reached, we have

∫ ∞

0
sθ(x) dF̄ (x) = 0 .(3.4)

The proof of this lemma is straightforward. Remark that (3.4) constitutes
the likelihood equations.

We now consider the local unicity. First define

W (θ, F̄ ) :=

∫ ∞

0
F̄ (x)ψθ(x) dx .

Integrating by parts yields the following result:

Lemma 2. Under (C1),

(C2) F̄ (x) lnx −→
x→∞

0 ,

and if F̄ (0) = 1, we have

W (θ, F̄ ) =

(
0,

1

σ

)T
−
∫ ∞

0
sθ(x) dF̄ (x) .(3.5)

Remark that if (C2) is satisfied, then (C1) can be rewritten as∫∞
1 (F̄ (x)

/
x) dx < ∞. Moreover, if we assume the mild condition that there

exists an ε > 0 such that

(C3) F̄ (x) (lnx)1+ε −→
x→∞

0 ,

then (C1) and (C2) are satisfied. Note that in Appendix (4.3), we will prove that
(C3) is satisfied by F̄ ∗un .

In all the sequel, we use the notation θ? = (γ?, 1), γ?>0 denoting the true
value of γ and Ḡ := Ḡθ? . The local unicity is established in the following lemma.

Lemma 3. There exists a closed ball V? centered at θ? such that the
restriction of the application θ 7→ ∆(θ, F̄ ∗un) to V? is strictly convex for all n
sufficiently large, as F̄ ∗un converges to Ḡ in the sense described in Worms (2000,
2002).

Proof of Lemma 3: We consider the second order differential D2 ln gθ(x)
with respect to θ, represented by a 2×2 matrix-valued function of x. For each
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suitable F̄ and each θ ∈ Θ, the matrix

I(θ, F̄ ) :=

∫ ∞

0
D2 ln gθ(x) dF̄ (x)

is a Fisher-type information matrix. Recall that the symmetric matrix I(θ, Ḡθ)
is definite positive for each γ > −1/2.

We show in Appendix 4.1 via an integration by parts that the matrix
I(θ, F̄ ∗un) converges, uniformly in θ in some compact neighbourhood V? of θ?,
to a matrix I(θ, Ḡ), as n→∞. Consequently, I(θ, F̄ ∗un) is definite positive for all
θ ∈ V? and all n sufficiently large. In this case, we have for all n sufficiently large,
unicity of the minimum of ∆(θ, F̄ ∗un) for θ ∈ V?, i.e. local unicity. We denote by
θn = T (F̄ ∗un) the point in V? minimizing ∆(θ, F̄ ∗un).

Remark that the functional T is sequentially continuous in the following
sense. Since the T (F̄ ∗un)’s are in the compact V?, the sequence that they form ad-
mits at least an adherence value, which belongs to V?. We deduce from compact-
ness and identifiability that any adherence value of this sequence is necessarily θ?.
It therefore follows that T (F̄ ∗un) converges to T (Ḡ) = θ?.

3.2. Regularity of T in the maximum likelihood case

In this section, we will essentially prove the Hadamard differentiability of T ,
with a differential given by

H 7−→
[
I
(
T (Ḡ), Ḡ

)]−1 ∫ ∞

0
H(x)ψT (Ḡ)(x) dx .(3.6)

Starting from (3.5), we obtain

∫ ∞

0
F̄ ∗un(x)Dψθ(x) dx =

[
0 0

0 − 1
σ2

]
−
∫ ∞

0
Dsθ(x) dF̄

∗
un(x)

=: M −
∫ ∞

0
Dsθ(x) dF̄

∗
un(x) ,

that is

I(θ, F̄ ∗un) = −
∫ ∞

0
F̄ ∗un(x)Dψθ(x) dx + M .

By local existence and unicity, for all n sufficiently large

−
(
0,

1

σ

)T
+W (θ, F̄ ∗un) = 0 if and only if θ = T (F̄ ∗un) .
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Therefore

−
(
0,

1

T2(F̄ ∗un)

)T
+W

(
T (F̄ ∗un), F̄

∗
un

)
= 0

and
−
(
0, 1
)T

+W
(
T (Ḡ), Ḡ

)
= 0 .

