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1. INTRODUCTION

In this paper we introduce a goodness of fit test for the GARCH process.
In its simplest form this model is given by{

Xt = σt Zt ,

σ2
t = α0 + β1σ

2
t−1 + α1X

2
t−1 ,

t ∈ Z ,(1.1)

where (Zt)t∈Z is a sequence of iid random variables with EZ1 = 0, EZ2
1 = 1.

The parameters α1 and β1 are non-negative and α0 is necessarily positive.

Our test decides if the data at hand is a white noise whose squares have
a covariance structure which is in agreement with the second order structure of
the hypothesized squared GARCH process. The test is related to the classical
Grenander–Rosenblatt or Bartlett goodness of fit tests for the spectral distribu-
tion of a time series; see for example Priestley [38]. Such tests are analogues
to the Kolmogorov–Smirnov test for the distribution of a sample. Other testing
procedures exist in the literature. Among them we mention the approach that
uses the sequential empirical process for the residuals of an ARCH process; see
Horváth et al. [26]. Besides being restricted to the ARCH case, these asymp-
totic tests present another drawback. The limit distribution of the test statistic
depends in general on the distribution of the noise Zt and the parameters of
the model. An advantage of the test proposed in this paper is that the limit
distribution of the test statistic is distribution free and, as in the Kolmogorov-
Smirnov test, is a function of the Brownian bridge. Moreover, we prove that the
limit distribution of our test statistics are insensitive to the replacement of the
parameters by their estimators under the null hypothesis.

Although attractive as a model, there is copious empirical evidence in the
econometrics literature, coming especially from the analysis of long series of log-
returns, that argues against the GARCH(1, 1) model. For example, although
the squares of a GARCH(1, 1) process follow the dynamics of an ARMA process
(in particular the ACF goes to zero exponentially fast), the sample ACFs of the
absolute values and their squares tend to stabilize around a positive value for
larger lags (the so-called long range dependence in absolute returns or in volatil-
ity). For longer samples the estimated parameters α1 and β1 sum up to values
close to 1 (Engle and Bollerslev [19], Mikosch and Stărică [35]). This fact, known
as the integrated GARCH finding, implies infinite variance (see Bollerslev [8])
for the returns, a conclusion in strong disagreement with the accepted results of
semi-parametric tail analysis that find at least a finite third moment (Embrechts
et al. [17]).

The second contribution of the paper is the analysis based on our goodness
of fit procedure of a long portion of the S&P500 log-return series (January 1953
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to December 1990) which could provide an answer to these critics. For the data
under investigation we detect structural changes related to movements of the
unconditional variance and show how a long range dependence type behavior
in the sample ACF of absolute returns might be induced by these shifts. Our
procedure identifies most of the recessions of this period as being structurally
different. The major structural change is detected between 1973 and 1975 and
seems to correspond to the oil crises. Our analysis seems to indicate that one
simple GARCH(1,1) process (which models the first ten years of the data quite
well) cannot describe the complicated dynamics of longer, possibly non-stationary
log-return time series.

Our paper is organized as follows. In Section 2 we formulate our main the-
oretical result, a functional central limit theorem for the integrated periodogram
of the GARCH process. Then we indicate how this result can be used to build
an asymptotic goodness of fit test for the spectral distribution of the GARCH
process. We also discuss the behavior of the test statistics under the alternative
hypothesis of a different GARCH process. The proofs are rather technical and
therefore postponed to Appendix A1. In Section 3 we investigate by means of
simulations the small sample properties, the size and the power of our test statis-
tic while in Section 4 we apply our method to the study of a long portion of the
S&P log-return series. Some concluding remarks are given in Section 5.

2. LIMIT THEORY FOR THE TWO-PARAMETER
INTEGRATED PERIODOGRAM

In fields as diverse as time series analysis and extreme value theory it is
generally assumed that the observations or a suitable transformation of them
constitute a stationary sequence of random variables. In the context of this
section, stationarity is always understood as strict stationarity. One of the aims
of this paper is to provide a procedure for testing how good the fit of a stationary
GARCH(p, q) model to data is. This section provides the limit theory for a certain
two-parameter process which is the basis for the statistical procedure we propose
in Section 2.2. This theory is slightly more general than needed for the purposes
of this paper. However, the theory for the corresponding one-parameter process
(which will be used intensively in the rest of the paper) is essentially the same
as for the case of two parameters. The latter case can be used for change point
detection in the spectral domain while the former one yields goodness of fit tests.
As already mentioned, in the context of this paper, we are mainly interested
in test statistics for the goodness of fit of GARCH processes. The statistical
procedure will allow us to single out the parts of the data which are not well
described by the hypothesized model.
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To be precise, we assume that the data come from a stationary general-
ized autoregressive conditionally heteroscedastic process of order (p, q), for short
GARCH(p, q):

Xt = σt Zt, σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βj σ
2
t−i , t ∈ Z ,(2.1)

where (Zt) is an iid symmetric sequence with EZ2 = 1, non-negative parameters
αi and βj , and the stochastic volatility σt is independent of Zt for every fixed t.
We also assume that Z1 has a Lebesgue density on the real line. This ensures
that (Xt) is α-mixing with geometric rate; see Boussama [11]. In what follows,
we write σ for a generic random variable with the distribution of σ1, X for a
generic random variable with the distribution of X1, etc.

This kind of model is most popular in the econometrics literature for mod-
eling the log-returns of stock indices, share prices, exchange rates, etc., and has
found its way into the practice of forecasting financial time series. See for example
Engle [18] for a collection of papers on ARCH. We assume that, for a particular
choice of parameters αi and βi, the sequence ((Xt, σt)) is stationary. Assump-
tions for stationarity of a GARCH process can be found in Bougerol and Picard
[10] for the general GARCH(p, q) case and in Nelson [36] for the GARCH(1, 1)
case. For a recent overview on the mathematics of GARCH processes, we refer
to Mikosch [32].

Our analysis is based on the spectral properties of the underlying time
series. Consider the classical estimator of the spectral density, the periodogram,
given by

In,X(λ) =

∣∣∣∣∣ 1√
n

n∑
t=1

e−iλtXt

∣∣∣∣∣
2

, λ ∈ [0, π] .

