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Abstract:

• Let N
α, β, γ

be a discrete random variable whose probability atoms {p
n
}

n∈N
satisfy

f(n+1)
f(n) = α + β

E(U
n

0
)

E(Un

γ
)
, n=0, 1, ..., for some α, β ∈ R, where U

γ
⌢Uniform(γ, 1),

γ ∈ (−1, 1]. When γ → 1, U
γ
→ U

1
, the degenerate random variable with unit mass

at 1, and the above iterative expression is
p

n+1

pn
= α + β

n+1 for n = k, k+1, ..., used

by Katz and by Panjer (k = 0), by Sundt and Jewell and by Willmot (k = 1) and, for
general k ∈ N, by Hess, Lewald and Schmidt.
We investigate the case U

γ
⌢Uniform(γ, 1) with γ ∈ (−1, 1) in detail for α = 0.

We then construct classes C
γ

of discrete infinitely divisible randomly stopped sums
such that N

0, β, γ
∈ C

γ
. C

0
is the class of compound geometric random variables, C

1
is

the class of compound Poissons, and |γ
1
|< γ

2
≤ 1 implies C

γ
1

⊂ C
γ
2

⊆ C
1
.
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1. INTRODUCTION

Let us consider the discrete random variables N
α, β

whose probability mass
functions (p.m.f.) {f

N
α, β

(n)}
n∈N

satisfy

(1.1) f
N

α, β
(n + 1) =

(

α +
β

n+1

)

f
N

α, β
(n) , α, β ∈ R, n = 0, 1, ...

From (1.1) it follows that f
N

α, β
(n) = f

N
α, β

(0)
n
∏

k=1

(

α + β
k

)

. In particular,

f
N

α, 0
(n) = f

N
α, 0

(0)α
n

= (1−α)α
n

=⇒ N
α, 0 ⌢ Geometric(1−α) ,

and we may write

(1.2) f
N

α, 0
(n+1) = α f

N
α, 0

(n) =
n
∑

k=0

f
N

α, 0
(n) r

n−j
,

where r0 = α is the ratio of a geometric series and r1 = · · · = rn = 0.

On the other hand,

f
N

0, β
(n) = f

N
0, β

(0)

n
∏

k=1

β

n
= f

N
0, β

(0)
β

n

n!
= e

−β β
n

n!
=⇒ N

α, 0 ⌢ Poisson(β) ,

and we may write

(1.3) (n+1) f
N

0, β
(n+1) = β f

N
0, β

(n) =
n
∑

k=0

f
N

0, β
(n) r

n−j
,

where r0 = β and r1 = · · · = rn = 0. Note that similar expressions do not hold

for randomly stopped sums S
N

α, β
= S

N
α, β

(Y ) =
N

α, β
∑

k=1

Y
k
, where the summands Y

k

are i.i.d. and independent of the subordinator N
α, β

, with p.m.f. satisfying (1.1),

whenever both α 6= 0 and β 6= 0. However, for geometric stopped sums
N

α, 0
∑

k=1

Y
k

and for Poisson stopped sums,
N

0, β
∑

k=1

Y
k

(i.e., when either β = 0 or α = 0) we

get nice similar expressions, with the r
k
≥ 0 and convergence of

∞
∑

k=0

r
k
, in the

case of geometric stopped sums, and convergence of
∞
∑

k=0

r
k

k+1 , for Poisson stopped

sums. In the definition of randomly stopped sums, P
[

S
N

α, β
=0 | N

α, β
=0
]

= 1,

and therefore P[S
N

α, β
=0] = P[N

α, β
=0] = f

N
α, β

(0) whenever P[Y
k
>0] = 1).
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Panjer (1981) has remarked that the discrete (nondegenerate) random vari-
ables whose p.m.f.’s satisfy equation (1.1) are

• N
0, β

⌢ Poisson(β), β > 0,

• N
α, β

⌢ Binomial
(

−1− β
α
, α

α−1

)

, in case α < 0 and −β
α
∈ N

+
, and

• N
α, β

⌢ NegativeBinomial
(

α+β
α

, 1 − α
)

if α ∈ (0, 1) and α + β > 0.

The dispersion index
var(N

α,β
)

E(N
α,β

) = 1
1−α

is less than 1 (underdispersion) for the

binomial and greater than 1 (overdispersion) for the negative binomial.
On the other hand, N

0, β
⌢ Poisson(β) is a yardstick, with dispersion index 1.

We denote Π the class of random variables N
α, β

described above.

These random variables play an important role as subordinators in ran-
domly stopped sums. Compound or generalized random variables (other names
traditionally given to S

N
α, β

, cf. the discussion on terminology in Johnson, Kotz

and Kemp, 1992) are at the core of branching processes and many other subjects
where the aim is to obtain the distribution of randomly stopped sums, namely
in the study of aggregate claims in the risk process, see Klugman, Panjer and
Willmot (1998) and Rólski, Schmidli, Schmidt and Teugels (1999).