Thus,

0 =
1

an

[
W
(
T (F̄ ∗un), F̄

∗
un

)
− W

(
T (Ḡ), Ḡ

)
−
(
0,

1

T2(F̄ ∗un)

)T
+
(
0, 1
)T
]

=
1

an

[∫ ∞

0
F̄ ∗un(y)ψT (F̄ ∗

un
)(y) dy −

∫ ∞

0
Ḡ(y)ψT (Ḡ)(y) dy(3.7)

−
(
0,

1

T2(F̄ ∗un)

)T
+
(
0, 1
)T
]
.

We know that limn→∞ T (F̄ ∗un) = T (Ḡ) = (γ?, 1). For each y, we use a Taylor
expansion of order 2 with integral remainder of ψθ(y) around ψT (Ḡ)(y):

ψT (F̄ ∗
un

)(y) = ψT (Ḡ)(y) +Dψθ(y)
∣∣
θ=(γ?,1)

[
T (F̄ ∗un)−T (Ḡ)

]
+ remainder .(3.8)

Recall the principle of Taylor expansions of order 2 with integral remainder. Let f
be a function of two variables. Denoting g(t) = f(a1 + th1, a2 + th2) and using

g(1) = g(0) + g′(0) +

∫ 1

0
(1− t) g′′(t) dt ,

it follows that

f
(
a1+ h1, a2 + h2

)
=

= f(a1, a2) + h1 ∂1f(a1, a2) + h2 ∂2f(a1, a2)

+

∫ 1

0
(1−t)

(
h21 ∂11f + 2h1 h2 ∂12f + h22 ∂22f

)
(a1+ th1, a2 + th2) dt .

We will apply this formula to the two functions ψj(x; γ, σ), j=1, 2, at a fixed x, as
functions of (γ, σ). The point (a1, a2) will be (γ

?, 1) and the point (a1+h1, a2+h2)
will be (γ, σ) close to (γ?, 1). Denote by ∆γ := γ−γ? and ∆σ := σ−1. We have
(∂1 denoting the derivative in γ, and ∂2 the derivative in σ)

∂1ψ1(x; γ, σ) = − 2x (x− σ)
(σ + γx)3

and ∂2ψ1(x; γ, σ) = − (γ + 2)x− σ
(σ + γx)3

,

∂1ψ2(x; γ, σ) = − (γ + 2)x− σ
(σ + γx)3

and ∂2ψ2(x; γ, σ) = − 2(1 + γ)

(σ + γx)3
.
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We have similar expressions for the second order partial derivatives. As x tends
to infinity, there are all of order O(1). For example,

∂11ψ1(x; γ, σ) =
6x2(x− σ)
(σ + γx)4

.

Thus

(∆γ)2
∫ 1

0
(1− t) ∂11ψ1

(
x; γ?+ t∆γ, 1+ t∆σ

)
dt =

= (∆γ)2
∫ 1

0
(1− t) 6x2(x− 1− t∆σ)

[
1 + γ?x+ (∆σ + x∆γ) t

]4 dt .

We are interested in

∫ ∞

0
F̄ ∗un(y)ψT (F̄ ∗

un
)(y) dy −

∫ ∞

0
Ḡ(y)ψT (Ḡ)(y) dy .

In the development ψT (F̄ ∗
un

)(y)− ψT (Ḡ)(y), the contribution to the integral
remainder due to ∂11ψ1 is of the form

(∆γ)2
∫ ∞

0
F̄ ∗un(y)

∫ 1

0
(1− t) 6y2(y − 1− t∆σ)

[
1 + γ?y + (∆σ + y∆γ) t

]4 dt dy ,

which is

(∆γ)2
∫ 1

0
(1− t)

∫ ∞

0
F̄ ∗un(y)

6y2(y − 1− t∆σ)
[
1 + γ?y + (∆σ + y∆γ) t

]4 dy dt .

We now show that this term is O((∆γ)2). The range y small is trivial, since the
dominating term in the ratio is −6y2. Therefore, we will look only at the range
y ≥ y0 > 0. We have therefore to study

∫ 1

0
(1− t)

∫ ∞

y0

F̄ ∗un(y)
6
(
1− (1 + t∆σ)/y

)

y
[
1/y + γ? + (∆σ/y +∆γ) t

]4 dy dt ,

which can be reduced to study the quantity

∫ 1

0
(1− t)

∫ ∞

y0

F̄ ∗un(y)

y
dy dt ,

which is integrable under our conditions and converges to
∫ 1
0(1−t)

∫∞
y0
(Ḡ(y)/y) dy dt.