Under general conditions, the integrated periodogram or empirical spectral dis-
tribution function

1
2π

Jn,X(λ) =
1
2π

∫ λ

0
In,X(x) dx , λ ∈ [0, π] ,(2.2)

is a consistent estimator of the spectral distribution function given by

FX(λ) =
∫ λ

0
fX(x) dx , λ ∈ [0, π] ,

provided the spectral density fX is well defined.
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2.1. Main results

As a motivation for our main result, we start by considering the two-
parameter process Jn,X(x, λ) related to (2.2) (see also Appendix A1):

Jn,X(x, λ) =
∫ λ

0

(
γn,[nx],X(0) + 2

[nx]−1∑
h=1

γn,[nx],X(h) cos(yh)

)
dy

(2.3)

= λ γn,[nx],X(0) + 2
[nx]−1∑
h=1

γn,[nx],X(h)
sin(λh)
h

,

where

γn,[nx],X(h) =
1
n

[nx]−h∑
t=1

XtXt+h , h = 0, 1, 2, ..., [nx]−1, x ∈ [0, 1] .

Clearly,

γn,X(h) := γn,n,X(h)

denotes a version of the sample autocovariance at lag h; the standard version of
the sample autocovariance is defined for the centered random variables Xt −Xn,
where Xn is the sample mean. We also write

γX(h) = cov(X0, Xh) and vX(h) = var(X0Xh) = E(X0Xh)2 , h ∈ Z .

The processes γn,[n·],X(h) satisfy a fairly general functional central limit
theorem (FCLT). Recall that D ([0, 1],Rm) is the Skorokhod space of R

m-valued
cadlag functions on [0, 1] (continuous from the right in [0, 1), limits exist from the
left in (0, 1]) endowed with the J1-topology and the corresponding Borel σ-field;
see for example Jacod and Shiryaev [27] or Bickel and Wichura [6].

Lemma 2.1. Consider the GARCH(p, q) process (Xt) given by (2.1).
Assume that

(2.4) E|X|4+δ <∞ for some δ > 0 .

Then for every m ≥ 1, as n→ ∞

(2.5)
√
n
(
γn,[nx],X(h), h=1, ...,m

)
x∈[0,1]

d−→
(
v

1/2
X (h)Wh(x), h=1, ...,m

)
x∈[0,1]

,

in D ([0, 1],Rm), where Wh(·), h= 1, ...,m, are iid standard Brownian motions
on [0, 1].
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The proof of the lemma is given in Appendix A1. A naive argument, based
on Lemma 2.1 and the decomposition (2.3), suggests that

√
n
(
Jn,X(x, λ)− λ γn,[nx],X(0)

)
x∈[0,1], λ∈[0,π]

d−→

d−→ 2

( ∞∑
h=1

v
1/2
X (h)Wh(x)

sin(λh)
h

)
x∈[0,1], λ∈[0,π]

,

in D
(
[0, 1]×[0, π]

)
. This result can be shown to be true; one can follow the lines

of the proof of Theorem 2.1 below. However, the two-parameter Gaussian limit
field has a distribution that explicitly depends on the covariance structure of
(X2

t ), which is not a very desirable property. Indeed, since we are interested in
using functionals of the limit process for a goodness of fit procedure, we would
like that the asymptotic distribution of those functionals is independent of the
null hypothesis we test. In other words, we want a “standard” Gaussian process
in the limit since otherwise we would have to evaluate the distributions of its
functionals by Monte–Carlo simulations for every choice of parameters of the
GARCH(p, q) we consider in the null hypothesis.

A glance at the right-hand side of (2.3) suggests another approach.
The dependence of the limiting Gaussian field on the covariance structure of
(X2

t ) comes in through the FCLT of Lemma 2.1. However, it is intuitively clear
that, if we replaced in (2.3) the processes γn,[n·],X(h) by

γ̃n,[n·],X(h) =
γn,[n·],X(h)

v
1/2
X (h)

,

the limit process would become independent of the covariance structure of (X2
t ).

Therefore we introduce the following two-parameter process which is a
straightforward modification of Jn,X(x, λ):

Cn,X(x, λ) =
[nx]−1∑
h=1

γ̃n,[nx],X(h)
sin(λh)
h

, x ∈ [0, 1], λ ∈ [0, π] .

Our main result is a FCLT for Cn,X .

Theorem 2.1. Let (Xt) be a stationary GARCH(p, q) process given by
(2.1). Assume that (2.4) holds. Then

√
n
(
Cn,X(x, λ)

)
x∈[0,1], λ∈[0,π]

d−→

d−→ (
K(x, λ)

)
x∈[0,1], λ∈[0,π]

=

( ∞∑
h=1

Wh(x)
sin(λh)
h

)
x∈[0,1], λ∈[0,π]

,(2.6)
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in D
(
[0, 1]×[0, π]

)
where (Wh(·))h=1,... is a sequence of iid standard Brownian

motions on [0, 1]. The infinite series on the right-hand side converges with prob-
ability 1 and represents a Kiefer–Müller process, i.e., a two-parameter Gaussian
field with covariance structure

E
(
K(x1, λ1)K(x2, λ2)

)
= min(x1, x2)

∞∑
t=1

sin(λ1t) sin(λ2t)
t2

(2.7)

= 2−1 π2 min(x1, x2)
(
min

(
λ1

π
,
λ2

π

)
− λ1

π

λ2

π

)
.

The proof of the theorem is given in Appendix A1.

The series representation of the Kiefer–Müller process can be found in
Klüppelberg and Mikosch [29]. This process is known in empirical process theory
as the limiting Gaussian field for the sequential empirical process; see Shorack
and Wellner [41].

Remark 2.1. The statement of Theorem 2.1 remains valid for wider
classes of stationary sequences. In particular the result holds if the conditions
in Remark 1.1 are satisfied and in addition, (Xt) is symmetric and (|Xt|) and
(sign(Xt)) are independent. The latter conditions are satisfied by any stochastic
volatility model of the form Xt = σt Zt, where (Zt) is a sequence of iid symmet-
ric random variables and the random variables σt are adapted to the filtration
σ(Zt−1, Zt−2, ...), or alternatively, (σt) and (Zt) are independent.

Immediate consequences of Theorem 2.1 and the continuous mapping the-
orem are limit theorems for continuous functionals of the process Cn,X which
can be used for the construction of goodness of fit tests and tests for detecting
changes in the spectrum of the time series.