Katz (1965) had used an iterative expression equivalent to (1.1) to organize
a coordinated presentation of count distributions. Panjer’s (1981) pathbreaking
result has been to use the iterative expression satisfied by the p.m.f. of the sub-
ordinator N

α, β
to get an iterative algorithm to compute the density function

(probability mass function or probability density function) of S
N

α, β
. This is used

in section 2 to establish characterization theorems for infinitely divisible and for
geometric infinitely divisible generating functions.

In section 3, we investigate discrete random variables N
α, β, γ

whose proba-
bility mass function (p.m.f.) {pn}n∈N

satisfies the more general relation

(1.4)
f

N
α, β, γ

(n+1)

f
N

α, β, γ
(n)

= α + β
E(U

n

0
)

E(Un

γ
)

= α +
β

n
∑

k=0

γk

, α, β ∈ R, n = 0, 1, ...

where Uγ ⌢Uniform(γ, 1), γ ∈ (−1, 1). As

(1.5) E(U
n

γ
) =

1

n + 1

1 − γ
n+1

1 − γ
−−−→
γ→1

1 ,

Panjer’s class corresponds to the degenerate limit case, letting γ −→ 1 so that
Uγ −→ U1 , the degenerate random variable with unit mass at 1.
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When α = 0, the iterative expression for the p.m.f. of N
0, β, γ

verifies

(1.6)
1 − γ

n+1

1 − γ
f

N
α, β, γ

(n+1) =
n
∑

k=0

f
N

α, β, γ
(k) r

n−k

with r0 = β and r1 = · · · = rn = 0, of which (1.2) and (1.3) aren’t but the cases
γ = 0 and γ = 1, respectively. We shall investigate the classes Cγ of randomly

stopped sums
N

0, β, γ
∑

k=0

Y
k
, whose members satisfy (1.6) for nonnegative r

k
, with of

∞
∑

k=0

r
k

< ∞ .

In section 4 we show that when |γ1 | < γ2 ≤ 1, Cγ1
⊂ Cγ2

. Also, for γ ∈ [0, 1],
the classes Cγ form an increasing chain of classes of infinitely divisible random
variables, spanning from C0 , the class of discrete geometric stopped sums, to C1,
the class of discrete Poisson stopped sums.

Many of these results rely on properties of absolutely monotone functions
scattered in the literature, that we shall discuss in section 2 below in conjunction
with Panjer theory. Ospina and Gerber (1987) remarked that the representation
theorem for the generating functions of discrete stopped Poisson sums (discrete
infinitely divisible laws) follows from Panjer’s theory, and the same is true for the
representation of geometric infinitely divisible generating functions, see section 2,
and for wider classes of generating functions whose bearing on general p-infinite
divisibility is worth noting. This will be further discussed in the concluding
section.

2. BASIC RESULTS

Let G(s) =
∞
∑

n=0
f(n)s

n
, s ∈ [0, r), be the generating function of the sequence

{f(n)}
n∈N

; in other words, f(n) = G
(n)

(0)
n! , n ∈ N.

If pn ≥ 0, n ∈ N, then G
(n)

(s) ≥ 0, s ∈ [0, r), and we say that G is absolutely
monotone (abs. mon.) in [0, r). If there exists r > 0 such that G is abs.mon. in
[0, r), we say that the function G is abs.mon. (Bernstein, 1928).

We refer to Widder (1946, chapt. IV) and to Feller (1968, chap. XI) for
basic information on absolutely monotone functions and generating functions;
Skellam and Shelton (1957) or Srivastava and Manocha (1984) provide a thorough
discussion. It is obvious that the sum or the product of abs.mon. functions is
abs. mon.; we shall need the following results:

1. G is abs.mon. ⇐⇒ G(0)≥0 and dG
ds

is abs. mon. ⇐⇒ d
ds

[sG(s)] is abs.mon.
(since pn ≥ 0 iff (1+n) pn ≥ 0).
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2. Let γ ∈ (−1, 1); then, G abs.mon. ⇐⇒ G(s) − γ G(γs) abs. mon. (it is suf-
ficient to note that pn ≥ 0 ⇐⇒ pn(1−γ

n+1
) ≥ 0).

Let |γ| ≤ η < 1; then, G abs.mon. =⇒ η G(ηs)− γ G(γs) abs.mon. (pn ≥ 0
implies pn(η

n+1
− γ

n+1
) ≥ 0).

Note that η G(ηs) − γ G(γs) is no longer abs. mon. if −1 < η < γ ≤ 0.

3. If G1 is abs.mon. in [0, r1), G2 is abs.mon. in [0, r2), and G2(s) < r1 for all
s ∈ [0, r2), the compound function G1 ◦ G2 = G1(G2) is abs.mon. in [0, r2).
In particular:

(a) As G1(s) = e
s

is the generating function of pn = 1
n! , G2 abs.mon. im-

plies that (G1◦ G2)(s) = e
G2 (s)

is abs.mon.

(b) As G1(s) = 1
1−s

is the generating function of pn = 1, G2 abs.mon. in

[0, r2) with G2(s) < 1 for s ∈ [0, r2) implies that (G1 ◦ G2)(s) = 1
1−G2 (s)

is abs.mon.

Let us now consider the randomly stopped sum S
N

α, β
=

N
α, β
∑

k=1

Y
k
, where Y

k

d
= Y ,

k=1, 2, ..., are i.i.d. counting random variables, with p.m.f. {f
Y
(n)}

n∈N
, indepen-

dent of the Panjer subordinator N
α, β

.

