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1. INTRODUCTION

The roots of local polynomial modelling as understood today reach back to
articles from Stone [19] and Cleveland [1]. A nice overview of the current state of
the art is given in Fan & Gijbels [7]. The basic idea of this nonparametric smooth-
ing technique is simply described. Consider bivariate data (X1, Y1), ..., (Xn, Yn),
forming an i.i.d. sample from a population (X,Y ). Assume the data to be gen-
erated from a model

(1.1) Y = m(X) + σ(X) ε ,

where E(ε) = 0, Var(ε) = 1, and X and ε are independent. Of interest is
to estimate the regression function m(x) = E(Y |X= x) and its derivatives
m′(x),m′′(x), ...,m(p)(x). A Taylor expansion yields

(1.2) m(z) ≈
p

∑

j=0

m(j)(x)

j!
(z − x)j ≡

p
∑

j=0

βj(x) (z − x)j ,

given that the (p+ 1)th derivative of m(·) in a neighbourhood of x exists.
We define Kh(·) = 1

hK( ·
h), where K is a kernel function which is usually taken

to be a non-negative density symmetric about zero, and h denotes the band-
width. The task of finding the appropriate bandwidth is the crucial point of local
polynomial fitting; see Section 6 for more details. Minimizing

n
∑

i=1

{

Yi −
p

∑

j=0

βj(x) (Xi − x)j

}2

Kh(Xi − x)

leads to the locally weighted least squares regression estimator β̂(x) =
(β̂0(x), ..., β̂p(x))

T and the corresponding estimators

(1.3) m̂(j)(x) = j! β̂j(x)

for m(j)(x), j=0, ..., p. Alternative approaches focussed on estimating the con-
ditional quantiles instead of the mean function (Yu & Jones [21], [22]), where a
special case is nonparametric robust regression by local linear medians, applying
an L1 norm instead of an L2 norm (Fan, Hu & Truong [8]).

Local polynomial modelling can be interpreted as fitting the data locally
against the basis functions 1, X− x, (X− x)2, ..., (X− x)p. An obviously arising
question is now: why should just these basis functions be the best possible ones?
In a general framework one may use the basis functions φ0(X), φ1(X), ..., φp(X),
with arbitrary functions φj : R 7→ R, j=0, ..., p. However, theoretical results are
only available under some restrictions on the basis functions. Regarding (1.2)
and (1.3), it is seen that estimation and interpretation of parameters is based
on Taylor’s expansion. Furthermore, nearly all asymptotic results, e.g. the bias
of the estimator, are based on Taylor’s theorem. Asymptotics provide a very
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important tool to find bandwidth selection rules etc., so they play an important
role for the use of the estimator in practice.

Thus, if some theoretical background is desired, one needs to develop a
new Taylor expansion for every basis one wants to use. Of course this will not be
possible for all choices of basis functions. In the following section we focus on a
special case, namely the power basis, where this is in fact possible and describe the
estimation methodology. In Section 3 we provide some asymptotics for estimating
the conditional bias and variance of this estimator, analyze the results, and show
that the asymptotic bias may be reduced with a suitable choice of the basis. In
Section 4 we apply this method to a simulated data set and compare the results
for various basis functions. In Section 5 we give some remarks on bandwidth
selection. We apply the method on a real data set in Section 6, and finish with
a short discussion in Section 7.

2. THE POWER BASIS

The family of basis functions that we will treat in this paper is motivated
by the following theorem:

Theorem 2.1 (Taylor expansion for a power basis). Let I be a non-trivial

interval, m,φ : I → R, p+1 times differentiable in I, φ invertible in I, and x ∈ I.
Then for all z ∈ I with z 6= x, a value ζ ∈ (x, z) resp. (z, x) exists such that

m(z) =

p
∑

j=0

ψ(j)(x)

j!

(

φ(z) − φ(x)
)j

+
ψ(p+1)(ζ)

(p+ 1)!

(

φ(z) − φ(x)
)p+1

with

ψ(j+1)(·) =
ψ′

(j)(·)
φ′(·) , ψ(0)(·) = m(·) ,

holds.

The proof is omitted, since this theorem is simply obtained by applying
Taylor’s theorem, as found for example in Lay ([12], p. 211), on the function g(·) =
(m ◦ φ−1)(·) at point φ(x). Assuming the underlying model (1.1), Theorem 2.1
suggests to fit the data locally in a neighborhood of x against the basis functions
1, φ(X) − φ(x), ..., (φ(X) − φ(x))p. We call a basis of this type a power basis of
order p. For φ = id, the power basis reduces to the polynomial basis. For the rest
of this paper, we assume that φ : R → R is p+1 times differentiable and invertible
in a neighborhood of x, though the estimation procedure itself, as outlined from
(2.5) to (2.7), does not necessarily require this assumption.

Since the parameters

γj(x) :=
ψ(j)(x)

j!
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are constructed in a more complex way than the parameters βj(x) for local
polynomial fitting, the simple relationship m(j)(x) = j!βj(x) cannot be retained.
However, by using the simple recursive formula

γj(x) =
1

jφ′(x)
γ′j−1(x) , γ0(x) = m(x) ,

the parameters γj(x) (j ≤ p), which we abbreviate by γj from now on, can be
calculated. In this manner the following relations between parameters and the
underlying function and their derivatives are derived for the power basis:

m(x) = 0! γ0(2.1)

m′(x) = 1!φ′(x) γ1(2.2)

m′′(x) = 2! [φ′(x)]2 γ2 + φ′′(x) γ1(2.3)

m′′′(x) = 3! [φ′(x)]3 γ3 + 3!φ′′(x)φ′(x) γ2 + φ′′′(x) γ1(2.4)

...