Corollary 2.1. Under the assumptions of Theorem 2.1,

√
n sup

x∈[0,1], λ∈[0,π]

∣∣Cn,X(x, λ)
∣∣ d−→ sup

x∈[0,1],λ∈[0,π]

∣∣K(x, λ)
∣∣ ,

n

∫ 1

0

∫ π

0
C2

n,X(x, λ) dx dλ d−→
∫ 1

0

∫ π

0
K2(x, λ) dx dλ .

For x = 1, convergence in (2.6) yields

√
n C̃n,X(·) := √

n
n−1∑
h=1

γn,X(h)

v
1/2
X (h)

sin(·h)
h

d−→ B(·) :=
∞∑

h=1

Wh(1)
sin(·h)
h

,(2.8)

in C [0, π]. The series on the right-hand side is the so-called Paley–Wiener rep-
resentation of a Brownian bridge on [0, π]; see (2.7) with x=1 (see for example
Hida [25]).
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The one-parameter process C̃n,X will be our basic process for testing the
goodness of fit of the sample X1, ..., Xn to a GARCH process. The convergence
of the following functionals can be used for constructing Kolmogorov–Smirnov
and Cramér–vonMises type goodness of fit tests for a GARCH(p, q) process.

Corollary 2.2. Under the assumptions of Theorem 2.1,

S̃n :=
√
n sup

λ∈[0,π]

∣∣C̃n,X(λ)
∣∣ d−→ sup

λ∈[0,π]
|B(λ)| ,(2.9)

n

∫ π

0
C̃2

n,X(λ) dλ d−→
∫ π

0
B2(λ) dλ .

2.2. The goodness of fit test

Inwhat follows, we focus on the GARCH(1, 1) case but a similar theory can be
developed for the general GARCH(p, q) case. The quantities vX(h) are continuous
functions of the GARCH parameters and the fourth moments of the iid noise Zt.
We refer to Appendix A2 where vX is explicitly given for the GARCH(1, 1) case.
For an application of the results above it is natural to replace the unknown quan-
tities vX(h) in the definition of γ̃n,k,X(h) by their sample versions v̂X(h), i.e., the
parameters αi and β1 are replaced by some estimators α̂i and β̂1 and EZ4 is re-
placed by the sample mean of the 4th powers of the residuals ÊZ4 = n−1

∑n
i=1 Ẑ

4
t ,

where Ẑt = Xt/σ̂t and σ̂2
t = α̂0 + α̂1X

2
t−1 + β̂1σ̂

2
t−1 and σ̂2

0 and X2
0 are arbitrarily

chosen, but fixed. Denoting by

γ̂n,[n·],X(h) =
γn,[n·],X(h)

v̂
1/2
X (h)

,

we produce the straightforward modification of Cn,X(x, λ):

Ĉn,X(x, λ) =
[nx]−1∑
h=1

γ̂n,[nx],X(h)
sin(λh)
h

, x ∈ [0, 1], λ ∈ [0, π] ,

and that of S̃n:

Sn :=
√
n sup

λ∈[0,π]

∣∣Ĉn,X(λ)
∣∣ .(2.10)

The following result states that the theory developed in this section remains
valid if vX is replaced by its sample analogue.
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Theorem 2.2. Assume that the parameter estimators α̂1 and β̂1 based

on X1, ..., Xn are independent of (sign(Xt)) and consistent, i.e., α̂1
P→ α1 and

β̂1
P→ β1. Then Theorem 2.1 and its corollaries remain valid for a GARCH(1, 1)

process if vX is replaced by its sample analogue v̂X . In particular

Sn
d−→ sup

λ∈[0,π]
|B(λ)| .(2.11)

Remark 2.2. The Whittle parameter estimators of a GARCH process
are consistent if EX4 <∞, and so are the Gaussian quasi maximum likelihood
estimators; see Giraitis and Robinson [22] and Mikosch and Straumann [33]
for the former case and Berkes et al. [5] for the latter case. Moreover, by their
definitions they are calculated from the X2

t ’s and σ2
t ’s only and therefore they

are independent of (sign(Xt)).

The results we presented so far are sufficient for providing a theoretical un-
derstanding of the behavior of tests based on functionals of Ĉn,X (for example Sn).
These are tests of the null hypothesis that the sample X1, ..., Xn comes from a
GARCH(1, 1) model with given parameters αi and βi against the alternative
of another GARCH(1, 1) model with parameters αa

i , i = 0, 1, and βa
1 . They

reject the null hypothesis if the functional is in a certain region. The rejection
region giving the test the right size is constructed based on the quantiles of the
appropriate functional of the limit process in Theorem 2.2 (i.e. the supremum of
a Brownian bridge in the case of the statistic Sn). As for the power of the test,
similar arguments as for the proof of Theorem 2.2 yield under the alternative the
following result.

Theorem 2.3. Assume that (Xt) and (Yt) are two stationary GARCH(1,1)
processes (2.1) with coefficients αi, i=0, 1, β1, and α

a
i , i=0, 1, βa

1 respectively.

Assume that the parameter estimators α̂1 and β̂1 (based on the sampleX1, ..., Xn)

are independent of (sign(Xt)) and consistent, i.e., α̂1
P→ α1 and β̂1

P→ β1. Define

γ̂a
n,[n·](h) =

γn,[n·],Y (h)

v̂
1/2
X (h)

,

Ĉa
n,X,Y (x, λ) =

[nx]−1∑
h=1

γ̂a
n,[nx](h)

sin(λh)
h

, x ∈ [0, 1], λ ∈ [0, π] .

Then

(2.12)
√
n

(
Ĉa

n,X,Y (x, λ)
)
x∈[0,1], λ∈[0,π]

d−→
( ∞∑

h=1

v
a 1/2
X (h)

v
1/2
X (h)

Wh(x)
sin(λh)
h

)
x∈[0,1], λ∈[0,π]

,

in D
(
[0, 1]×[0, π]

)
where (Wh(·)) is a sequence of iid standard Brownian motions

on [0, 1] while va
X(h) = E(Y0Yh)2.
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This result yields a theoretical description of the power of tests based on
functionals of Ĉn,X . It individuates the functional of the Gaussian process on
the right hand side of equation (2.12) as an asymptotic equivalent of the desired
functional of Ĉa

n,X,Y . Note that the distributions of the functionals of the limit
processes depend on the parameters of the alternative hypothesis in a rather
complicated way. This makes the direct use of the Theorem 2.3 in applications
rather difficult. For this reason we will rely on Monte–Carlo based calculations
of the distribution of Ĉa

n,X,Y . See Section 3 for a simulation study on the size
and the power of a test based on the statistics Sn.