As

E

[

k

n + 1
Y1

∣

∣

∣

∣

k
∑

i=1

Y
i
= n + 1

]

= 1

and

P

[

Y1 = j

∣

∣

∣

∣

k
∑

i=1

Y
i
= n + 1

]

=
f

Y
(j) f

⋆(k−1)

Y
(n + 1 − j)

f ⋆k

Y
(n + 1)

, j = 0, ..., n + 1

(Rólski et al., 1999, p. 119), where as usual f
⋆k

denotes the k-fold convolution

(f
1∗

= f, f
⋆k

= f ∗ f
⋆(k−1)

), it follows that the probability mass function of a Pois-
son stopped sums (N

0, β
, β>0) verifies

(n+1) f
S

N0, α

(n+1) =

n
∑

k=0

f
S

N0, α

(k)β (n+1−k) f
Y
(n+1−k)

=

n
∑

k=0

f
S

N0, α

(k) r
n−k

,(2.1)

with r
k
= β (k+1) f

Y
(k+1) ≥ 0, k=0, 1, ..., and it therefore follows that the gen-

erating function H
N

0,β
(s) =

∞
∑

k=0

r
k
s

k
of the {r

k
}

k∈N
is absolutely monotone, with

∞
∑

k=0

r
k

k+1 =
∞
∑

k=0

β f
Y
(k+1) = β (1−f

Y
(0)). Assuming that f

Y
(0) = 0 (i.e., enforcing
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a unique representation by fixing this free parameter), multiplying both sides of
(1.6) by s

n
and summing for n = 0, 1, ..., we get,

(2.2) G
S

N
0, β

(s) = exp

[

β

(

1

β

∞
∑

k=0

r
k

k+1
s

k+1
− 1

)]

= e
β[P(s)−1]

,

where P(s) = 1
β

∞
∑

k=0

r
k

k+1 s
k+1

is a (unique) p.g.f., such that P(0) = 0.

On the other hand, for geometric stopped sums (N
α, 0 , 0<α<1) we get

(2.3) f
S

N
α, 0

(n+1)=
n
∑

k=0

f
S

N
α, 0

(k) r
n−k

where r
k
=

α f
Y

(k+1)

1−α f
Y

(0) . As in the treatment of Poisson stopped sums, we may

get a unique representation theorem by letting the free parameter f
Y
(0)=0,

which implies
∞
∑

k=0

r
k

= α, multiplying both sides of (2.3) by s
n

and summing

for n = 0, 1, ... . In terms of generating functions,

G
S

N
(s) − f

N
α, 0

(0)

s
= G

S
N
(s)H

N
α, 0

(s)

where H
N

α, 0
is the generating function of {rn}n∈N

, which are all nonnegative, with
∞
∑

n=0
rn = α ∈ (0, 1), i.e. H

N
α, 0

is abs.mon. From G
S

N
(1) =

p0
1−H

N
α, 0

(1) =
p0

1−α
= 1,

it follows that

G
S

N
(s) =

p0

1 − sH
N

α, 0
(s)

=
1 − α

1 − s
∞
∑

k=0

r
k
sk

=
1 − α

1 − αP(s)

where P(s) =
∞
∑

k=0

r
k

α
s

k+1
, such that P(0) = 0, is a p.g.f., because it is abs.mon.

and P(1) = 1. In other words, Panjer’s iteration also provides a straightforward
proof of the representation theorem for geometric infinitely divisible lattice dis-
tributions.

We record these representation theorems for the sake of the corollaries that
we then establish, which will be instrumental in the proof of the extensions in
sections 3 and 4.

Theorem 2.1. The p.g.f. G
S

N
0, β

of a discrete Poisson stopped sum such

that P
[

S
N

0, β
=0
]

=f
S

N
0, β

(0) > 0 has a unique representation G
S

N
0, β

(s) = e
β[P(s)−1]

,

where P is a p.g.f. such that P(0) = 0, and β = − lnG
S

N
0, β

(0).

The p.g.f. G
S

N
α, 0

of a discrete geometric stopped sum such that P[S
N
=0] =

f
S

N
α, 0

(0) > 0 has a unique representation G
S

N
α, 0

(s) = 1−α
1−αP(s) , where P is a p.g.f.

such that P(0) = 0, and α = 1 − G
S

N
α, 0

(0).



152 Dinis D. Pestana and Śılvio F. Velosa

Observe also that exp
(

1 − 1
G

S
N

α, 0

)

= e
α

1−α
[P(s)−1]

= G
S

N
0, α

1−α

(s). On the

other hand,
1

1 − ln
(

G
S

N
0, β

(s)
) =

1 − β
β+1

1 − β
β+1 P(s)

= G
S

N
β

β+1
, 0

(s).

Corolary 2.1.1.

(1) Let G be a probability generating function such that G(0) > 0; then, G is

the p.g.f. of a discrete Poisson stopped sum iff G′(s)
G(s) is abs.mon.