Let wi(x) = Kh(Xi − x). Minimizing

(2.5)

n
∑

i=1







Yi −
p

∑

j=0

γj

(

φ(Xi) − φ(x)
)j







2

wi(x)

in terms of (γ0, ..., γp), one obtains the local least squares estimator γ̂ = (γ̂0, ..., γ̂p)
T .

The design matrix and the necessary vectors are given by

X =









1 φ(X1)−φ(x) · · ·
(

φ(X1)−φ(x)
)p

...
...

...

1 φ(Xn)−φ(x) · · ·
(

φ(Xn)−φ(x)
)p









,

y =







Y1
...
Yn






, γ =







γ0
...
γp






and W =







w1(x)
. . .

wn(x)






.

The minimization problem (2.5) can be written as

minγ(y − Xγ)T W(y − Xγ) ,

yielding γ̂ = (XTWX)−1XT Wy, just as in the case of local polynomial fitting
([7]). Then m̂(x) = eT1 γ̂, where e1 = (1, 0, ..., 0)T , is an estimator for the under-
lying function m(·) at point x. Using (2.2) to (2.4), estimators for the derivatives
can be obtained in a similar way. Note that, to ensure that the matrix XTWX

is invertible, at least p+ 1 design points are required to satisfy Kh(Xi − x) > 0.
Furthermore it can be shown that

(2.6) Bias(γ̂|X) = (XTWX)−1 XT Wr ,
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where r = (m(X1), ...,m(Xn))T − Xγ, and X denotes the vector of covariates
(X1, ...,Xn). Finally the conditional covariance matrix is given by

(2.7) Var(γ̂|X) = (XT WX)−1 (XTΣ X) (XT WX)−1 ,

where Σ= diag(w2
i (x)σ

2(Xi)).

3. ASYMPTOTICS

Usually formulas (2.6) and (2.7) cannot be used in practice, since they de-
pend on the unknown quantities r and Σ. Consequently an asymptotic derivation
is required. We denote

µj =

∫ ∞

−∞
ujK(u) du and νj =

∫ ∞

−∞
ujK2(u) du

for the jth moments of K and K2. For technical ease we assume that the kernel
K is a (not necessarily symmetric) bounded probability density function (i.e.
µ0 = 1) with bounded support, though the latter assumption still can be relaxed
significantly (Fan [4], Fan & Gijbels [6]). Further we define the kernel moment
matrices

S = (µj+l)0≤j, l≤p cp = (µp+1, ..., µ2p+1)
T

S̃ = (µj+l+1)0≤j, l≤p c̃p = (µp+2, ..., µ2p+2)
T

S̄ =
(

(j + l)µj+l+1

)

0≤j, l≤p
c̄p =

(

(p+ 1)µp+2, ..., (2p + 1)µ2p+2

)T

S∗ = (νj+l)0≤j, l≤p .

Note that the matrix S is positive definite and thus invertible (Tsybakov [20],
Lemma 1). Furthermore we introduce the denotation ϕ(x) = φ′(x), the ma-
trices H = diag(hj)0≤j≤p and P = diag(ϕj(x))0≤j≤p and recall that ej+1 =
(0, ..., 0, 1, 0, ..., 0)T with 1 at (j+1)th position. oP (1) denotes a sequence of
random variables which tends to zero in probability, and OP (1) stands for a se-
quence of random variables which is bounded in probability. Let f(·) be the
design density of X. Firstly, we consider interior points, i.e. we assume x to be a
fixed point in the support of the design density f .

Theorem 3.1. Assume that f(x) > 0, σ2(x) > 0, ϕ(x) 6= 0 and that f(·),
m(p+1)(·), φ(p+1)(·) and σ2(·) are continuous in a neighbourhood of x. Further

assume that h → 0 and nh → ∞. Then the asymptotic conditional covariance

matrix of γ̂ is given by

(3.1) Var(γ̂|X) =
σ2(x)

nhf(x)
P−1 H−1 S−1 S∗ S−1 H−1 P−1

(

1 + oP (1)
)

.

The asymptotic conditional bias is given by

(3.2) Bias(γ̂|X) = hp+1 ϕp+1(x)P−1 H−1
(

γp+1S
−1cp + hbn

)

,
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where bn = OP (1). If in addition f ′(·), m(p+2)(·) and φ(p+2)(·) are continuous in

a neighbourhood of x and nh3 → ∞, the sequence bn can be written as

bn =

(

γp+1
f ′(x)

f(x)
+ γp+2 ϕ(x)

)

S−1 c̃p + γp+1
ϕ′(x)

2ϕ(x)
S−1 c̄p(3.3)

− γp+1 S−1

(

f ′(x)

f(x)
S̃− ϕ′(x)

2ϕ(x)
S̄

)

S−1 cp + oP (1) .

This theorem was obtained in the case φ(x) = x and p = 1 by Fan [4], for
general p by Ruppert & Wand [16], and for general φ(·), p = 1, and symmetric
kernels by Einbeck [3]. Based on Theorem 3.1 and formula (2.1) asymptotic
expressions for bias and variance of the estimator of the conditional mean function
can be derived. In particular we obtain

Var(m̂(x)|X) = Var(eT1 γ̂|X)

=
σ2(x)

nhf(x)
eT1 S−1 S∗ S−1 e1

(

1 + oP (1)
)

,(3.4)

which reduces for p = 1 to

(3.5) Var(m̂(x)|X) =
σ2(x)

nhf(x)

∫

(µ2 − uµ1)
2K2(u) du

(µ0µ2 − µ2
1)

2

(

1 + oP (1)
)

.