Results similar to Theorem 2.3 can be derived for the alternative hypothesis
that the sample X1, ..., Xn consists of subsamples from different GARCH(p, q)
processes. Clearly, the asymptotic distribution will be even more complex and
the Monte–Carlo approach again inevitable.

3. A SIZE AND POWER MONTE CARLO STUDY

The aim of this section is to investigate the size and the power of a test
based on the statistic Sn in (2.10). The set up is relevant to the real data analysis
performed in Section 4. There we check the goodness of fit of a GARCH(1, 1)
process with parameters estimated on the first 3 years of data (750 observations)

(3.1) α0 = 8.58× 10−6, α1 = 0.072, β1 = 0.759, ν = 5.24 ,

to various segments of the data set. Here ν is the number of degrees of freedom
of the t-distributed noise sequence (Zt). The corresponding value of the fourth
moment of the estimated residuals of the model 3.1 is EZ4 = 7.82.

The first choice we need to make when applying our test on data is precisely
that of the size of thewindow that guarantees a correct behavior of the statistic Sn.
Theoretically, the correct size of the test will be guaranteed by a choice of the re-
jection region based on the asymptotic behavior of Sn described by Theorem 2.2.
These results are only asymptotic and provide the right size if the data window
used to calculate the Sn statistic is large. For reasons that are explained in
Section 4, we want to keep the length of the window as small as possible. It is
by means of simulations that we find the right balance between these oppos-
ing requirements on the window size. As a byproduct of the simulation study,
we will understand how to adjust the interval provided by Theorem 2.2 in order
to maintain the correct size.

The top graph in Figure 1 displays the QQ-plot of 1000 simulated values
of S̃125 (the quantiles on the x-axis), calculated on samples of 125 observations
from a GARCH process with Student-t innovations and parameters (3.1) against
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Figure 1: Top: QQ-plot of 1000 values of S̃125 (x-axis) against the quantiles
of the supremum of a Brownian bridge (y-axis).
Bottom: The difference between the sample cdf of 1000 simulated
values of S̃125 and the theoretical cdf of the supremum of a Brownian
bridge with the Kolmogorov-Smirnov 95% confidence bands.

the quantiles of the supremum of a Brownian bridge (on the y-axis). The bottom
graph in the same figure together with the graphs in Figure 2 shows the goodness
of fit of the distribution of the supremum of a Brownian bridge to samples of 1000
simulations of S̃125 (Figure 1), S̃500 and S̃1000 (Figure 2) respectively. The statistic
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Figure 2: The difference between the sample cdf of the 1000 simulated values
of S̃500 (Top) and of S̃1000 (Bottom) and the theoretical cdf of the
supremum of a Brownian bridge with the Kolmogorov-Smirnov 95%
confidence bands.

S̃ is calculated using the parameters (3.1). The goodness of fit is based on the
Kolmogorov–Smirnov test. The solid line in these graphs represents the difference
between the sample cdf and the theoretical cdf of a Brownian bridge while the
dotted lines are the 95% confidence intervals stipulated by the Kolmogorov–
Smirnov test. This test seems to indicate that the asymptotic behavior fully
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works for sample sizes of the order 1000 while the qualitative differences between
sample sizes of order 125 and 500 are not too big. This observation together with
the good fit showed by the QQ-plot in Figure 1 motivate our choice of a window
size of 125 data points (or half a business year).

A next issue that we need to clarify is the behavior of S125. Recall that
Theorem 2.2 stipulates that the asymptotic behaviors of Sn and S̃n are the same.
A verification of this statement is provided in Figure 3 which displays the
QQ-plot of 2500 simulated values of S125 against 2500 simulated values of S̃125.
In all cases the data generating process is a GARCH model with Student-t in-
novations and parameters (3.1). To obtain one value of S̃125, 125 simulated data
and the true parameters (3.1) are used, while in the case of S125, 875 data points
are simulated, the parameters are estimated on the first 750 data points and the
last 125 observations together with the estimated parameters are used to produce
the statistic. The two distributions seem indeed very close to each other.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

X Quantiles

Y
 Q

ua
nt

ile
s

Figure 3: QQ-plot of 2500 values of S125 (x-axis) against
2500 values of S̃125 (y-axis).

This part of the simulation study serves also to define the rejection regions
of the test based on the statistic S125. The rejection intervals for a 95% size one-
sided, respectively two-sided test for the S125 statistic are (0, 1.01) and (3.32,∞),
and (0, 0.92) ∪ (3.8,∞) respectively. The interval that gives a size of 99% to our
two-sided test (and that will be used for the data analysis in the next section)
is (0, 0.785) ∪ (4.9,∞).
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The alternatives we consider in our study are those of GARCH processes
with parameters different from those in (3.1). Although Theorem 2.3 gives the
theoretical power of our test against various GARCH alternatives, its complicated
form renders it of little practical help. For understanding the behavior of the Sn

statistic under various GARCH alternatives we again have to turn to a Monte
Carlo analysis.

The results are displayed in Figures 4–7. The tests have size 95% and are
based on the choice of intervals given by our simulation study as discussed above.
In Figures 4 and 5 the parameters α0 and EZ4 are kept constant while the other
two parameters α1 and β1 are made to vary between 0.04 and 0.14 and 0.6 and
0.92 respectively. In Figures 6 and 7 the parameters α1 and β1 are kept constant
while the other two parameters α0 and EZ4 are made to vary between 1.5×10−6

and 4.05× 10−5 and 3 and 9 respectively. For every alternative, 500 simulations
were produced. The top and center graphs in Figures 4 and 6 display the power
of the one-sided tests (for the top graph, the rejection interval is (0, 1.01), for the
center graph (3.32,∞)) while the graphs on the bottom row display the difference
between the standard deviation of the alternative models and that of the model
with parameters (3.1). The top graphs in Figures 5 and 7 show the power of
the two-sided test (rejection region (0, 0.785)∪ (4.9,∞)) while the bottom graphs
in the two pictures display the absolute value of the difference between the log
of the standard deviation of the alternative models and that of the model with
parameters (3.1).

