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Abstract:

• The estimation of the extreme-value index γ based on a sample of independent and
identically distributed random variables has received considerable attention in the
extreme-value literature. However, the problem of combining data from several groups
is hardly studied. In this paper we discuss the simultaneous estimation of tail indices
when data on several independent data groups are available. The proposed meth-
ods are based on regression models linking tail related statistics to the extreme-value
index and parameters describing the second order tail behaviour. For heavy-tailed
distributions (γ>0), estimators are derived from an exponential regression model for
rescaled log-spacings of successive order statistics as described in Beirlant et al. (1999)
and Feuerverger and Hall (1999). Estimators for γ ∈ R are obtained using the linear
model for UH-statistics given in Beirlant et al. (2000). In both cases, the optimal
number of extremes to be used in the estimation is derived from the asymptotic mean
squared error matrix.
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1. INTRODUCTION

A central topic in extreme-value theory which continues to receive consid-
erable attention is the estimation of the extreme-value index γ. This index is
directly related to the tail of a distribution function F with the tail function
1−F becoming more heavy as γ increases. The extreme-value index γ can be
estimated from a parametric or a semi-parametric point of view.

Parametric approaches are based on limit theorems which form the core
of the extreme-value theory. Consider X1, ..., Xn independent and identically
distributed random variables and let X1,n ≤ ... ≤ Xn,n denote the corresponding
ascending order statistics. A first possibility is based on the following result of
Fisher and Tippett (1928). If for a distribution function FX there exist sequences
of constants (an> 0)n and (bn)n such that

lim
n→∞P

(
Xn,n − bn

an
≤ x

)
= lim

n→∞Fn
X(an x+ bn) = H(x)(1.1)

at all continuity points of H, with H a nondegenerate distribution, then FX is
said to belong to the domain of (maximum) attraction of H, denoted FX ∈D(H).
Moreover, it is known that if such a nondegenerate limit distribution H exists,
it should be of the form

Hγ(x) =


exp

(
−

(
1 + γ

x−µ

σ

)− 1
γ

)
1 + γ x−µ

σ > 0, γ �= 0

exp

(
− exp

(
−x−µ

σ

))
x ∈ R, γ = 0

(1.2)

with µ ∈ R and σ > 0. This limit distribution is the so-called generalized extreme-
value distribution (GEV). Note that the extreme-value index γ appears as a shape
parameter in (1.2). Based on this result, γ can be estimated by fitting (1.2) to
sample maxima (Gumbel, 1967). A second possibility is based on the generalized
Pareto distribution (GPD) given by

Gγ(x) =


1−

(
1 + γ

x

σ

)− 1
γ

γ �= 0

1− exp
(
−x

σ

)
γ = 0

(1.3)

with σ > 0 and with x > 0 if γ ≥ 0, 0 < x < −σ/γ if γ < 0, which is fitted to
exceedances over a specified threshold u (Pickands, 1975, Smith, 1985, 1987).

Next to the above described parametric approaches, γ can also be esti-
mated semi-parametrically. Define the tail quantile function UX as UX(x) =
inf

{
y : FX(y) ≥ 1− 1

x

}
, x > 1. For Pareto-type or heavy tailed distributions
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(γ > 0) we have

FX ∈ D(Hγ) ⇐⇒ 1− FX(x) = x
− 1

γ l̃(x) , x > 0(1.4)

⇐⇒ UX(x) = xγ l(x) , x > 1

with l̃, l slowly varying functions at infinity i.e. positive functions g such that

g(λx)
g(x)

→ 1 as x → ∞ ∀λ > 0 .(1.5)

The conditions given in (1.4) characterize completely the first order behavior of
FX . The Pareto quantile plot can be found in the literature as the basis for
evaluating the goodness-of-fit hypothesis of strict Pareto behavior. For the strict
Pareto distribution logU(x) = γ log(x) so the log theoretical quantiles stand in
linear relationship with log(x). Replacing the theoretical quantiles logU(n+1

j ) by
their empirical counterparts logUn(n+1

j ) = logXn−j+1,n, the coordinates of the
points on the quantile plot are given by(

log
(
n+1
j

)
, logXn−j+1,n

)
j = 1, ..., n .(1.6)

In case of a good fit of the strict Pareto distribution to the data, the points
on the Pareto quantile plot should show a straight line pattern. Moreover, the
slope of a line through the origin fitted to the Pareto quantile plot will estimate γ.
In case the distribution of the data is of Pareto-type, the log-tail quantile function
can be written as logU(x)=γ log x+ log l(x). Since log l(x)/ log x → 0 as x→∞
we have that logU(x) ∼ γ log x as x → ∞, so the Pareto quantile plot will be
ultimately linear. Again, the slope of the linear part will approximate γ. Several
well known estimators for γ can be interpreted as estimators of the slope of the
linear part of the Pareto quantile plot. For instance, the Hill (1975) estimator
given by

Hk,n =
1
k

k∑
j=1

logXn−j+1,n − logXn−k,n k = 1, ..., n− 1(1.7)

clearly measures the average increase of the Pareto quantile plot to the right of
the anchor point

(
log(n+1

k+1 ), logXn−k,n

)
. Other important estimators for γ > 0

are the so-called kernel estimators derived by Csörgő et al. (1985) and the least
squares estimators proposed by Kratz and Resnick (1996) and Schultze and
Steinebach (1996) among others.