It is an important observation that the asymptotic variance of m̂(·) does not
depend on the basis function. Next, we take a look at the bias. Using (3.2) and
(2.1) one gets

Bias(m̂(x)|X) = Bias(eT1 γ̂|X)

= hp+1ϕp+1(x) eT1

(

ψ(p+1)(x)

(p+ 1)!
S−1 cp + hbn

)

,(3.6)

reducing for p = 1 to

(3.7) Bias(m̂(x)|X) =
h2

2

(

m′′(x) − ϕ′(x)

ϕ(x)
m′(x)

)

µ2
2 − µ1µ3

µ0µ2 − µ2
1

(

1 + oP (1)
)

.

3.1. Derivatives

Similarly, one might take a look at the formulas for the derivatives. Using
(2.2), one gets for the derivative estimator for p = 1

Var
(

m̂′(x)|X
)

= Var
(

ϕ(x) eT2 γ̂|X
)

=
σ2(x)

nh3f(x)
eT2 S−1 S∗ S−1e2

(

1 + oP (1)
)

(3.8)

=
σ2(x)

nh3f(x)

∫

(µ1 − uµ0)
2K2(u) du

(µ0µ2 − µ2
1)

2

(

1 + oP (1)
)

,
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and

Bias
(

m̂′(x)|X
)

= Bias
(

ϕ(x) eT2 γ̂|X
)

= hpϕp+1(x) eT2

(

ψ(p+1)(x)

(p+ 1)!
S−1cp + hbn

)

(3.9)

=
h

2

(

m′′(x) − ϕ′(x)

ϕ(x)
m′(x)

)

µ0µ3 − µ1µ2

µ0µ2 − µ2
1

(

1 + oP (1)
)

,

where (3.8) and (3.9) still hold for general p. Looking at (2.3) and (2.4), one
might have the impression that the asymptotic formulas for higher derivatives will
be extraordinarily complicated. However, first order expansions are easy to de-
rive, since only the leading term j!ϕj(x) γj determines the asymptotic behaviour.
In particular, one gets for arbitrary j ≤ p

Var
(

m̂(j)(x)|X
)

=
(j!)2 σ2(x)

nh2j+1f(x)
eTj+1 S−1 S∗ S−1 ej+1

(

1 + oP (1)
)

and

Bias
(

m̂(j)(x)|X
)

= hp+1−j j!ϕp+1(x) eTj+1

(

ψ(p+1)(x)

(p + 1)!
S−1cp + oP (1)

)

.

Note that the formula for the variance is identical to the corresponding formula
for local polynomial modelling ([7], p. 62), and that the variance is independent
of the basis function for any choice of j and p.

3.2. Design adaption and automatic boundary carpentry

One might wonder why we provided a deeper derivation of bn in The-
orem 3.1. This is necessary due to a special property of symmetric kernels.
Let us consider symmetric kernels throughout the rest of this section. Then, we
have µ2k+1 = ν2k+1 = 0 for all k∈N0. The crucial point is that, when estimating
the jth derivative m̂(j)(·), the product eTj+1S

−1cp is zero iff p− j is even. In the
case j = 0, p even, one gets from (3.6)

(3.10) Bias(m̂(x)|X) = hp+2ϕp+1(x) eT1 bn .

Suppose one increases the order of a power basis from an even order p to an
odd order p+ 1. Obviously, the order O

(

1
nh

)

of the variance (3.4) is unaffected,
and Fan & Gijbels ([7], p. 77 f) show that the quantity eT1 S−1S∗S−1e1 remains
constant when moving from an even p to p+ 1. Thus, there is not any change in
variance. What about the bias? As can be seen from (3.10) and (3.6), the order
of the bias remains to be O(hp+2). However, for even p the bias involves the
design density f and its derivative f ′, i.e. the estimator is not “design-adaptive”
in the sense of Fan [4]. Regarding the case j = 1, the situation is similar: the
matrix product eT2 S−1S∗S−1e2 remains constant when moving from an odd p to
p + 1, while the leading term of the bias simplifies. Summarizing, an odd choice
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of p − j should be preferred to an even choice, and local estimators based on a
power basis show exactly the same behavior as local polynomial estimators in
terms of design-adaptivity.

Beside this, “odd” local polynomial estimators have another strong advan-
tage compared to “even” ones: they do not suffer from boundary effects and hence
do not require boundary corrections. Does this property carry over to estimators
based on a power basis as well? We answer this question by considering the case
p = 1 and j = 0, though the findings remain valid for any odd choice of p − j.
For a symmetric kernel and an interior point, (3.5) and (3.7) reduce to

(3.11) Var(m̂(x)|X) =
σ2(x) ν0

nhf(x)

(

1 + oP (1)
)

and

(3.12) Bias(m̂(x)|X) =
h2µ2

2

(

m′′(x) − ϕ′(x)

ϕ(x)
m′(x)

)

+ oP (h2) ,

respectively. The variance is exactly the same as for a local linear fit, while the
bias expression includes an additional term expressing the interplay between the
basis function and the underlying function. Let us consider boundary points now.
Without loss of generality we assume that the density f has a bounded support
[0;1]. We write a left boundary point as x = ch (c ≥ 0), and accordingly a right
boundary point as x = 1 − ch. Calculation of the asymptotic bias and variance
is straightforward as in Theorem 3.1; the only difference is that kernel moments
µj and νj have to be replaced by

µj,c =

∫ ∞

−c
ujK(u) du and νj,c =

∫ ∞

−c
ujK2(u) du

in case of a left boundary point, and analogously in case of a right boundary
point. Thus, the kernel moments never vanish and the problem corresponds to
finding bias and variance for asymmetric kernel functions. Indeed, one obtains
at x = ch

(3.13) Var(m̂(x)|X) =
σ2(0+)

nhf(0+)

∫

(µ2,c − uµ1,c)
2K2(u) du

(µ0,c µ2,c − µ2
1,c)

2

(

1 + oP (1)
)

and
(3.14)

Bias(m̂(x)|X) =
h2

2

(

m′′(0+) − ϕ′(0+)

ϕ(0+)
m′(0+)

)

µ2
2,c− µ1,c µ3,c

µ0,c µ2,c − µ2
1,c

(

1+oP (1)
)

.