The graphs in Figures 4 and 6 shed light on the relationship between the
difference of the unconditional variances and the distribution of the S125 statistic
under the alternative. They show that the sampling distribution of the statistic
S125 (calculated with the parameters of the null hypothesis) for GARCH models
with lower (higher) unconditional variance is dominated (dominates) the sam-
pling distribution for the null model. Hence rejecting for small (high) values of
the statistic S125 gives power against alternative models with smaller (larger)
unconditional variance. The graphs in Figures 5 and 7 show a strong connec-
tion between the power of the test and the absolute value of the difference of
the log unconditional variances of the two models. The higher the size of the
difference, the higher the power. Even more, Figures 6 and 7 show that the test
has equal power against alternatives of equal variance. Note that the variance of
the alternative GARCH(1, 1) processes does not depend on the EZ4 parameter.

As a conclusion, the study motivates the interpretation of the rejection of
the null hypothesis not only as signaling the need for another GARCH model but
also as a clear sign of a change in the unconditional variance of the time series.
More concretely, a rejection on the upper (lower) end of the rejection region also
signals an increase (a decrease, respectively) in the unconditional variance of the
time series.
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Figure 4: Top and Center: Power against GARCH alternatives of a test based
on S125 and the rejection interval (0, 1.01) (Top) and (3.32,∞) (Center).
The parameters αa

0 and νa are kept constant and equal to the values in
(3.1), i.e., 8.58× 10−6 and 5.24 respectively. The x- and y-axes show the
βa

1 - and α
a
1-values of the alternatives.

Bottom: The difference between the standard deviations of the alterna-
tive models and that of the model with parameters (3.1).
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S125 and the two-sided rejection region (0, 0.785)∪(4.9,∞).
The parameters αa

0 and νa are kept constant and equal to
the values in (3.1), i.e., 8.58× 10−6 and 5.24, respectively.
The x- and y-axes show the βa

1 - and α
a
1-values of the alter-

natives.
Bottom: The absolute value of the differences between the
log of the standard deviations of the alternative models and
that of the model with parameters (3.1).
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Figure 6: Top and Center: Power against GARCH alternatives of a test based
on S125 and the one-sided rejection intervals (0, 1.01) (Top) and
(3.32,∞) (Center). The parameters αa

1 and βa
1 are kept constant

to the values in (3.1), i.e., 0.072 and 0.759, respectively. The x- and
y-axes show the αa

0- and ν
a-values of the alternatives.

Bottom: The difference between the standard deviations of the
alternative models and that of the model with parameters (3.1).
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Figure 7: Top: Power against GARCH alternatives of a test based on
S125 and the two-sided rejection interval (0, 0.785)∪(4.9,∞)
and (3.32,∞). The parameters αa

1 and βa
1 are kept constant

to the values in (3.1), i.e., 0.072 and 0.759, respectively. The
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a-values of the alterna-

tives.
Bottom: The absolute value of the difference between the
log of the standard deviations of the alternative models and
that of the model with parameters (3.1).
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4. A STUDY OF THE STANDARD & POOR’S 500 SERIES

We now proceed to analyze a time series that has been previously used to
exemplify the presence of LRD in financial log-return series: the Standard 90 and
Standard and Poor’s 500 composite stock index. This series, covering the period
between January 3, 1928, to August 30, 1991, was used in Ding et al. [15], Granger
et al. [23], Ding and Granger [14] for an analysis of its autocorrelation structure.
It led the authors to the conclusion that the powers of the absolute values of
the log-returns are positively correlated over more than 2500 lags, i.e., 10 years.
It is hard to believe that this time series is likely to be stationary. It covers
the Great Depression, a world war together with the most recent period, marked
by major structural changes in the world’s economy. In addition, there was a
compositional change in the S&P composite index that happened in January 1953
when the Standard 90 was replaced by the broader Standard and Poor’s 500
index. Despite all these, Ding et al. [15] conclude the section which describes
the data as follows (page 85): “During the Great Depression of 1929 and early
1930s, volatilities are much higher than any other period. There is a sudden drop
in prices on Black Monday’s stock market crash of 1987, but unlike the Great
Depression, the high market volatility did not last very long. Otherwise, the

market is relatively stable.” Bollerslev and Mikkelsen [9] used the daily returns
on the Standard and Poor’s 500 composite stock index from January 2, 1953, to
December 31, 1990 (a total of 9559 observations) to fit a FIGARCH model under
the assumptions of stationarity and LRD. (It is unknown whether the FIGARCH
has a stationary version, and if it existed, it had infinite variance marginals, thus
the definition of LRD via the ACF would break down. See Giraitis et al. [21] and
Mikosch and Stărică [34] for some discussions.)

In the sequel we perform a detailed analysis of the same data set covering
the time span from January 2, 1953, to December 31, 1990; see Figure 8. The
first goal of the analysis is to check the goodness of fit of a GARCH process with
parameters estimated on the first 3 years of data, the period from the beginning
in 1953 until the beginning of 1956 (750 observations)

(4.1) α0 = 8.58× 10−6, α1 = 0.072, β1 = 0.759, ν = 5.24 ,

to various segments of the data set. Here ν is the number of degrees of freedom
of the t-distributed noise sequence (Zt). The corresponding value of the fourth
moment of the estimated residuals of the model (4.1) is EZ4=7.82. The analysis
verifies if this GARCH(1, 1) model which provides a good description to the
beginning of the sample can be used to model later periods. In the case of
a negative answer we are interested in understanding the type of changes that
occurred and, if possible, to pin them to new economic conditions. In other words,
the second goal of the analysis is the timing of possible changes in the structure of
the data. We try to achieve this goal by evaluating the statistic Sn on a window
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that moves sequentially through the data. We will chose the window as small as
possible to make sure the statistic reacts promptly to possible structural changes.
In the end of the section we document the effect which changes in the variance
have on the sample ACF. We find that the shape of the sample ACF changes
drastically after episodes of increased variance that cannot be properly described
by the estimated model.
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Figure 8: Plot of 9558 S&P500 daily log-returns.
The year marks indicate the beginning of the calendar year.