(2) Let G be a p.g.f. such that G(0) > 0, and γ ∈ (−1, 1). If G is the p.g.f. of a

discrete Poisson stopped sum, then G(s)
G(γs) is abs.mon., and Gγ (s) = G(γ)G(s)

G(γs)
is also the p.g.f. of a Poisson stopped sum.

(3) Let G be a p.g.f. such that G(0) > 0, and |γ1 | ≤ γ2 < 1. If G is the p.g.f.

of a discrete Poisson stopped sum, then
G(γ2s)

G(γ1s) is abs.mon. and Gγ1 , γ2
(s) =

G(γ1 )

G(γ2 )

G(γ2s)

G(γ1s) is also the p.g.f. of a Poisson stopped sum.

(4) Any discrete geometric stopped sum such that P[S
N
=0] = p̃0 >0 is a Poisson

stopped sum, i.e. infinitely divisible.

Proof: (1) From Theorem 2.1 we know that G, with G(0) > 0, is the

p.g.f. of a Poisson stopped sum iff G′(s)
G(s) = H

N
0,β

(s) =
∞
∑

k=0

r
k
s

k
, where

r
k
= β (k + 1) f

Y
(k + 1) ≥ 0, k = 0, 1, ..., and therefore its generating function

H
N

0,β
(s) =

∞
∑

k=0

r
k
s

k
is absolutely monotone.

(2) From formula (2.2), we see that G(s) > 0 for all s, therefore G(s)
G(γs) ≥ 1

if 0 ≤ s ≤ 1. On the other hand, d
ds

[

ln G(s)
G(γs)

]

= G′(s)
G(s) − γ G′(γs)

G(γs) is abs.mon., by

2.1.1.(1) and property 2 of abs.mon. functions. As ln G(s)
G(γs) is nonnegative for s=0,

it is also abs.mon., by property 1 of abs.mon. functions. From property 3(a) of

abs. mon. functions, it follows that G(s)
G(γs) is abs.mon. Since Gγ (0) = G(γ) > 0,

Gγ (1) = 1, and
G′

γ
(s)

Gγ (s) = d
ds

[

ln G(s)
G(γs)

]

is abs.mon., we conclude that Gγ is the p.g.f.

of a Poisson stopped sum.

(3) By 2.1.1.(2),
G(γ2s)

G(γ1s) is abs.mon., and by property 2 of abs.mon.

functions
G′

γ1 , γ2
(s)

Gγ1 , γ2
(s) = γ2

G′(γ2s)

G(γ2s) − γ1

G′(γ1s)

G(γ1s) is abs.mon. Since Gγ1 , γ2
(0) =

G(γ1 )

G(γ2 ) > 0

and Gγ1 , γ2
(1) = 1, it follows that Gγ1 , γ2

(s) =
G(γ1 )

G(γ2 )

G(γ2s)

G(γ1s) is the p.g.f. of a Poisson

stopped sum.
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(4) As we have seen, G with G(0) > 0 is the p.g.f. of a discrete geometric

stopped sum iff G(s) = G(0)
1− sH

N
α, 0

(s) , where H
N

α, 0
(s) < 1 for s ∈ [0, 1) is abs.mon.

As

G′(s)

G(s)
=

G(0) d
ds

[

sH
N

α, 0
(s)
]

(

1− sH
N

α, 0
(s)
)2

G(0)
1− sH

N
α, 0

(s)

=

d
ds

[

sH
N

α, 0
(s)
]

1 − sH
N

α, 0
(s)

,

and from property 1 of abs.mon. functions d
ds

[

sH
N

α, 0
(s)
]

is abs.mon., from

property 3(b) we know that 1
1− sH

N
α, 0

(s) is abs.mon., and the product of abs.mon.

functions is abs. mon., it follows that G′(s)
G(s) is abs.mon. From part (1) of

Corollary 2.1.1., it follows that G is the p.g.f. of a Poisson stopped sum.

If the probability generating function G
Y

of Y ⌢F
Y

depends on the pa-

rameter θ so that G
Y
(s| kθ) = [G

Y
(s| θ)]

k
, then F

X
∨ F

Y
= F

Y
∧
K

F
X

, where ∨

denotes the stopped sum of Y independent copies of X, and ∧
K

denotes the mix-

ture of Y |K, with mixing distribution F
X

(Gurland, 1957). Therefore the class
of discrete Poisson stopped sums coincides with the class of discrete mixtures of
Poisson random variables. In what mixtures of geometric random variables and
geometric stopped sums, the former is stricly included in the later.

3. EXTENSIONS

We now investigate the nondegenerate discrete random variables N
α, β, γ

whose probability mass function {pn}n∈N
satisfies

(3.1)
p

n+1

pn

= α + β
E(U

n

0
)

E(Un

γ
)

= α + β
1−γ

1−γ
n+1 for n = 0, 1, ..., α, β ∈ R ,

where Uγ⌢Uniform(γ, 1), γ ∈ (−1, 1), with p0 > 0. If γ = 0, all possible
solutions are geometric random variables, and when γ → 1 we get Panjer’s class
of counting distributions.