Comparing (3.11) and (3.12) with (3.13) and (3.14) unveils that the rate of the
estimator does not depend on the location of the target point x. For a nice
demonstration of the dependence of the constant factors on c see Fan & Gijbels
[5]. For even values of p− j, the rate of convergence at boundary points is slower
than in the interior.
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3.3. Bias reduction

According to equation (3.12), the bias of a first-order-fit depends on the
basis φ(·). This effect may be useful for bias reduction. To investigate this, firstly
note that (3.12) reduces to the well-known formula

Bias(m̂(x)|X) =
h2µ2

2
m′′(x) + oP (h2)

in the special case of local linear fitting. Thus the subtraction of ϕ′(x)
ϕ(x) m

′(x) in

(3.12) provides the chance for bias reduction. In the optimal case, the content of
the bracket in (3.12) is zero, hence the differential equation

m′′(x)ϕ(x) −m′(x)ϕ′(x) = 0

has to be solved, what leads to the solutions

ϕ(x) = c1m
′(x) (c1 ∈ R)

and hence

(3.15) φ(x) = c1m(x) + c2 (c1, c2 ∈ R) .

Note that for symmetric kernels and p − j odd one has eTj+1bn = oP (1). Thus,

the remaining asymptotic bias is even of order oP (h3). Having an optimal basis
function in the form of (3.15), one may ask if there is any gain in increasing the
order p? One finds immediately ψ(1)(x) = 1/c1 and thus

(3.16) γp(x) = ψ(p)(x)/p! = 0 for p ≥ 2 .

Thus any additional terms are superfluous, since their parameters should take
optimally the value zero. The strategy should consequently be the following:
work with p = 1, and try to find a basis which is as near as possible to the
underlying function.

In particular, for c1 = 1, c2 = 0 we get φopt(x) = m(x), thus the underlying
function m(·) is a member of the family of optimal basis functions. Certainly,
the function m(·) is always unknown. However, there are still at least two ways
to use this result. We want to approach them from a philosophical point of view.
What does a basis function actually effect? For a given basis, the smoothing
step in fact balances between the information given by the basis and the data.
A similar concept is well-known from Bayesian statistics (see e.g. Smith & Kohn
[18]). Though the Bayesian prior does not contain a basis function but an as-
sumption about the distribution of unknown parameters, the principle, boldly
compared, is the same, since the posterior distribution can be interpreted as a
trade-off between information in the data and prior knowledge. Thus, having
some (“prior”) knowledge about m, the fitted (“posteriori”) curve can be steered
in the correct direction when incorporating this knowledge in the basis. If there
does not exist any knowledge about m, one can calculate a pilot estimate via a
local linear fit (or any other smooth fit, e.g. with splines) and use the estimated
function as an improved basis. In the following section we will provide examples
for the application of these strategies.
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4. A SIMULATED EXAMPLE

Throughout this section, we consider the underlying function

(4.1) m(x) = x+
1

1.2
√

2π
e−(x−0.2)2/0.02 − 1

0.9
√

2π
e−(x−0.7)2/0.0018 ,

which we contaminate with Gaussian noise with σ = 0.05. The 50 predictors are
uniformly distributed on [0; 1]. We repeated this simulation 50 times, obtaining
50 data sets. See Fig. 3 for getting an impression of the data set. As a measure
of performance, we use the relative squared error

RSE(m̂) =
‖m̂−m‖

‖m‖ =

√

∑n
i=1

(

m(Xi) − m̂(Xi)
)2

√
∑n

i=1m(Xi)2
.

For each simulated data set and for each estimation m̂ of m with different basis
functions and polynomial orders we select the empirically optimal bandwidth
hemp by

hemp = minh RSE(m̂) .

This bandwidth hemp is used for the corresponding fit, and the medians of the
50 RSE values obtained in this manner are shown in Table 1. (Of course, hemp only
may be calculated for simulated data. Bandwidth selection for real data is treated
in Section 5.) The function dnorm(x) denotes the density of the standard normal
distribution. We put a star (∗) behind the RSE if the value is better than that
for local linear fitting (φ(x) = x) and two stars for the winner of the column.

Table 1: Medians of RSEs for various polynomial orders
and basis functions.

φ(x) p = 1 p = 2 p = 3 p = 8

x 0.04819 0.05005 0.04915 0.04973

sinx 0.04810 ∗∗ 0.05003 ∗ 0.04904 ∗ 0.05008
arctan x 0.04812 ∗ 0.04997 ∗ 0.04911 ∗ 0.05011

cosh x 0.04898 0.04919 ∗ 0.04916 0.04634 ∗∗
dnorm x 0.04893 0.04888 ∗∗ 0.04844 ∗∗ 0.04844 ∗

expx 0.04829 0.05005 0.04917 0.04886 ∗
log (x+ 1) 0.04811 ∗ 0.04988 ∗ 0.04917 0.05000

The corresponding boxplots of the RSE values are presented in Fig. 1. Taking
a look at the table and the figure, one notes immediately that the differences
between different basis functions are mostly negligible, and the performance does
not improve when rising the polynomial order. Looking at the table in more
depth, one observes that the group of odd basis functions behaves slightly different
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than the group of even basis functions. In particular, for p = 1 the odd basis
functions outperform the even ones. Recalling equation (3.15), this might be
interpreted as that the underlying function m(·) possesses rather odd than even
characteristics. Finally, one observes that the Gaussian basis yields the best RSE
for p = 2 and p = 3. This is quite intuitive, since the underlying function contains
a sum of Gaussians itself.