The top graph in Figure 9 shows the results of calculating the statistic
Sn (see (2.10)) on a weekly basis (i.e., every 5th instant of time) with blocks of
n=125 past observations, corresponding to approximately 6 months of previous
observations. The horizontal lines correspond to the ends of the rejection region
of a goodness of fit test of size 99% based on S125 statistic as obtained from
the simulation study in Section 3. The dotted vertical lines mark the start and
the end of economic recessions as determined by the US National Bureau of
Economic Research. This graph shows that one simple GARCH(1, 1) process
(which, according to the S125 statistic, models the first ten years of data or so
quite well cannot describe the complicated dynamics of longer, possibly non-
stationary log-return time series. More precisely, the graph shows that most of
the more pronounced violations of the confidence interval are on the upper side.
It also shows that most of the recessions of the period under study (apart the
one in the beginning of the 60s) are associated with larger than acceptable values
of the S125 statistic. Recalling the simulation results of Section 3, these two
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findings also seem to imply that the unconditional variance of the log-returns
changes through time and that most of the recessions of the period under study
are characterized by higher unconditional variance than the periods of normal
economic activity.
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Figure 9: Top: The goodness of fit test statistic S125 for the S&P500 data.
The horizontal lines are the limits of the 99% confidence interval of
S125 as obtained from the simulation study in Section 3. The dotted
vertical vertical lines mark the start and the end of economic recessions
as determined by the National Bureau of Economic Research.
Bottom: The implied GARCH(1, 1) unconditional variance of the
S&P500 data. A GARCH(1, 1) model is estimated every 2 months
using the previous 2 years of data (i.e., 508 observations). The graph
displays the variances σ2

X = α0/(1−α1−β1); see (A2.1).
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A closer look at the S&P 500 plot in Figure 8 together with the top graph
in Figure 9 reveals an almost one-to-one correspondence between the periods of
larger absolute log-returns (larger volatility) and the periods when the goodness
of fit test statistic S125 falls outside and above the confidence region.

If the unconditional variance changes through time, as our analysis seems
to indicate, no GARCH(1, 1) model could be a good model for the whole period.
It is then interesting to verify whether a periodically updated GARCH(1, 1) model
could account for the more pronounced volatility periods that cannot be explained
by the GARCH(1, 1) model (4.1). One way to do this is to calculate the implied
unconditional GARCH(1, 1) variance of a periodically re-estimated GARCH(1, 1)
model, i.e., one calculates the variance

σ2
X = α0

/(
1− (α1 + β1)

)
based on the periodically re-estimated parameters α1 and β1; see (A2.1).

More concretely, we re-estimated a GARCH(1, 1) model every 2 months,
i.e., every 42 days, on a moving window of 508 past observations, equivalent to
roughly two business years of daily log-returns. We then plotted the implied
variance σ2

X . The results of this procedure are displayed in the bottom graph
of Figure 9. One notices that the pattern of increased implied unconditional
variance is quite similar to the pattern of the excursions of the statistic S125

above the 99% quantile threshold. This similarity seems to imply that one can
capture the changing patterns of volatility present in the data by periodically
updating the GARCH(1, 1) model. However a more in-depth study would be
needed to substantiate such a statement.

Let us now analyze the impact which these periods of different structural
behavior detected by the goodness of fit test statistic S125 have on the sample
ACF of the time series. The top graph in Figure 9 identifies the period beginning
in 1973 and lasting for almost 4 years as the longest and most significant devi-
ation from the hypothesized model. This period is centered around the longest
economic recession in the analyzed data. Figure 10 displays the sample ACF
of the absolute values |Xt| up to the moment when the change is detected, i.e.,
beginning of 1973, next to the sample ACF including the 4-year period that fol-
lowed. The impact of the change in the structure of the time series between 1973
and 1977 on the sample ACF is extremely severe as one sees from the second
graph of Figure 10. The graph clearly displays the LRD effect as explained in
[34, 35]: exponential decay at small lags followed by almost constant plateau for
larger lags together with strictly positive correlations.

Contrary to the belief that the LRD characteristic carries meaningful in-
formation about the price generating process, these graphs show that the LRD
behavior could be just an artifact due to very plausible structural changes in the
log-return data: variations of the unconditional variance due to the business cycle.
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Figure 10: The sample ACF for the absolute log-returns of the first 20 and
24 years (top and bottom) of the S&P500 data.
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5. CONCLUDING REMARKS

In this paper we have argued that long financial time series display com-
plicated volatility structures for which the simplifying assumption of constant
unconditional variance and constant other moments is too rigid. Modeling the
changing unconditional variance (possibly together or instead of the changing con-
ditional one) is an important component of the modelization of long log-returns
time series.

A1. APPENDIX

Proof of Lemma 2.1: We have to show the convergence of the finite-
dimensional distributions and the tightness in D ([0, 1],Rm). Notice first that for
every fixed h,

√
n
(
γn,[nx],X(h)

)
x∈[0,1]

d−→
(
v

1/2
X (h)Wh(x)

)
x∈[0,1]

.(A1.1)

in D [0, 1]; see Oodaira and Yoshihara [37]; cf. Doukhan [16], Theorem1 on p. 46.
In the latter theorem one has to ensure that E|X0Xh|2+ε <∞ for some ε > 0
(this follows from (2.4)) and that the sequence (XtXt+h) is α-mixing with a suffi-
ciently fast rate for the mixing coefficients; see (A1.2). However, the GARCH(p, q)
is strongly mixing with geometric rate since we assume that Z has a Lebesgue
density on R (see Boussama [11]), and so the mixing coefficients converge to
zero at an exponential rate, which implies the conditions in the aforementioned
theorem.

Thus each of the processes
√
nγn,[n·],X(h) is tight in D [0, 1]. Using a gen-

eralization of the argument for Lemma 4.4 in Resnick [39], one obtains that the
map from (D [0, 1])m into D ([0, 1],Rm) defined by(

x1, ..., xm

)
−→

(
x1(t), ..., xm(t)

)
t∈[0,1]

is continuous at (x1, ..., xm) in (C [0, 1])m. This and the sample path continuity
of the limit process ensure that the processes on the left-hand side of (2.5) are
tight in D ([0, 1],Rm).