It is thus a bounded sequence.



Asymptotic Behaviour of Regular Estimators 33

From (3.7) and (3.8), we obtain that

(
I(θ?, F̄ ∗un) −

[
0 0

0 1
T2(F̄ ∗

un
)
− 1

])[
T (F̄ ∗un)− T (Ḡ)

an

]
=

=

∫ ∞

0

F̄ ∗un(y)− Ḡ(y)
an

ψθ?(y) dy + remainder .

Using the Appendix 4.3, we have

∫ ∞

0

F̄ ∗un(y)− Ḡ(y)
an

ψθ?(y) dy −→
n→∞

∫ ∞

0
Dγ?,ρ(y)ψθ?(y) dy .

Moreover, T2(F̄
∗
un)→ 1 and we have established that I(θ?, F̄ ∗un)→ I(θ?, Ḡ)

which is definite positive, thus

I(θ?, F̄ ∗un) −
[
0 0

0 1
T2(F̄ ∗

un
)
− 1

]

is inversible for all n sufficiently large. We conclude therefore that

T (F̄ ∗un)− T (Ḡ)

an
=

[
I(θ?, F̄ ∗un) −

[
0 0

0 1
T2(F̄ ∗

un
)
− 1

]]−1

·
∫ ∞

0

F̄ ∗un(y)− Ḡ(y)
an

ψθ?(y) dy + remainder −→(3.9)

−→
[
I
(
T (Ḡ), Ḡ

)]−1 ∫ ∞

0
Dγ?,ρ(y)ψθ?(y) dy .

Therefore (3.6) is now established for F̄ ∗un and a similar study is carried out

for sequences
(
F̄ ∗un+ k

−1/2
n αkn(F̄

∗
un)
)
n≥1 in Appendices 4.4 and 4.5.

We have now to compute the couple of biases, to check that the principal
term of the functional bias of approximation cancels for ρ = 0, and to compute
it for ρ 6= 0. We know that

I−1 :=
[
I
(
T (Ḡ), Ḡ

)]−1
= (γ + 1)

[
γ + 1 −1
−1 2

]
.
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The column 2×1 of biases (first the bias concerning γ, then the bias concerning
σ close to 1, i.e. for σ/σn), is

an(
1 + |ρ|

) (
1 + γ + |ρ|

)
[
γ + 1

|ρ|

]
.(3.10)

This formula is also applicable, at least formally, in the case γ = 0. When we
choose ρ = 0, we find an (1, 0)

T , as expected.

Remark 1. If we consider the Hall model (1982) defined by

1− F (t) = C t− 1/γ
(
1 +D tρ/γ

(
1 + o(1)

))
, t→∞ ,

where ρ < 0, C > 0 and D ∈ R, direct computations lead to A(t) = ρDCρ(γ+ρ)

· tρ(1+o(1)) and so an = ρD (γ+ρ)u
ρ/γ
n (1+o(1)). The vector of biases (3.10) is

the one given in Smith (1987). Remark that this verification is direct for the bias
of γ. On the other hand, it is not the case for the bias of σ

/
σn, taking into account

the fact that Smith (1987) took a σn different from ours. It is thus necessary to
take this difference into account. In the same way, Drees et al. (2004) have
also, but in a different way, obtained the vector of biases for a standardization
different from ours and from that of Smith (1987), but as previously mentioned
a repercussion of this difference gives again (3.10).

Remark 2. We have just shown that the maximum likelihood estimators
satisfy conditions (A1)–(A3) with µk,γ(dx) = ψk(x; γ, 1) dx, k = 1, 2.

Since (γbn, σ
b
n) = T (F̄un), we have (γbn,

σbn
σn

) = T (F̄ ∗un). Then, by (3.6) and
(3.7),

T (F̄ ∗un)− T (Ḡγ,1) =

(
γbn − γ,

σbn
σn
− 1

)

= an I
−1
∫ ∞

0
Dγ,ρ(x)ψγ,1(x) dx + o(an)

=
an(

1 + |ρ|
) (

1 + γ + |ρ|
)
[
γ + 1

|ρ|

]
+ o(an) .