0.
03

0.
05

0.
07

p=1

0.
03

0.
04

0.
05

0.
06

0.
07

p=2

0.
02

0.
04

0.
06

p=3

0.
02

0.
04

0.
06

p=8

Figure 1: Boxplots of the relative errors using the basis functions
φ(x) = x, sinx, arctanx, coshx, dnorm(x), expx, log(x+1)
and orders p = 1, 2, 3, 8.
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Next, we will investigate if these results may be improved by the use of
basis functions which contain information about the true function, as suggested
by (3.15). We distinguish two situations:

a) Some information about m is available. We consider exemplarily two cases:

• Assume that the information about the true function is incomplete, e.g.
due to a transmission problem, and the true function is only known on
the interval [0.25; 0.75] (i.e., only half of the true function is known!).
A basis function m1(·) is constructed by extrapolating the known part
of the function by straight lines in a way that the first derivative is
continuous.

• Assume somebody gave us a (partly wrong) information about the
underlying function (4.1), namely

m2(x) = x− 1

1.2
√

2π
e−(x−0.2)2/0.02 − 1

0.9
√

2π
e−(x−0.7)2/0.0018 ,

i.e. the first hump shows down instead of up.

We call basis functions like that “guessed” basis functions.

b) No information about m is available. In this case, we employ the pre-fit
basis functions m̄(·) and m̌(·) calculated with a local constant or linear fit,
respectively. Let gemp be the empirically optimal bandwidth of the pre-
fit, i.e. gemp = hNW

emp for a local constant (Nadaraya-Watson) pre-fit and

gemp = hLL
emp for a local linear (LL) pre-fit. The bandwidth of the pre-fit is

then selected as g = θ · gemp, and the second bandwidth as h = λ · hLL
emp,

where θ and λ are optimized in terms of RSE on [1; 2]×[1; 2].

Keeping in mind observation (3.16) and the conclusions drawn from Table 1,
we only consider the case p = 1 from now on. The medians of 50 RSE values for
each basis function are listed in Table 2. For comparison we added the results
for the linear basis φ(x) = x and the (in practice unavailable) optimal basis
φ(x) = m(x). The corresponding boxplots of RSE values are depicted in Fig. 2.
In Fig. 3 the basis functions from Table 2 and the corresponding fitted curves are
depicted. One notices again: the more similar basis and true function are, the
better is the fitted curve. Further, one observes that there is not much gain in
using a local linear instead of a local constant pre-fit. The benefit of applying
a pre-fit basis is not overwhelming in this example, and is not as impressive as
for multivariate predictors ([3]). Taking into account the difficulty of having to
select two bandwidths, it is at least questionable if this additional work is worth
the effort for univariate predictors. Nevertheless, in the next section we will give
some insight in the nature of this two-dimensional bandwidth selection problem.
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The “guessed” basis functions lead to a significant improvement, which
does not require any extra work compared to a simple local linear fit. This is
finally the principal message of this paper: if you have some information, use it in
your basis, and your fit will improve. If this basis is wrong, but at least smooth,
normally nothing serious should happen, since the commonly applied linear basis
is a wrong basis as well in the most situations. Replacing one wrong and smooth
basis by another wrong and smooth basis function will not make much difference,
as demonstrated in Table 1.

Table 2: Medians of relative squared errors
for improved basis functions.

φ p = 1

x 0.04819

m̄(x) 0.04606 ∗
m̌(x) 0.04538 ∗
m1(x) 0.04488 ∗
m2(x) 0.03758 ∗∗
m(x) 0.01302

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

p=1

Figure 2: Boxplots of the relative errors using the basis functions
φ(x) = x, m̄(x), m̌(x), m1(x) and m2(x) (from left to right)
with p = 1.
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Figure 3: Left: basis functions; right: One particular of the 50 simulated
data sets (·), true function (dashed line) and fitted functions (solid
line) for p = 1. The denotations “pre con” and “pre lin” refer to
the basis functions m̄ and m̌, respectively.
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5. NOTES ABOUT BANDWIDTH SELECTION

For bandwidth selection, one has the general choice between classical meth-
ods and plug-in methods. For an overview of bandwidth selection routines, we
refer to Fan & Gijbels ([7], p. 110 ff). Classical methods as cross-validation or
the AIC criterion can be applied directly on fitting with general basis functions.
Promising extensions of the classical methods have been given by Hart & Yi [9]
and Hurvich et al. [11]. In the last decades, classical approaches got the rep-
utation to perform inferior in comparison to plug-in approaches, as treated by
Fan & Gijbels [6], Ruppert et al. [15], and Doksum et al. [2], among others.
However, this seems not to be justified, as Loader [13] explains, since plug-in-
approaches require more theoretical assumptions about the underlying function
than classical approaches. Plug-in estimators perform a pilot estimate in order
to estimate the asymptotic mean square error, which is then minimized in terms
of the bandwidth. Each plug-in-estimator is designed exclusively for a special
smoothing method, so that application of these estimators for general basis func-
tions requires some extra work.

Using Theorem 3.1, plug-in formulas for bandwidth selection can be derived
straightforwardly by extending the corresponding methods for local polynomial
fitting. We will not provide a complete treatment of this topic now, but only
give some impressions of the results. Let us therefore consider the derivation
of the asymptotically optimal variable bandwidth hopt(x), which varies with the
target value x. Minimizing the asymptotic mean square error MSE(m̂(x)|X) =
Bias2(m̂(x)|X)+Var(m̂(x)|X) for odd p−j, whereby (3.6) and (3.4) are employed
for the bias resp. variance, we arrive at an asymptotically optimal bandwidth

(5.1) h
(φ)
opt(x) = C0,p(K)

[

σ2(x)

ψ2
(p+1)(x) f(x)ϕ2p+2(x)

] 1

2p+3

· n−
1

2p+3 ,

where the constant C0,p(K), which only depends on p and the kernel K, is the
same as in [7], p. 67. Recall from the end of Section 3 that ψ(p+1)(x) (p ≥ 1)
approximates zero when φ(x) approximates m(x). Consequently, the optimal
bandwidth tends to infinity when the basis approximates the true function, what
is in conformity to the observations which can be drawn from Fig. 4.