The estimation of γ ∈ R has been studied less extensively. In this paper we
will concentrate on the approach based on the generalized quantile plot described
in Beirlant et al. (1996) and Beirlant et al. (2000). For a positive random variable
X, consider

HX(x) = E
(
logX− logUX(x) | X>UX(x)

)
x > 1 ,
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the mean residual life function of the log-transformed data, and define the adapted
mean excess function UHX as

UHX(x) = UX(x)HX(x)

= UX(x)
∫ ∞

1

(
logUX(zx)− logUX(x)

) dz

z2
x > 1 .(1.8)

In Theorem 1 of Beirlant et al. (1996) it is shown that FX ∈ D(Hγ), γ ∈ R,
implies that

logUHX(x) = γ log x+ log l̆(x)(1.9)

with l̆ denoting a slowly varying function at infinity. As a consequence,
logUHX(x) ∼ γ log x for x → ∞. Consider X1, ..., Xn independent and iden-
tically distributed positive random variables. Replacing UX and HX in (1.8)
by their empirical counterparts yields

UHj,n = ÛHX

(
n

j

)
= Xn−j,n

(
1
j

j∑
i=1

logXn−i+1,n − logXn−j,n

)
(1.10)

as sample versions for UHX(n/j), j = 1, ..., n−1. For FX ∈ D(Hγ), the general-
ized quantile plot, defined by(

log
n

j
, logUHj,n

)
j = 1, ..., n− 1 ,(1.11)

should be ultimately linear in the smaller j-values. Further, the slope of the straight
line behind the linear part of the generalized quantile plot is the unknown γ.
Applying a Hill-type operation on UHj,n, j = 1, ..., k, results in the following
estimator for γ, called the adapted Hill estimator H∗2

k,n ,

H∗2
k,n =

1
k

k∑
j=1

logUHj,n − logUHk+1,n .(1.12)

Other well known estimators for γ ∈ R have been proposed by Pickands (1975)
and Dekkers et al. (1989).

As is clear from the above discussion, the literature on extreme-value meth-
ods for a sample of independent and identically distributed data is quite elaborate.
However, the problem of combining data from different independent data groups
is hardly studied. Nevertheless, the problem is important: consider for instance
the combination of earthquake data from different geographical regions such as
subduction zones and midocean ridge zones. Often the amount of available data
is small and hence the combination of different samples is important in order to
gain efficiency.
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Of course, regression models with dummy explanatory variables describing
the groups, can be used in combination with classical extreme-value models such
as the generalized extreme-value distribution (1.2), which is fitted to maxima,
or the generalized Pareto distribution (1.3), which is fitted to so-called peaks (or
excesses) over threshold data. This approach can be found for instance in Davison
and Smith (1990). A major difficulty when working with the GPD in a regression
setting is the selection of the threshold. Ideally, the threshold should depend on
the covariates in order to take the relative extremity of the observations into
account. This issue was also noted by Davison and Smith (1990) and Coles and
Tawn (1998). Up to now, solutions seem rather ad hoc and especially designed
for the data set at hand. Often the threshold is taken equal over the different
groups leading to inefficient use of the data if the scale in the different groups is
quite different.

In contrast, the semi-parametric approaches where only the k largest data
are used for tail estimation can overcome this problem. In this paper we consider
in section 2 the estimation problem of γ in case data on several Pareto-type
groups are available. Next, in section 3, we extend the procedure to the general
case where the extreme-value index can be positive or negative. The performance
of the proposed methods will be illustrated using small sample simulations.

2. LINEAR MODEL FORMULATION, γ > 0

2.1. Description of the model

Consider independent and identically distributed positive random vari-
ables X(j)

1 , ..., X
(j)
nj with a common distribution function FX(j) , j=1, ..., G, where

G denotes the number of groups. Assume further that the G groups are indepen-
dent of each other and that the response distributions are of Pareto-type i.e. the
tail quantile functions UX(j) , j=1, ..., G, satisfy

UX(j)(x) = xγj lj(x) x > 1, γj > 0(2.1)

where γj and lj denote the extreme-value index respectively the slowly varying
function of group j.