It follows that

F̄ ∗un(x)− Ḡγbn

(
σbn x

σn

)
=

= an

(
Dγ,ρ(x) +

γ + 1(
1+|ρ|

) (
1+γ+|ρ|

) ∂Gγ

∂γ
(x)− |ρ|x(

1+|ρ|
) (

1+γ+|ρ|
) ∂Gγ

∂x
(x)

)

+ o(an) .

Therefore, it can be directly checked that, when ρ=0, AE(x)=0 for all x.



Asymptotic Behaviour of Regular Estimators 35

4. APPENDIX

4.1. Convergence of the information matrices for F̄ ∗un

We use the following notations in all the sequel: Ḡ := Ḡθ? and Ψ(· |θ) :=
Dψθ(x). We would like to prove that, ∀ ε > 0,

∣∣∣∣
∫ ∞

0
Ḡ(y)Ψ(y|θ) dy −

∫ ∞

0
F̄ ∗un(y)Ψ(y|θ) dy

∣∣∣∣ ≤ ε ,

for n sufficiently large, ∀ θ ∈ V? = V(θ?).

This proof can be divided into two parts. First, we consider an ε > 0 and
we will prove that it is possible to choose a number A such that each quantity

∣∣∣∣
∫ ∞

A
Ḡ(y)Ψ(y|θ) dy

∣∣∣∣ and

∣∣∣∣
∫ ∞

A
F̄ ∗un(y)Ψ(y|θ) dy

∣∣∣∣

is smaller than ε
/
2, ∀ θ ∈ V? and ∀n ≥ n1(A).

Then, using this number A, we will establish our result by reasoning on

∫ A

0
F̄ ∗un(y)Ψ(y|θ) dy

and using the mean value theorem.

In order to establish the first part of this result, we use the classical change
of variables

∣∣∣∣
∫ ∞

A
Ḡ(y)Ψ(y|θ) dy

∣∣∣∣ =
∣∣∣∣
∫ ∞

B
e−sΨ

(
g(s)

∣∣θ
)
g′(s) ds

∣∣∣∣

and
∣∣∣∣
∫ ∞

A
F̄ ∗un(y)Ψ(y|θ) dy

∣∣∣∣ =
∣∣∣∣
∫ ∞

Bn

e−sΨ
(
gn(s)

∣∣θ
)
g′n(s) ds

∣∣∣∣ ,(4.1)

where gn(s) = (eγ
?s−1)

/
γ? + anRn(s) and g(s) = (eγ

?s−1)
/
γ?, and we prove

that the latter quantity is smaller than ε
/
2 for an ε = ε(Bn), uniformly in

θ = (γ, σ) close to θ?=(γ?, 1), and for n sufficiently large. Remark that the first
quantity can be treated similarly and recall that g′n(s) is of the form eγ

?s+ anrn(s),
an expression that we will use later on. All the proof will be done in the case
γ?>0 and we will use the first component of Ψ(·|θ), the other ones can be treated
similarly (and in fact more easily). Thus, we have to bound the quantity

gn(s) |gn(s)− σ|(
σ + γgn(s)

)3 |g′n(s)| for s ≥ Bn .
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Recall that y = F̄ ∗−1un (e−s). Since F̄ ∗−1un and s 7→ e−s are decreasing,
y is increasing. Consequently, since gn(s)↗∞ for s↗∞ ∀n, we can use
the bound

cst
g2n(s)

g3n(s)
|g′n(s)|

uniformly for θ ∈ V?. We have therefore to study
∫ ∞

Bn

e−s
|g′n(s)|
gn(s)

ds =

∫ ∞

Bn

e−s
g′n(s)
gn(s)

ds(4.2)

since g′n ≥ 0. By integrating by parts, this integral is equal to

− e−Bn ln
(
gn(Bn)

)
+

∫ ∞

Bn

e−s ln
(
gn(s)

)
ds .(4.3)

Using the fact that the first term is negative and that if s ≥ Bn then
gn(s) ≥ gn(Bn), we obtain the first part of the proof.