Bandwidth selection is especially difficult for data-adaptive basis functions
as in the previous section: then we need the two bandwidths g and h for the first
and second fit, respectively. We want to give some insight in this bandwidth se-
lection problem, assuming for simplicity that the pre-fit m̄g(x) is a local constant
estimator with constant bandwidth g. Intuitively, one would firstly select an (in
some sense, e.g. asymptotically) optimal bandwidth ḡ of the pre-fit. Afterwards,
one would use the resulting fit m̄ḡ as a basis for the second fit, applying an op-

timized bandwidth h
(m̄ḡ)
opt for this pre-fit basis. However, this step-wise strategy

in practice does not prove to be suitable: when the first fit is too wiggly, the
wiggliness carries over to the second fit. Moreover, when the optimal bandwidth
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is met in the first fit, then the optimal second bandwidth is very high and the
minimum of the RSE curve is very flat. In other words: in this case the second
fit is superfluous, and the improvement compared to a usual local fit is negligible.

Therefore, it is sensible to use somewhat higher bandwidths in the initial
fit. To illustrate this, we return to the example from the previous sections, and
examine exemplarily the particular data set depicted in Fig. 3. Following the
step-wise strategy outlined above, we select g = 0.015 and h = 0.048. However,
minimizing the RSE simultaneously over g and h, one obtains the empirically
optimal bandwidth combination (0.030, 0.021). The dependence of the RSE on
the bandwidth for different basis functions is demonstrated in Fig. 4. The RSE
curve for the initial fit is the solid line, having a minimum at g = 0.015 and
yielding an estimate m̄15(x). Applying this estimate as a basis function, one
gets the dotted line. However, applying the estimate m̄30(x), obtained by a local
constant fit with bandwidth g = 0.030, one gets the dashed curve. One sees that
its minimum is deeper and more localized than that of m̄15(x).

h
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Figure 4: RSE as function of the bandwidth for a local constant fit,
and for the basis functions m̄15(x), and m̄30(x).

In Section 4 we have already suggested that suitable bandwidths g and
h for the pre-fitting algorithm are 1 − 2 times bigger than the optimal band-
widths of a local constant or a local linear fit, respectively. We want to provide
some heuristics to motivate this. Assume that the best bandwidth combination
minimizing the RSE simultaneously over (g, h) is given by (θ · ḡ, λ · hLL

opt), where

ḡ = hNW
opt . Since we cannot access λ directly, we have to apply a sort of trick and

to work with a variable second bandwidth. Setting (5.1) for p = 1 in relation to
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the optimal variable bandwidth hLL
opt(x) for a local linear fit, one obtains

h
(φ)
opt(x)

hLL
opt(x)

=

[

1 − φ′′(x)

φ′(x)
· m

′(x)

m′′(x)

]−2/5

.

We define the quantity

m◦(x) =
m′′(x)

m′(x)
,

and substitute for φ the pre-fit basis m̄θ·ḡ. Then one obtains

(5.2) λx :=
h

(m̄θ·ḡ)

opt (x)

hLL
opt(x)

=

[

1 −
m̄◦

θ·ḡ(x)

m◦(x)

]−2/5

≈
[

1 −
m̄◦

θ·ḡ(x)

m̄◦
ḡ(x)

]−2/5

.

What can be said about the relation between λx and θ? Writing m̄g(x) =
=

∑n
i=1 wi(x)Yi/

∑n
i=1 wi(x), where wi(x) = 1

g K
(

Xi−x
g

)

, one calculates

m̄◦
g(x) =

m̄′′
g(x)

m̄′
g(x)

=

∑n
i=1 wi′′(x)

(

Yi − m̄g(x)
)

∑n
i=1wi′(x)

(

Yi − m̄g(x)
) − 2

∑n
i=1wi′(x)

∑n
i=1 wi(x)

= −1

g

∑n
i=1K

′′[(Xi − x)/g
] (

Yi − m̄g(x)
)

∑n
i=1K

′
[

(Xi − x)/g
] (

Yi − m̄g(x)
) +

2

g

∑n
i=1K

′[(Xi − x)/g
]

∑n
i=1K

[

(Xi − x)/g
] .(5.3)

One observes from (5.3) that, roughly approximated,

m̄◦
θḡ(x)

m̄◦
ḡ(x)

≈ 1

θ
.

We substitute this quotient in (5.2) and get

(5.4) λx ≈
(

1 − 1

θ

)−2/5

In order to get a notion about this relation, we assume for a moment equality in
(5.4). The function

(5.5) λ(θ) =
(

1 − θ−1
)−2/5

is depicted in Fig. 5 (left). The hyperbolic shape of this function can be ob-
served in reality as well. Let us consider the same data set as utilized in Fig. 4.
Performing the pre-fit algorithm for g, h varying on a two-dimensional grid, the
resulting RSE values are shown in Fig. 5 (right). The same hyperbola appears
again. Thus, the minima of the RSE in terms of the pairs (g, h) are situated
along a hyperbola-formed valley. We want to emphasis three special positions in
this valley:

• θ → ∞. Then the first fit is a constant, and the resulting fit is the
Nadaraya–Watson-estimator.
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• λ → ∞. Then the second fit is a parametric regression with a Nadaraya–
Watson estimate as basis (which is approximately the same as the previous
case).

• λ = θ. Then one has 1 = λ − λ−3/2, which is solved at about λ = 1.53.
This number corresponds to the magnitude recommended beforehand.