For a nondegenerate solution of (3.1) with infinite support to exist, we must
have

α + β
E(U

n

0
)

E(Un

γ
)

= α + β
1 − γ

1 − γn+1 > 0

for every integer n. According to the signs of β and γ, the infimum of this factor
is either α + β (for n = 0), α + β

1+γ
(for n = 1), or α + β(1 − γ) (when n → ∞),

so we must have α + β > 0, α + β
1+γ

> 0, and α + β(1 − γ) ≥ 0. Then, applying
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the ratio test to the sum

∑

k≥0

p
k

= p0

∞
∑

k=0

k−1
∏

n=0

(

α + β
1 − γ

1 − γn+1

)

we see that it converges iff 0 ≤ α + β(1−γ) < 1. Thus a necessary and sufficient
condition for a solution of (3.1) with infinite support (random variable with finite
support cannot be infinitely divisible) to exist is that

min

{

α + β, α +
β

1+γ

}

> 0 and 0 ≤ α + β(1−γ) < 1 .

Rewriting (3.1) as

(3.2) (1−γ
n+1

) f
N

α, β, γ
(n+1) =

[

α + β(1−γ)
]

f
N

α, β, γ
(n) − α γ

n+1
f

N
α, β, γ

(n) ,

for γ ∈ (−1, 1), n = 0, 1, ..., multiplying both sides by s
n+1

and summing we get

(3.3)
[

1 −
(

α + β(1−γ)
)

s
]

G
α, β, γ

(s) = (1 − α γ s)G
α, β, γ

(γs) ,

where G
α, β, γ

(s) =
∞
∑

n=0
f

N
α, β, γ

(n) s
n

denotes the probability generating function

of the probability mass function
{

f
N

α, β, γ
(n)
}∞

n=0
, and from that

(3.4) G
α, β, γ

(s) = G
α, β, γ

(γ
n+1

s)

n
∏

k=0

1 − αγ
k+1

s

1 −
[

α + β(1−γ)
]

γ
k
s

.

Observing that

(3.5)
G

α, β, γ
(s)

G
α, β, γ

(1)
=

G
α, β, γ

(γ
n+1

s)

G
α, β, γ

(γn+1)

n
∏

k=0

1−α γ
k+1

s

1−
[

α+β(1−γ)
]

γ
k
s

1−α γ
k+1

1−
[

α+β(1−γ)
]

γ
k

and letting n → ∞,

(3.6) G
α, β, γ

(s) =
∞
∏

k=0

1 − α γ
k+1

s

1 − α γk+1

1 −
[

α + β(1−γ)
]

γ
k

1 −
[

α + β(1−γ)
]

γks
.

If γ ∈ [0, 1), α < 0 and β ∈ (− α
1−γ

, 1−α
1−γ

), we recognize in

G
α, β, γ

(s) =

∞
∏

k=0

1 − α γ
k+1

s

1 − α γ
k+1

1 −
[

α + β(1−γ)
]

γ
k

1 −
[

α + β(1−γ)
]

γ
k
s

,

the probability generating function of an infinite sum of independent random vari-
ables, the k-th summand being the result of randomly adding 1, with probability

α γ
k+1

α γ
k+1

−1
, to an independent Geometric(1 − [α + β(1−γ)]γ

k
) random variable.
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The limiting case γ = 1 may be approached as follows: rewriting (3.3) as

G
α, β, γ

(s) − G
α, β, γ

(γs)

α s
[

G
α, β, γ

(s) − G
α, β, γ

(γs)
]

+ (1−γ) s
[

β G
α, β, γ

(s) + αG
α, β, γ

(γs)
] = 1 ,

dividing the numerator and the denominator by (1−γ)s and letting γ→1, we get

G′
α, β, 1

(s)

α sG′
α, β, 1

(s) + β G
α, β, 1

(s) + αG
α, β, 1

(s)
= 1 ⇐⇒

G′
α, β, 1

(s)

G
α, β, 1

(s)
=

α + β

1 − α s
,

the expression we obtain working out the probability generating function in Pan-
jer’s iterative expression p

α, β
(n+1) = (α + β

n+1) p
α, β

(n), α, β ∈ R, n = 0, 1, ... .

We now focus on the case α = 0, for which β ∈ (0, 1
1−γ

), and

(3.7) G
0, β, γ

(s) =
∞
∏

k=0

1 − β(1−γ) γ
k

1 − β(1−γ) γks
=

∞
∏

k=0

1 − w
k

1 − w
k
s

,

where w
k
= β(1−γ)γ

k
. If γ ∈ [0, 1), we get that have N

0, β, γ
=

∞
∑

k=0

W
k
, with

W
k
⌢ Geometric(1 − β(1−γ) γ

k
) independent summands. If γ = 0, the above

expression simplifies to G
0, β, 0

(s) = 1−β
1−βs

. Therefore we conclude that N
0, β, 0

=
N

β, 0
⌢ Geometric(1 − β), β ∈ (0, 1).

Let us point out that the probability mass function of a random variable
N

0, β, γ
, γ ∈ (−1, 1), trivially satisfies

1 − γ
n+1

1 − γ
p

n+1 =
n
∑

k=0

p
k
r

n−k
,

with r0 = β and r1 = r2 = · · · = rn = 0, provided that

0 < β =

∞
∑

n=0

rn s
n

= H(s) <
1

1 − γ
,

a point which will be of relevance in the following section.