Concerning the second part of the proof, we first prove that

∫ A

0
F̄ ∗n(y)Ψ(y|θ) dy −→

∫ A

0
Ḡ(y)Ψ(y|θ) dy

as n→∞, uniformly in θ close to θ? = (γ?, 1). We have

∫ A

0
F̄ ∗n(y)Ψ(y|θ) dy =

∫ Bn

0
e−sΨ

(
gn(s)

∣∣θ
)
g′n(s) ds

and ∫ A

0
Ḡ(y)Ψ(y|θ) dy =

∫ B

0
e−(1−γ

?)sΨ
(
g(s)

∣∣θ
)
ds .

Thus we look at

sup
θ∈V?

∣∣∣∣
∫ A

0
F̄ ∗n(y)Ψ(y|θ) dy −

∫ A

0
Ḡ(y)Ψ(y|θ) dy

∣∣∣∣ =

= sup
θ∈V?

∣∣∣∣
∫ B

0
e−(1−γ

?)s
[
Ψ
(
gn(s)

∣∣θ
)
−Ψ

(
g(s)

∣∣θ
)]
ds

+ an

∫ B

0
e−s rn(s)Ψ

(
gn(s)

∣∣θ
)
ds

∣∣∣∣

+ sup
θ∈V?

∣∣∣∣
∫ Bn

B
e−sΨ

(
gn(s)

∣∣θ
)
g′n(s) ds

∣∣∣∣

= sup
θ∈V?

∣∣∣∣
∫ B

0
e−(1−γ

?)s anRn(s)
∂Ψ

∂x

(
eγ

?s− 1

γ?
+ ξn(s)

∣∣∣∣ θ
)
ds

+ an

∫ B

0
e−s rn(s)Ψ

(
gn(s)

∣∣θ
)
ds

∣∣∣∣

+ sup
θ∈V?

∣∣∣∣
∫ Bn

B
e−sΨ

(
gn(s)

∣∣θ
)
g′n(s)

∣∣∣∣ ,
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where ξn(s) ∈ (0, anRn(s)) and where V? is a compact neighbourhood of θ?.
Therefore, we have to study two supremum separately. We have some very useful
properties (Potter bounds) that we recall below (see Worms, 2000):

• V
(
s+ V −1(un)

)
− un

σn
=

eγ
?s − 1

γ?
+ anRn(s) , an ∈ R ,

|Rn(s)| ≤ cst e(γ
?+η)s

∫ s

0
eρt dt ,

Rn(s) −→
n→∞

∫ s

0
eγ

?z

∫ z

0
eρt dt dz .

• V ′
(
s+ V −1(un)

)

σn
= eγ

?s + anrn(s) ,

|rn(s)| ≤ cst e(γ
?+η)s

∫ s

0
eρt dt ,

rn(s) −→
n→∞

eγ
?s

∫ s

0
eρt dt .

For the first supremum, we study the two quantities of the sum separately.
Concerning the first one and taking into account the fact that

sup
θ∈V?, x∈[0,A]

∣∣Ψ(x|θ)
∣∣ < ∞ and sup

θ∈V?, x∈[0,A]

∣∣∣∣
∂Ψ

∂x
(x|θ)

∣∣∣∣ < ∞ ,

we can restrict ourself to a compact in x, i.e. work with the product of the two
compacts. This is what we do below, where we have to study

∣∣∣∣ e
−(1−γ?)s anRn(s)

∂Ψ

∂x

(
eγ

?s − 1

γ?
+ ξn(s)

∣∣∣∣ θ
)∣∣∣∣ ≤

≤ cst |an| e−(1−2γ
?−η)s sup

θ∈V?, x∈[0,A]

∣∣∣∣
∂Ψ

∂x
(x|θ)

∣∣∣∣ ,

taking the fact that |Rn(s)| ≤ K e(γ
?+η)s into account. Consequently, the first

quantity in the first supremum tends to 0 uniformly.