Yet, a generally optimal choice of λ and θ cannot be given. At least we
can motivate that the main problem of bandwidth selection for the pre-fitting
algorithm can be reduced to the problem of selecting the bandwidth of a local
constant or a local linear fit, for the solution of which exist a variety of well
established methods. The remaining problem is a problem of fine tuning of the
parameters θ and λ. Though all considerations in this sections were outlined
within the framework of a local constant pre-fit, they remain qualitatively the
same for a local linear pre-fit. Indeed, there seems to be no observable advantage
of a local linear compared to a local constant pre-fit. Since local constant fitting
is more simple than local linear fitting, one might prefer local constant; however,
it might be simpler to base both bandwidth selection problems on a local linear
fit.
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Figure 5: Left: function λ(θ); right: RSE for varying (g, h).

6. A REAL DATA EXAMPLE

In this section we consider the motorcycle data, firstly provided by Schmidt
et al. [17], which have been widely used in the smoothing literature to demon-
strate the performance of nonparametric smoothing methods (e.g. [7], p. 2). The
data were collected performing crash tests with dummies sitting on motorcycles.
The head acceleration of the dummies (in g) was recorded a certain time (mea-
sured in milliseconds) after they had hit a wall. (Note however that, strictly
considered, these data are not fitting the models on which they are usually ap-
plied, since there were taken several measurements from every dummy at different
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time points — thus the data possess an inherent dependence structure. As done
in the other literature, we will ignore this problem in the following).

Fig. 6 shows the motorcycle data with a local linear fit (solid line). The
bandwidth value 1.48 is obtained by cross-validation. According to the previous
sections, the bandwidths g and h should be selected from the interval [1.48; 2.96].
Visually, the setting g=h=2.6 was convincing for this data set. The dotted line
shows the local linear pre-fit, and the dashed line is the local fit obtained using
the pre-fit as basis function. For comparison, we also provide the result of a fit
with smoothing splines.

For real data it is hard to judge which fit might be the best one — but at
least it seems that the fit applying a local pre-fit basis is less biased at the first
bend and the first hump, achieving at the same time a higher smoothness in the
outer right area than a local linear fit. The performance seems now comparable
to a spline fit.
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Figure 6: Motorcycle data with a local linear fit, a local pre-fit, a local
fit using the latter fit as basis function, and a spline fit.
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7. DISCUSSION

In a certain sense, the main findings of this paper are quite naive. Certainly,
everyone has the notion that, when instilling more information about the true
function in the basis, the resulting fit should improve. However, it seems that this
notion never has been concretized neither from a theoretical nor from a practical
point of view, though related ideas have already been mentioned in Ramsay &
Silverman ([14], Section 3.3.3) and Hastie & Loader [10]. The main purpose
of this work was to fill this gap, and we could confirm the intuitive notion by
theoretical as well as practical results. Summarizing, bias reduction is definitely
possible when using suitable basis functions, and the possible gain is much bigger
than the possible loss by using wrong, but smooth, basis functions. However,
application of the pre-fit algorithm can not be unrestrictedly recommended in
general, since the possible gain compared to the effort is not overwhelming, at
least in the univariate case.

In the framework of this paper it was not possible to solve all open questions
completely. There remain some open problems especially concerning bandwidth
selection in the case of pre-fitting. Furthermore, it would be useful to know when
pre-fitting yields to a significant improvement and when not.

A. APPENDIX

Proof of Theorem 3.1

I. Asymptotic conditional variance

Whenever there appears in integral in this proof, the borders −∞ and
∞ are omitted. We denote Sn,j =

∑n
i=1 wi(x) (φ(Xi) − φ(x))j and S∗

n,j =
∑n

i=1 w
2
i (x)σ

2(Xi) (φ(Xi) − φ(x))j . Then Sn := (Sn,j+l)0≤j,l≤p = XTWX and
S∗

n := (S∗
n,j+l)0≤j,l≤p = XTΣ X hold, and the conditional variance (2.7) can be

written as

(A.1) Var(γ̂|X) = Sn
−1 S∗

n Sn
−1

and thus approximation of the matrices Sn and S∗
n is required. Using that

∫

K(u)uj g(x+ hu) du = µj g(x) + o(1)

for any function g : R 7→ R which is continuous in x, we obtain

ESn,j = n

∫

K(u)
(

φ(x+ hu) − φ(x)
)j
f(x+ hu) du

= nhj

∫

K(u)uj ϕj(ζu) f(x+ hu) du

= nhj
(

f(x)ϕj(x)µj + o(1)
)



122 Jochen Einbeck

where ζu ∈ (x, x+ hu) exists according to Taylor’s theorem. Similar we derive

VarSn,j = nE
(

w2
1

(

φ(X1) − φ(x)
)2j

)

− nE2
(

w1

(

φ(X1) − φ(x)
)j

)

= nh2j−1
(

f(x)ϕ2j(x) ν2j + o(1)
)

= n2h2jO

(

1

nh

)

(A.2)

= o
(

n2h2j
)

.

Since for every sequence (Yn)n∈N of random variables

(A.3) Yn = EYn +OP

(

√

Var Yn

)

holds (what can be proven with Chebychev’s inequality), we can proceed with
calculating

Sn,j = ESnj
+OP

(

√

VarSn,j

)

= nhjf(x)ϕj(x)µj(1 + oP (1))(A.4)

which leads to

(A.5) Sn = nf(x)PHSHP (1 + oP (1)) .

In the same manner, we find that

S∗
n,j = ES∗

nj
+OP

(√

VarS∗
n,j

)

= nhj−1
(

ϕj(x)σ2(x)f(x) νj + o(1)
)

+OP

(

√

o(n2h2j−2)

)

= nhj−1 ϕj(x)σ2(x)f(x) νj(1 + oP (1))

and thus

(A.6) S∗
n =

n

h
f(x)σ2(x)PHS∗HP (1 + oP (1))

and finally assertion (3.1) by plugging (A.5) and (A.6) into (A.1).