4. DISCRETE INFINITELY DIVISIBLE DISTRIBUTIONS AND

Cγ CLASSES

In what follows we investigate the classes Cγ , γ ∈ (−1, 1), of nondegenerate
counting random variables (distributions, p.g.f.) whose probability mass function
satisfies p̃0 > 0 and the general recursive relation

(4.1)
1 − γ

n+1

1 − γ
p̃n+1 =

n
∑

k=0

p̃
k
r

n−k
, n = 0, 1, ... ,
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with r
k
≥ 0, which extends Panjer’s recursive expression for the probability mass

function of the classes of Poisson stopped sums (C1) and of geometric stopped
sums (C0). It is well known that any geometric infinitely divisible lattice distri-
bution is infinitely divisible in the classical sense, a result that follows from the

fact that 1−p
1−ps

= exp
{

ln(1−p) [P(s) − 1]
}

, where P(s) = − 1
ln(1−p)

∞
∑

k=0

(ps)
k

k
is the

p.g.f. of a logarithmic random variable.

As before, multiplying both members of (4.1) by s
n+1

and summing for
n ≥ 0, we obtain

(4.2)
G(s) − G(γs)

1 − γ
= sG(s)Hγ (s) ,

where G(s) =
∞
∑

n=0
p̃ns

n
and Hγ (s) =

∞
∑

n=0
rns

n
converges at least for |s| ≤ 1. Thus

Hγ is by definition abs. mon. Since we have excluded degenerate solutions to

(4.1), we must have Hγ(0) = r0 =
p̃1
p̃0

> 0.

If γ ∈ [0, 1), we have

1 ≥
∞
∑

n=0

p̃
n+1 =

∞
∑

n=0

1 − γ

1 − γn+1

n
∑

k=0

p̃
k
r

n−k

=
∞
∑

k=0

p̃
k

∞
∑

n=0

(1 − γ) rn

1 − γn+k+1

>

∞
∑

k=0

p̃
k

∞
∑

n=0

(1 − γ) rn = (1 − γ)

∞
∑

n=0

rn ,

and therefore |Hγ (s)| ≤ Hγ (1) =
∞
∑

n=0
rn < 1

1−γ
for |s| ≤ 1.

If γ∈ (−1, 0), then 1−γ
i+1

1−γ
≤ 1 for i = 0, 1, ..., and by a similar reasoning

we conclude that in this case |Hγ (s)| < 1 for |s| ≤ 1.

As was seen in the previous section, the p.m.f. of N
0, β, γ

verifies recursion

(4.1) with r0 = β and r1 = r2 = ... = 0, with 0 < β < 1
1−γ

.

We have the following result:

Theorem 4.1. Let W be a random variable with p.g.f. G, and γ ∈ (−1, 1).

W ∈ Cγ iff G(s) =

∞
∏

k=0

1 − (1−γ) γ
k
Hγ(γ

k
)

1 − (1−γ) γ
k
s Hγ(γ

k
s)

,

where Hγ is a unique abs. mon. function such that Hγ (0) > 0 and Hγ (1)<
max{1, 1

1−γ
}.
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Thus, if γ ∈ [0, 1) the elements of Cγ are infinite sums W =
∞
∑

k=0

X
k

of

independent geometric stopped sums X
k
=

N
k
∑

i=1
Y

ki
, whose subordinators are

N
k
⌢Geometric(1 − (1−γ) γ

k
Hγ (γ

k
)) random variables, and whose i.i.d. sum-

mands Y
ki

d
= Y

k
have the p.g.f. P

k
(s) =

sHγ (γ
k
s)

Hγ (γk )
.

Proof: We have established that

G(s) − G(γs)

1 − γ
= sG(s)Hγ (s) ⇐⇒

G(s)

G(γs)
=

1

1 − (1−γ) s Hγ (s)
.

Iterating the above expression, similarly to what we have done to obtain (3.6),
we finally get

(4.3) G(s) =
∞
∏

k=0

1 − (1−γ) γ
k
Hγ(γ

k
)

1 − (1−γ) γksHγ(γ
ks)

.

If γ ∈ [0, 1), we further have

G(s) =

∞
∏

k=0

1 − w
k

1 − w
k

sHγ (γk
s)

Hγ (γk )

=

∞
∏

k=0

1 − w
k

1 − w
k
P

k
(s)

where w
k

= (1−γ) γ
k
Hγ (γ

k
), and the P

k
(s) =

sHγ (γ
k
s)

Hγ (γk )
are (unique) probability

generating functions such that P
k
(0) = 0.

Theorem 4.2. Let W be a counting random variable with p.g.f. G, and

γ ∈ (−1, 1). W ∈ Cγ iff Hγ(s) = G(s)−G(γs)
(1−γ) sG(s) is abs.mon.

We can use this result to show that the geometric distribution verifies (4.1)
for nonnegative γ. In fact, if X

θ
⌢Geometric(1 − θ), with 0 < θ < 1, we have

r
k
= γ

k
θ

k+1
≥0 and Hγ(1)= θ

1− γθ
< 1

1−γ
. Given the uniqueness of the coefficients

of Hγ , we may also conclude that the geometric distribution does not belong to
Cγ when γ ∈ (−1, 0).