Concerning now the second quantity in the first supremum,

|an|
∣∣∣∣
∫ B

0
e−s rn(s)Ψ

(
gn(s)

∣∣θ
)
ds

∣∣∣∣ ,

we use again the fact that |rn(s)| ≤ K e(γ
?+η)s and supθ∈V?, x∈[0,A] |Ψ(x|θ)| <∞

in order to conclude.
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The second supremum, related to

∣∣∣∣
∫ Bn

B
e−sΨ

(
gn(s)

∣∣θ
)
g′n(s) ds

∣∣∣∣ ,

can be bounded by

∫ Bn

B
e−s
∣∣∣Ψ
(
C1 e

(γ?−η)s ∣∣ θ
)∣∣∣C2 e

(γ?+η)s ds = O
(∫ Bn

B
e−(1−2η)s ds

)
,

where C1 and C2 are two constants. This last equality comes from the fact that
B and Bn are large, then Ψ(·|θ) is decreasing and Ψ

(
C1 e

(γ?−η)s ∣∣ θ
)
is of order

O
(
e−(γ

?−η)s) uniformly, which achieves the proof.

4.2. Conditions of integrability for F̄ ∗un

We would like to show that (C3) is satisfied by F̄ ∗un . With this aim,
let e−s = F̄ ∗un(y) which implies that y = F̄ ∗−1un (e−s) = gn(s). Using the Potter
bounds, we obtain that

cst e(γ
?−η)s ≤ F̄ ∗−1un (e−s) ≤ cst e(γ

?+η)s .

Since F̄ ∗un is decreasing, we deduce that

F̄ ∗un
(
cst e(γ

?+η)s
)
≤ e−s ≤ F̄ ∗un

(
cst e(γ

?−η)s) .

Let y = cst e(γ
?±η)s according to what we want to obtain. We have then

e−s = (y
/
cst)−1/(γ

?±η), which implies that F̄ ∗un(y) = O(y−β) for some β > 0.
The integrability condition (C3) is then clearly satisfied by F̄ ∗un .

4.3. Hadamard differentiability of F̄ ∗un

Our aim in this appendix is to deal with

∫ ∞

0

F̄ ∗un(y)− Ḡ(y)
an

ψθ?(y) dy =

=

∫ ∞

0
e−s ψθ?(gn(s)) rn(s) ds +

∫ ∞

0
e−(1−γ

?)s ψθ?(gn(s))− ψθ?(g(s))
an

ds

with |rn(s)| ≤ cst e(γ
?+η)s.
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We will use the fact that all the functions of the matrix ψθ?(x) are contin-
uous and of order O

(
1
x

)
as x→∞. Denoting by φ such a function, we will first

prove that
∫ ∞

0
e−s φ(gn(s)) rn(s) ds −→

n→∞

∫ ∞

0
e−(1−γ

?)s

∫ s

0
eρt dt φ(g(s)) ds .

With this aim, we will split the integral into two parts: the first one from
0 to A and the second one from A to infinity. The first part does not pose any
problem. Therefore, we will look at the second one.

Using the properties of φ, we have

∣∣φ(gn(s))
∣∣ ≤ cst

gn(s)
for s ≥ A and for all n sufficiently large .

Using the lower Potter bound for gn(s), we have:

gn(s) ≥ cst e(γ
?−η)s , cst > 0, for s ≥ A and for all n sufficiently large .

Therefore, for the same s and n, we have

∣∣φ(gn(s))
∣∣ ≤ cst e(−γ

?+η)s ,

which implies the domination of the function in the integral by cst e−s(1−2η).

We thus obtain the desired convergence using the fact that φ is continuous
and that rn(s)→ eγ

?s
( ∫ s

0 e
ρt dt

)
as n→∞.

Now we have to study

∫ ∞

0
e−(1−γ

?)s φ(gn(s))− φ(g(s))
an

ds .

We have

φ(gn(s))− φ(g(s)) = φ
(
g(s) + anRn(s)

)
− φ(g(s))

= an φ
′
(
g(s) + ξn(s) anRn(s)

)
Rn(s) , 0 ≤ ξn(s) ≤ 1 .

We can use the Potter bound for g(s) + ξn(s) anRn(s). Therefore

∣∣∣φ′
(
g(s) + ξn(s) anRn(s)

)∣∣∣ ≤ cst e(−2γ
?+2η)s .

Recall that for Rn, we have the following bound

|Rn(s)| ≤ cst e(γ
?+η)s .
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By gathering these various results, we obtain that the function in the inte-
gral is bounded by cst e−s(1−3η).