Notice that the multivariate CLT

1√
n

[nx]∑
t=1

(
XtXt+1, ..., XtXt+h

)
d−→

(
v

1/2
X (1)W1(x), ..., v

1/2
X (h)Wh(x)

)
holds for every fixed x. This is again a consequence of the aforementioned CLT
for α-mixing sequences in combination with the Cramér–Wold device. A similar
argument for a finite number of x-values yields the convergence of the finite-
dimensional distributions. This proves the lemma.
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Remark 1.1. It follows from the argument in the proof of Lemma 2.1
that (2.5) remains valid for stationary strongly mixing sequences (Xt) with
EX= 0, E|X|4+δ <∞ for some δ > 0 and such that EX0Xh = 0 for h ≥ 1,
cov(X0Xh, X0Xl) = 0 for all h �= l ≥ 1, and with α-mixing coefficients α̃i satis-
fying

∞∑
i=1

α̃
δ/(2+δ)
i <∞ .(A1.2)

The latter conditions are needed for the validity of the FCLT in (A1.1); see
Oodaira and Yoshihara [37].

Proof of Theorem 2.1: We proceed analogously to Klüppelberg and
Mikosch [29]. It follows from Lemma 2.1 and the continuous mapping theorem
that, for every fixed m ≥ 1, in D

(
[0, 1]×[0, π]

)
m∑

h=1

√
n γ̃n,[nx],X(h)

sin(λh)
h

d−→
m∑

h=1

Wh(x)
sin(λh)
h

.(A1.3)

According to Theorem 4.2 in Billingsley [7], it remains to show that for every
ε > 0,

(A1.4)

lim
m→∞ lim sup

n→∞
P

 sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γ̃n,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε
 = 0 .

Since Z is symmetric the sequences (rt) = (sign(Xt)) and (|Xt|) are independent.
Conditionally on (|Xt|),

k∑
h=m+1

√
n γ̃n,k,X(h)

sin(·h)
h

, k = m+1, ..., n−1 ,

is a sequence of quadratic forms in the iid Rademacher random variables rt and
with values in the Banach space C [0, π] endowed with the sup-norm. Now condi-
tion on (|Xt|). Use first a decoupling inequality for Rademacher quadratic forms
(e.g. de la Peña and Montgomery–Smith [13], Theorem 1) then the Lévy maximal
inequality for sums of iid symmetric random variables, then again the decoupling
inequality in reverse order, and finally take expectations with respect to (|Xt|).
Then we obtain the inequality

P

 sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]∑

h=m+1

√
n γ̃n,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε
 ≤

≤ c1 P

(
c2 sup

0≤λ≤π

∣∣∣∣∣
n−1∑

h=m+1

√
n γ̃nX(h)

sin(λh)
h

∣∣∣∣∣ > ε
)
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for certain positive constants c1, c2. The right-hand probability can be treated
in the same way as the derivation of (6.3) in [28], pp. 1873–1876. Instead of
Theorem 3.1 in Rosiński and Woyczyński [40] one can simply use the Cauchy–
Schwarz inequality in the first display on p. 1876 in [28] with µ = 2. Then all the
calculations for (6.3) remain valid, implying that (A1.4) holds. This concludes
the proof of the theorem.

Remark 1.2. The condition of symmetry of Z is needed only for the
application of the Lévy maximal inequality for sums of independent random
variables. Alternatively, one can proceed as in the proof of Theorem 3.1 in
Klüppelberg and Mikosch [29], p. 980, last display, where instead of the Lévy
maximal inequality Doob’s 2nd moment maximal inequality for submartingales
was used. Then one can follow the lines of the proof of Theorem 1 in Grenander
and Rosenblatt [24], Chapter 6.4.

Proof of Theorem 2.2: We start by showing that ÊZ4 P→ EZ4. Indeed,
consistency of the estimators α̂i and β̂1 implies consistency of ÊZ4. We have by
induction, using the definitions of σ2

t and σ̂2
t ,

ÊZ4 − n−1
n∑

i=1

Z4
t =

= n−1
n∑

i=1

X4
t

σ̂4
t

− n−1
n∑

i=1

X4
t

σ4
t

= n−1
n∑

i=1

X4
t

σ4
t − σ̂4

t

σ4
t σ̂

4
t

= n−1
n∑

i=1

X4
t

(σ2
t − σ̂2

t ) (σ
2
t + σ̂2

t )
σ4

t σ̂
4
t

= n−1
n∑

i=1

X4
t

[
(α0−α̂0) + (α1−α̂1)X2

t−1 + (β1−β̂1)σ2
t−1 + β̂1(σ2

t−1−σ̂2
t−1)

]
×

× σ
2
t + σ̂2

t

σ4
t σ̂

4
t

= (α0 − α̂0) n−1
n∑

i=1

X4
t

(
1 + β̂1 + β̂2

1 + · · ·+ β̂t
1

) σ2
t + σ̂2

t

σ4
t σ̂

4
t

+(α1 − α̂1) n−1
n∑

i=1

X4
t

(
X2

t−1 + β̂1X
2
t−2 + · · ·+ β̂t

1X
2
0

) σ2
t + σ̂2

t

σ4
t σ̂

4
t
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X4
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(
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t−1 + β̂1σ
2
t−2 + · · ·+ β̂t

1σ
2
0

) σ2
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σ4
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4
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+(σ2
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0) n
−1
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X4
t β̂

t
1

σ2
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t

σ4
t σ̂

4
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= (α0−α̂0) I1 + (α1−α̂1) I2 + (β1−β̂1) I3 + (σ2
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0) I4 .
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Notice that, by consistency of the parameter estimators and since (Z4
t σ

2
t ) is

ergodic,

I1 ≤ (1−β̂1)−1 n−1
n∑

i=1

Z4
t

σ2
t + σ̂2

t

σ̂4
t

≤ (1−β̂1)−1 n−1
n∑

i=1

Z4
t

[
σ2

t α̂
−2
0 + α̂−1

0

]
a.s.−→ (1−β1)−1EZ4

[
E σ2 α−2

0 + α−1
0

]
.

By similar arguments, for any δ > 0 and ε > 0 such that β1 + ε < 1,

P
(
I2 > δ

)
≤

≤ P

(
n−1

n∑
i=1

X4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · ·+ (β1+ε)tX2

0

) σ2
t +σ̂

2
t

σ4
t σ̂

4
t

> δ

)
+ P

(
β̂1 > β1+ε

)
≤ P

(
n−1

n∑
i=1

Z4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · ·+ (β1+ε)tX2

0

) (
σ2

t α̂
−2
0 + α̂−1

0

)
> δ

)
+ o(1) .