The truncated geometric distribution with support on the even integers,
Y

θ
, given by the p.m.f.

pn =

{

(1 − θ
2
) θ

n
if n = 2k even

0 if n = 2k + 1 odd
, 0 < θ < 1 ,

is an element of Cγ for all γ ∈ (−1, 1], since it verifies (4.1) with r
2k

= 0, r
2k+1

=

(1 + γ) γ
2k

θ
2k+2

, and Hγ (1) = (1+γ)θ
2

1−(γθ)2
< 1

1−γ
.
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It’s interesting to note that the p.g.f. of Y
θ

is G
Y

θ
(s) = 1−θ

2

1−θ
2
s
2 = G

X
θ
2
(s

2
).

It is not difficult to show that if X ∈ C0 has the p.g.f. G, then G(s
2
) is the p.g.f.

of an element of Cγ , for every γ ∈ (−1, 1].

Corolary 4.2.1. Let W be a counting random variable with p.g.f. G, and
γ ∈ (−1, 1). If W ∈ Cγ , G(s)

G(γs) is absolutely monotone.

Proof: From the proof of Theorem 4.1, G(s)
G(γs) = 1

1−(1−γ) sHγ (s) . If γ∈ [0, 1),

we have sHγ(s) ≤ Hγ(1) < 1
1−γ

for 0≤ s≤ 1; on the other hand, if γ ∈ (−1, 0)

we have (1−γ)sHγ (s) ≤ (1−γ)Hγ (1) < 1 for 0 ≤ s ≤ 1
1−γ

. Thus, it follows

from property 3(b) of abs.mon. functions that G(s)
G(γs) is abs. mon. (in [0, 1] for

nonnegative γ, and in [0, 1
1−γ

] for negative γ).

Corolary 4.2.2. For γ ∈ (−1, 1), Cγ ⊂ C1.

Proof: Taking derivatives on both sides of 1 − G(γs)
G(s) = (1 − γ) sHγ (s),

we obtain

G′(s)G(γs) − γ G′(γs)G(s)

G2(s)
= (1 − γ)

d

ds

[

sHγ (s)
]

,

equivalent to

(4.4)
G′(s)

G(s)
− γ

G′(γs)

G(γs)
= (1 − γ)

G(s)

G(γs)

d

ds

[

sHγ (s)
]

.

Therefore, in view of Corollary 4.2.1 and of property 1 of abs. mon. functions
G′(s)
G(s) − γ G′(γs)

G(γs) is abs.mon. which in turn (property 2 of abs.mon. functions)

implies that G′(s)
G(s) is abs.mon.

The result follows from Corollary 2.1.1.

The inclusion is strict: the Poisson(µ) distribution belongs to C1 for all
µ > 0, but does not belong to Cγ when γ ∈ (−1, 1), since from Theorem 4.2 we

have r
k
= (−1)

k
(1−γ)

k µ
k+1

(k+1)! , so that Hγ is not abs. mon.

Corolary 4.2.3. For |γ1 | ≤ γ2 < 1, Cγ1
⊂ Cγ2

.

Proof: Let G be the p.g.f. of a random variable W ∈ Cγ1
⊂ C1.

Hγ2
(s) − γ1Hγ2

(γ1s)

Hγ1
(s) − γ2Hγ1

(γ2s)
=

1 − γ1

1 − γ2

G(γ1γ2 s)

G(γ1s) −
G(γ2 s)

G(s)

G(γ1γ2 s)

G(γ2 s) −
G(γ1s)

G(s)

=
1 − γ1

1 − γ2

G(γ2 s)

G(γ1s)
.
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From Corollary 2.1.1.(3),
G(γ2 s)

G(γ1s) is abs.mon, and from property 2 of abs.mon.

functions Hγ1
(s)−γ2 Hγ1

(γ2 s) is abs. mon. Then Hγ2
(s)−γ1Hγ2

(γ1 s), and therefore
Hγ2

, are also abs.mon., which proves that W ∈ Cγ2
.

We can see that the inclusion is strict directly from (4.1). Suppose that
−1 < γ < η < 1 and 0 < β < 1

1−η
. We know that N

0, β, η
∈ Cη , since its p.m.f.

satisfies 1−η
n+1

1−η
p

n+1 = β pn . Assume that N
0, β, η

∈ Cγ , that is, 1−γ
n+1

1−γ
p

n+1 =
n
∑

k=0

p
k
r

n−k
. Then p1 = p0r0 = β p0 implies r0 = β, and

(4.5) (1 + γ) p2 =
β

1 + η
p1(1 + η + γ − η) = p1r0 + p0r1

implies r1 = − η−γ
1+η

β
2
. But this is negative, therefore N

0, β, η
/∈ Cγ .

Corolary 4.2.4. Let W be a counting random variable with p.g.f. G,
Wγ the random variable with p.g.f. Gγ (s) = G(γ)G(s)

G(γ s) , and γ ∈ (−1, 1). W ∈ Cγ iff
Wγ ∈ C0 .