Moreover, φ′ is continuous. Therefore, since ∀ s, gn(s)→ g(s) as n→∞
and g(s) + ξn(s) anRn(s) is located between g(s) and gn(s), we have

φ′
(
g(s) + ξn(s) anRn(s)

)
−→ φ′(g(s)) .

Finally, Rn(s)→
∫ s
0 e

γ?u
∫ u
0 e

ρt dt du.

By gathering the two limiting integrals, we obtain

∫ ∞

0
e−(1−γ

?)s

(∫ s

0
eρt dt

)
φ(g(s)) ds +

+

∫ ∞

0
e−(1−γ

?)s

(∫ s

0
eγ

?z

∫ z

0
eρt dt dz

)
φ′(g(s)) ds =: A+B .

By integrating by parts, we derive the following limit

B = −
∫ ∞

0
φ(g(s)) e−s

(
−
∫ s

0
eγ

?z

∫ z

0
eρt dt dz + eγ

?s

∫ s

0
eρt dt

)
ds ,

which implies that

A+B =

∫ ∞

0
φ(g(s)) e−s

∫ s

0
eγ

?z

∫ z

0
eρt dt dz ds .

Now, using the notations of the Introduction, it follows that

A+B =

∫ ∞

0
φ(g(s)) e−sIγ?,ρ(s) ds

=

∫ ∞

0
φ(g(s)) eγ

?sCγ?,ρ(s) ds

=

∫ ∞

0
φ(y)Dγ?,ρ(y) dy ,

by the change of variable y = g(s).

4.4. Existence and almost surely unicity of θ̂n for F̄
∗
un+

1√
kn
αkn
(
F̄ ∗un

)

According to the proof for F̄ ∗un , it is sufficient to establish that

1√
kn

∫ ∞

0
αkn
(
F̄ ∗un(x)

)
Dψθ(x) dx −→

n→∞
0 a.s. ,
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uniformly in θ ∈V?. We use the fact thatDψθ(x) is bounded uniformly in θ ∈V?.
We split the integral, as in the proof for F̄ ∗un , into two integrals, one from 0 to A
and the other one from A to infinity.

Concerning the integral from A to infinity, we use the classical change of
variable, leading to (see (3.9))

1√
kn

∫ ∞

Bn

∣∣αkn(e−s)
∣∣ g
′
n(s)

gn(s)
ds .

We use Mason’s theorem (1981) (see Shorack and Wellner, 1986, p. 425)
which implies that for a small ε > 0, we have

1√
kn
|αkn(e−s)| =

(ln kn)
1
2
+ε

√
kn

O
(
e−

s
2

)
a.s.

when s→∞, as kn →∞. To conclude, we apply to the term O
(
e−

s
2

)
an

integration by parts technique similar to the one used in (3.10).

Concerning the integral from 0 to A, Mason’s theorem (1981) implies that

1√
kn

∣∣αkn
(
F̄ ∗un(x)

)∣∣ = (ln kn)
1
2
+ε

√
kn

O(1) a.s.

for 0 ≤ x ≤ A, as n→∞.

4.5. Hadamard differentiability of F̄ ∗un+
1√
kn
αkn
(
F̄ ∗un

)

Wemust check that the condition of integrability (C3) is satisfied. We showed
that F̄ ∗un(y) = O(y−β) when y →∞, uniformly for n sufficiently large, and for a
constant β > 0. We thus deduce, via Mason (1981), that

1√
kn

∣∣αkn
(
F̄ ∗un(y)

)∣∣ = (ln kn)
1
2
+ε

√
kn

O
(
y−

β
2

)
a.s.

as y →∞, uniformly for n sufficiently large.