II. Asymptotic conditional bias

Finding an asymptotic expression for

(A.7) Bias(γ̂|X) = Sn
−1 XT Wr

still requires to approximate r≡(ri)1≤i≤n. Let DK(x) be the set of all data points
within the kernel support. For all i ∈ DK(x) we obtain

ri = m(Xi) −
p

∑

j=0

γj

(

φ(Xi) − φ(x)
)j

=
ψ(p+1)(ζi)

(p+ 1)!

(

φ(Xi) − φ(x)
)p+1

= γp+1(x)
(

φ(Xi) − φ(x)
)p+1

+ oP (1)

(

φ(Xi) − φ(x)
)p+1

(p+ 1)!
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where ζi ∈ (Xi, x) resp. (x,Xi) exists according to Theorem 2.1, and the term
oP (1) is uniform over DK(x). Note that the invertibility demanded for φ(·) in
Theorem 2.1 is already guaranteed locally around x by the condition ϕ(x) 6= 0.
Finally we calculate

Bias(γ̂|X) = Sn
−1 XT W

[

(

φ(Xi) − φ(x)
)p+1(

γp+1 + oP (1)
)

]

1≤i≤n

= Sn
−1 cn

(

γp+1 + oP (1)
)

= P−1H−1S−1H−1P−1 1

nf(x)







γp+1cn +





o(nhp+1)
...

o(nh2p+1)











(

1 + oP (1)
)

= P−1H−1S−1hp+1 ϕp+1(x) γp+1 cp

(

1 + oP (1)
)

,

by substituting the asymptotic expressions for Sn,j (A.4) in cn :=
(Sn,p+1, ..., Sn,2p+1)

T , and thus (3.2) is proven.

Now we proceed to the derivation of bn which requires to take along
some extra terms resulting from higher order expansions. With (a + hb)j =
aj + h(jaj−1b+ o(1)) we find that

ESn,j = nhj

∫

K(u)uj

(

ϕ(x) +
hu

2
ϕ′(ζu)

)j
(

f(x) + huf ′(ξu)
)

du

= nhj

∫

K(u)uj

[

ϕj(x) + h

(

j

2
ϕj−1(x)uϕ′(ζu) + o(1)

)]

(

f(x) + huf ′(ξu)
)

du

= nhj

[

f(x)ϕj(x)µj + h

(

f ′(x)ϕj(x) +
f(x)

2
j ϕj−1(x)ϕ′(x)

)

µj+1 + o(h)

]

(A.8)

with ζu and ξu according to Taylor’s theorem. Plugging (A.8) and (A.2) into
(A.3) yields

(A.9) Sn,j = nhjϕj(x)

[

f(x)µj + h

(

f ′(x) +
f(x)

2

ϕ′(x)

ϕ(x)
j

)

µj+1 + on

]

,

where on = oP (h) +OP

(

1√
nh

)

= oP (h) from the hypothesis nh3 → ∞, and

further

(A.10) Sn = nPH

(

f(x)S + hf ′(x)S̃ + h
f(x)

2

ϕ′(x)

ϕ(x)
S̄ + oP (h)

)

HP .

The next task is to derive a higher order expansion for r. With Theorem 2.1 we
obtain

ri =
ψ(p+1)(x)

(p+ 1)!

(

φ(Xi) − φ(x)
)p+1

+
ψ(p+2)(ζi)

(p+ 2)!

(

φ(Xi) − φ(x)
)p+2

= γp+1

(

φ(Xi) − φ(x)
)p+1

+ γp+2

(

φ(Xi) − φ(x)
)p+2

+
(

ψ(p+2)(ζi) − ψ(p+2)(x)
) (φ(Xi) − φ(x))p+2

(p+ 2)!

=
(

φ(Xi) − φ(x)
)p+1

γp+1 +
(

φ(Xi) − φ(x)
)p+2 (

γp+2 + oP (1)
)
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with ζi ∈ (Xi, x) resp. (x,Xi). Plugging this and (A.10) into (A.7) and denoting

Tn := f(x)S + h

(

f ′(x)S̃ +
f(x)

2

ϕ′(x)

ϕ(x)
S̄

)

+ oP (h)

leads to

Bias(γ̂|X) = [nPHTnHP]−1
[

cnγp+1 + c̃n(γp+2 + oP (1))
]

= P−1H−1Tn
−1hp+1ϕp+1(x) ·

·
[

γp+1f(x) cp + h
(

γp+1f
′(x) + γp+2 ϕ(x)f(x)

)

c̃p

+ hγp+1f(x)
ϕ′(x)

2ϕ(x)
c̄p + oP (h)

]

,

where the asymptotic expressions (A.9) are substituted in cn and c̃n =
(Sn,p+2, ..., Sn,2p+2)

T . The matrix Tn still has to be inverted. Applying the
formula

(A + hB)−1 = A−1 − hA−1BA−1 +O(h2)

yields

Tn
−1 =

1

f(x)
S−1 − h

1

f(x)
S−1

(

f ′(x)

f(x)
S̃− ϕ′(x)

2ϕ(x)
S̄

)

S−1 + oP (h) ,

and we obtain finally

Bias(γ̂|X) = hp+1ϕp+1(x)P−1H−1 ·

·
{

γp+1S
−1cp + h

[(

γp+1
f ′(x)

f(x)
+ γp+2 ϕ(x)

)

S−1c̃p

+ γp+1
ϕ′(x)

2ϕ(x)
S−1c̄p + γp+1S

−1

(

f ′(x)

f(x)
S̃ − ϕ′(x)

2ϕ(x)
S̄

)

S−1cp

]

+ oP (h)

}

.
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