It is not difficult to see, by an application of the Cauchy–Schwarz inequality, that
the first moments of

n−1
n∑

i=1

Z4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · ·+ (β1+ε)tX2

0

)
σ2

t

and

n−1
n∑

i=1

Z4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · ·+ (β1+ε)tX2

0

)
,

are bounded, uniformly for n. Therefore I2 is stochastically bounded, and a
similar argument applies to I3. Finally,

P
(
n I4 > δ

)
≤ P

(
n∑

i=1

Z4
t (β1+ε)t

(
σ2

t α̂
2
0 + α̂

−1
0

)
> δ

)
+ P

(
β̂1 > β1 + ε

)
.

The second probability vanishes by consistency of β̂1. Moreover,

n∑
i=1

Z4
t (β1+ε)t σ2

t and
n∑

i=1

Z4
t (β1+ε)t ,

have bounded first moments. This implies that I4 is stochastically bounded,
and n−1I4

P→ 0. Collecting the bounds for all Ij , we conclude by the law of large

numbers that ÊZ4 P→ EZ4.
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For the remaining proof we follow the lines of the proof of Theorem 2.1.
Write v̂X(h) for the sample version of vX(h). By consistency of ÊZ4, α̂i, β̂1 and
the form of vX(h), see (A2.2), we have v̂X(h) P→ vX(h) for every h. This fact and
the continuous mapping theorem immediately yield that (A1.3) remains valid
with vX(h) replaced by v̂X(h). So it remains to show

lim
m→∞ lim sup

n→∞
P

 sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n
γn,[nx],X(h)

v̂
1/2
X

sin(λh)
h

∣∣∣∣∣ > ε
 = 0 .

Notice that for every h ≥ 1,

v̂X(h)−1/2 ≤ σ̂−4
X = α̂−4

0

(
1− ϕ̂1

)−4
.

See Appendix A2. By the assumptions, the estimators α̂i, β̂1 are independent of
(sign(Xt)), and so is ÊZ4 by construction of the residuals. Thus, conditionally
on (|Xt|),

[nx]−1∑
h=m+1

√
n
γn,[nx],X(h)

v̂
1/2
X

sin(λh)
h

is a random quadratic form in the variables sign(Xt), which, by symmetry of (Zt)
are independent of the coefficients of the quadratic form which only depend on
the sequence (|Xt|). An application of the contraction principle for Rademacher
quadratic forms (cf. Kwapień and Woyczyński [31]) implies that for some con-
stants c1, c2 > 0

P

 sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n
γn,[nx],X(h)

v̂
1/2
X

sin(λh)
h

∣∣∣∣∣ > ε
 ≤

≤ c1 P

c2 max
h
v̂
−1/2
X sup

0≤x≤1
sup

0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γn,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε


≤ c1 P

c2 α̂−4
0

(
1−ϕ̂1

)−4 sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γn,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε
 .

Thus it remains to show that

lim
m→∞ lim sup

n→∞
P

 sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γn,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε
 = 0 ,

which follows along the lines of the proof of Theorem 2.1.
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A2. APPENDIX

Consider a GARCH(1, 1) process (Xt) with parameters α0, α1, β1. We write
ϕ1 = α1 + β1 and assume EX4<∞. From the calculations below it follows that
the condition

1−
(
α2

1EZ
4 + β2

1 + 2α1 β1

)
> 0

must be satisfied. The squared GARCH(1, 1) process can be rewritten as an
ARMA(1, 1) process by using the defining equation (2.1):

X2
t − ϕ1X

2
t−1 = α0 + νt − β1 νt−1 ,

where (νt) = (X2
t −σ2

t ) is a white noise sequence. Thus, the covariance structure
of

Ut =X2
t − EX2 , t ∈ Z ,

is that of a mean-zero ARMA(1, 1) process. The values of γU (h) are given on
p. 87 in Brockwell and Davis [12]:

γU (0) = σ2
ν

[
1 +

(ϕ1 − β1)2

1− ϕ2
1

]
,

γU (1) = σ2
ν

[
ϕ1 − β1 +

(ϕ1 − β1)2 ϕ1

1− ϕ2
1

]
,

γU (h) = ϕh−1
1 γU (1) , h ≥ 2 .

Straightforward calculation yields

σ2
ν = (EZ4 − 1) Eσ4

1 =
1 + ϕ1

1− ϕ1

α2
0(EZ

4 − 1)

1−
(
ϕ2

1 + α
2
1(EZ4 − 1)

) ,

(A2.1)

σ2
X =

α0

1− ϕ1
.

Thus we can calculate the quantities

vX(h) = E(X2
0X

2
h) = γU (h) + σ4

X , h ≥ 1 ,

which occur in the definition of the change point statistics and goodness of fit
test statistics of Section 2. We obtain:

vX(h) = σ4
X

(EZ4−1) α1

(
1− ϕ2

1 + α1 ϕ1

)
1−

(
ϕ2

1 + α
2
1(EZ4−1)

) ϕh−1
1 + 1

 , h ≥ 1 .(A2.2)
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stationnaires, Publ. Inst. Statist. Univ. Paris, III-3, 119–134.

[4] Beran, J. (1994). Statistics for Long–Memory Processes, Monographs on Statis-
tics and Applied Probability, No. 61, Chapman and Hall, New York.
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[15] Ding, Z.; Granger, C.W.J. and Engle, R. (1993). A long memory property
of stock market returns and a new model, J. Empirical Finance, 1, 83–106.

[16] Doukhan, P. (1994). Mixing. Properties and Examples, Lecture Notes in Statis-
tics, 85, Springer Verlag, New York.
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[35] Mikosch, T. and Stărică, C. (2004). Non-stationarities in financial time se-
ries, the long range dependence and the IGARCH effects, Rev. Economics and
Statistics, 86, 378–390.

[36] Nelson, D.B. (1990). Stationarity and persistence in the GARCH(1, 1) model,
J. Econom. Theory, 6, 318–334.

[37] Oodaira, H. and Yoshihara, K. (1972). Functional central limit theorems for
strictly stationary processes satisfying the strong mixing condition, Kōdai Math.
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