Now, we will show that there exists some versions α̃kn of αkn and a brow-
nian bridge B on [0, 1] such that

∫ ∞

0
α̃kn
(
F̄ ∗un(x)

)
ψθ?(x) dx =

∫ ∞

0
B
(
Ḡ(x)

)
ψθ?(x) dx + oP (1)

as n→∞. With this aim, we will use the fact that |ψθ?(x)| = O(1/x) as x→∞,
and the invariance principle for the weighted empirical process given in Einmahl
and Mason (1992). We again split the initial integral into an integral from 0 to A
and an integral from A to infinity, and we carry out the usual change of variable.
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We start with
∫∞
Bn
αkn(e

−s)ψθ?(gn(s)) g′n(s) ds. Since |ψθ?(x)| = O(1/x)

as x→∞, this integral is of order O
(∫∞

Bn
|αkn(e−s)| g

′
n(s)
gn(s)

ds
)
. Here, we will change

αkn into α̃kn (Einmahl and Mason, 1992) for Bn ≤ s ≤ ln kn, with an error term

of order OP

(
k−νn e−(

1
2
−ν)s) for 0 ≤ ν < 1

/
4. We obtain therefore

∫ ln kn

Bn

α̃kn(e
−s)ψθ?(gn(s)) g

′
n(s) ds =

=

∫ ln kn

Bn

B(e−s)ψθ?(gn(s)) g′n(s) ds(4.4)

+ OP

(
k−νn

∫ ln kn

Bn

e−(
1
2
−ν)s ∣∣ψθ?(gn(s))

∣∣ g′n(s) ds
)

as n→∞. The error term is

OP

(
k−νn

∫ ln kn

Bn

e−(
1
2
−ν)s g

′
n(s)

gn(s)
ds

)
,

and we conclude that it tends to 0 by integrating by parts.

Now, we will study the integral from ln kn to infinity by using again the
fact that |ψθ?(x)| = O(1/x) as x→∞. According to Jaeschke’s theorem (see
Shorack and Wellner, 1986, p. 600), this integral is of order

√
ln ln kn OP

(∫ ∞

Bn

e−s/2
g′n(s)
gn(s)

ds

)
,(4.5)

and again by integrating by parts, the result follows.

Combining (4.1) with (4.2), we obtain that

∫ ∞

Bn

α̃kn(e
−s)ψθ?(gn(s)) g

′
n(s) ds =

∫ ln kn

Bn

B(e−s)ψθ?(gn(s)) g′n(s) ds + oP (1)

as n→∞.

Therefore, we only have to study
∫ Bn
0 αkn(e

−s)ψθ?(gn(s)) g′n(s) ds. Again,
we split into two integrals, one from 0 to − ln(1− 1

kn
) and the other from

− ln(1− 1
kn
) to Bn. The first one is clearly oP (1). For the second one, we use

the fact that ψθ?(x) is bounded for 0≤x≤A, and we replace α̃kn(e
−s) by B(e−s),

which leads to an error term of order

OP

(
k−νn

∫ Bn

− ln
(
1− 1

kn

) e−(
1
2
−ν)s g′n(s) ds

)

as n→∞. Remark now that (Bn)n≥1 is bounded. Indeed, the Potter bounds
imply that 0 ≤ gn(s) ≤ cst e(γ

?+η)s. If we note s = g−1n (y), we have 0 ≤ y ≤
cst e(γ

?+η)s, so s ≤ ln(y/cst)
γ?+η . This leads to Bn ≥ ln(A/cst)

γ?+η , with a similar result
in the other side.
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Consequently, using again the Potter bounds, but this time for g′n(s), and
the fact that (Bn)n≥1 is bounded, the preceding error term is oP (1).

Finally, we obtain the following result
∫ ∞

0
α̃kn(e

−s)ψθ?(gn(s)) g
′
n(s) ds =

=

∫ ln kn

− ln
(
1− 1

kn

) B(e−s)ψθ?(gn(s)) g′n(s) ds + oP (1) .

Now, we only have to let n tending to infinity in the integral of the second
member. Since B is a.s. continuous, ln kn →∞, − ln(1− 1

kn
)→ 0, gn(s)→ g(s)

and g′n(s)→g′(s) for all s as n→∞, we only have to establish an a.s. domination
for B(e−s) |ψθ?(gn(s))| g′n(s) in order to apply the Lebesgue dominated convergence
theorem. We use again the fact that |ψθ?(gn(s))| = O(1/gn(s)) as s → ∞ for n
sufficiently large, and we conclude using the Potter bounds on gn(s) and g′n(s),
and the law of iterated logarithm for B(t), t→ 0.
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[24] Worms, R. (2002). Penultimate approximation for the distribution of the
excesses, ESAIM, Probability and Statistics, 6, 21–31.