Proof: As W ∈ Cγ =⇒ W ∈ C1 , from Corollary 2.1.1 we know that

Gγ (s) = G(γ)G(s)
G(γ s) is a p.g.f.

From the proof of Theorem 2.2 (or simply by taking γ = 0 in Theorem 4.1),
in what concerns this p.g.f. Gγ we obtain, with self-explaining notations,

(4.6) H
(Gγ )

0
(s) =

Gγ (s) − Gγ (0)

sGγ (s)
=

G(s) − G(γs)

sG(s)
= (1 − γ)H

(G)

γ
(s)

and therefore H
(Gγ )

0
is abs.mon. iff H

(G)

γ
is abs. mon.

5. FURTHER COMMENTS

1. Geometric infinite divisibility arose from Kovalenko’s (1965) exten-
sions of Rényi’s (1956) work on random rarefaction, with the general charac-
terization of geometric stable laws given in Kozubowski (1994). This led to
a general definition of N -summation schemes, the classical summation scheme
being the special case Np = 1

p
(degenerate random variables, and therefore a

non-random sum of random variables). It is well known that for some fami-
lies N = {Np , p ∈ (0, 1), E(Np) = 1

p
} there exists N -Gaussian laws (for instance

for Np ⌢ Geometric(p), the corresponding N -Gaussian random variables being
the Laplace random variables), while other Np , for instance Np ⌢ Poisson(1

p
),
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do not admit N -Gaussian laws. Although it is easy to prove that in more general
branching setings N -Gaussian laws do exist, only the usual Gaussian law and
the Laplace geometric–Gaussian law are explicitly exhibited in the references we
know.

This research arose from the observation that C0 ⊂ C1 and that, more
generaly, 0 < γ1 < γ2 < 1 =⇒ C0 ⊂ Cγ1

⊂ Cγ2
⊂ C1.

Our aim was either to prove that there exist γ ∈ (0, 1) such that for γ1 ≤ γ
we could exhibit a N -Gaussian law in Cγ1

— which we couldn’t — or else to extend
Cγ classes for γ < 0 — which we did — and show that for those it was possible
to construct N -Gaussian random variables. Unfortunately for −1 < γ1 < γ2 < 0
the chain of inclusions Cγ1

⊂ Cγ2
⊂ C0 is no longer valid.

2. The extension of Katz–Panjer’s iterative relation

(5.1)
f(n + 1)

f(n)
= α +

β

n + 1
= α + β E(U

n

0
) , n = 0, 1, ..., α, β ∈ R ,

by

(5.2)
f(n + 1)

f(n)
= α + β

E(U
n

0
)

E(Un

γ
)

, n = 0, 1, ..., α, β ∈ R ,

where Uγ ⌢ Uniform(γ, 1), γ ∈ (−1, 1] may seem arbitrary at this stage, unless
it is considered as a first step in extending (5.1) by using more general Beta,
of which the Uniform in (5.2) isn’t but a special case, or even more general
random variables. Naturaly {f(n)}

n∈N
is not a p.m.f. unless the restrictions in

the parameters are very strong.

3. Panjer’s class Π = Π
(0)

has been generalized by Sundt and Jewell (1981),

who considered the class Π
(1)

of discrete random variables whose probability mass
function satisfies

(5.3) f
α, β

(n + 1) =

(

α +
β

n + 1

)

f
α, β

(n) , α, β ∈ R, n = 1, 2, ...

Willmot (1987) published the definitive characterization of Π
(1)

: the probability
mass function of a discrete random variable N , with support S = {1, 2, ...},
satisfies the above expression if N is either a zero-truncated Binomial, Pois-
son or Negative Binomial random variable, or a Logarithmic (when α ∈ (0, 1)
and the index α

α+β
−→ 0) or an Engen (1974) Extended Negative Binomial ran-

dom variable (index α
α+β

∈ (−1, 0), where α ∈ (0, 1]), and general solutions N
∗

,
with support S = {0, 1, 2, ...}, arise from a hurdle process (Cameron and Trivedi,

1998, pp. 123–125) N
∗

=

{

0 N
p0 1 − p0

, where N is one of the above variables.

Klugman et al. (1998) describe the solutions as zero modified N variables.
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Hess, Lewald and Schmidt (2002) considered the even more general setting

Π
(k)

, k = 0, 1, ..., in which the probability mass functions satisfy

(5.4) f
α, β

(n + 1) =

(

α +
β

n + 1

)

f
α, β

(n) , α, β ∈ R, n = k, k + 1, ... ,

giving a complete description of Π
(k)

, k = 0, 1, ... in terms of {0, 1..., k − 1} mod-
ified basic claim number distributions, i.e., the left k-truncated binomial, Pois-
son, and negative binomial distributions, the other basic claim number distribu-
tions are the left truncated Logarithmic(k, θ) distribution, and the left truncated
Engen(k, β, θ) distribution. The extension

(5.5)
f

α, β
(n + 1)

f
α, β

(n)
= α + β

1 − γ

1 − γn+1 , α, β ∈ R, n = k, k + 1, ... ,

of (3.1) may investigated along similar lines, but with very cumbersome results.
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1948–1956, P. Turán, ed., 622–279, Akadémiai Kiadó, Budapest, with a note by
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