In the extreme-value literature one often imposes the so-called slow varia-
tion with remainder condition (see section 3.12.1 of Bingham et al., 1987) on the
slowly varying function l in (1.4). This second order condition specifies the rate
of convergence of the ratio l(λx)/l(x) to its limit as x → ∞.
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Assumption (Rl): There exists a real constant ρ<0 and a rate function b
satisfying b(x) → 0 as x → ∞, such that for all λ ≥ 1, as x → ∞,

l(λx)
l(x)

− 1 ∼ b(x) kρ(λ)

with kρ(λ) =
∫ λ

1
vρ−1dv.

Note that assumption (Rl) is quite general and is satisfied by the Hall
(1982) class of Pareto-type distributions given by

UX(x) = a xγ
(
1 + d xρ + o(xρ)

)
x > 1; a, γ > 0; ρ < 0; d ∈ R ,(2.2)

with b(x) ∼ ρ dxρ as x → ∞.

As in a classical one-way ANOVA situation we introduce the parametriza-
tion γj = β0+βj , j=1, ..., G, with

∑G
j=1 βj = 0, so that the parameters βj denote

the difference of the extreme-value index of group j with respect to the global
average over all groups. This transformation will now be combined with the
following linear model describing the estimation problem of every γj , j=1, ..., G.

Under the slow variation with remainder condition on the lj , j = 1, ..., G,
it can be shown as in Beirlant et al. (1999) that the following regression model
holds approximately

i
(
logX(j)

nj−i+1,nj
− logX(j)

nj−i,nj

)
≈

(
γj + bj

(
nj + 1
k + 1

)(
i

k + 1

)−ρj
)
F

(j)
i

i = 1, ..., k ,(2.3)

with bj and ρj denoting the function b respectively the parameter ρ of group
j and the F

(j)
i , i= 1, ..., k, are independent standard exponential random vari-

ables. In Beirlant et al. (2002), the approximation error in (2.3) is shown to be
oP

(
bj(

nj+1
k+1 )

)
, j=1, ..., G. Remark that regression model (2.3) is not identifiable

when ρ = 0, for then γj and bj
(
(nj + 1)/(k + 1)

)
together make up the mean

response.

The classical way to estimate the parameters γj , j=1, ..., G, is then given
by the Hill (1975) estimates which are obtained as maximum likelihood estimates
by omitting the terms bj

(nj+1
k+1

)(
i

k+1

)−ρj in model (2.3) (these terms tend to 0
as nj →∞ and k/nj → 0) leading to a simple average of the scaled log-spacings
i
(
logX(j)

nj−i+1,nj
− logX(j)

nj−i,nj

)
, i=1, ..., k, as an estimator of γj , and hence

β̂0 =
1
G

G∑
j=1

H
(j)
k,nj

and β̂j = H
(j)
k,nj

− β̂0, j=1, ..., G ,(2.4)
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in which H
(j)
k,nj

denotes the Hill estimator for group j

H
(j)
k,nj

=
1
k

k∑
i=1

logX(j)
nj−i+1,nj

− logX(j)
nj−k,nj

.(2.5)

Introducing Λ = Block-diag
(
γ2

j Ik; j=1, ..., G
)
and the k G×G matrix

L =


1 1 · · · 0
1 0 · · · 0
...

...
...

1 −1 · · · −1


with 1 denoting a k-vector of ones, we find that the asymptotic covariance matrix
of β̂

′
= (β̂0, β̂1, ..., β̂G−1) is given by

Acov(β̂) = (L′Λ−1L)−1 .(2.6)

On the other hand the main term of the bias of the estimators (when nj →∞
and k/nj → 0) is given by

Abias(β̂0) =
1
G

G∑
j=1

bj

(
nj+1
k+1

)
1− ρj

,(2.7)

Abias(β̂j) =
bj

(
nj+1
k+1

)
1− ρj

− 1
G

G∑
l=1

bl

(
nl+1
k+1

)
1− ρl

j = 1, ..., G− 1 .(2.8)

Application of the estimators defined by (2.4) and (2.5) involves the selec-
tion of the number of extreme order statistics k to be used in the estimation.
Remark that we take the tail sample fraction k equal for all groups. If k is cho-
sen too small, the resulting estimators will have a high variance. On the other
hand, for larger k values the estimators will perform quite well with respect to
variance but will be affected by a larger bias as observations are used which are
not really informative for the tail of FX(j) , j = 1, ..., G. Hence, a good k value
should represent a good bias-variance trade-off. Here we will use the trace of the
asymptotic mean squared error (AMSE) matrix as optimality criterion.

Defining the AMSE matrix Ω of β̂ as

Ω(k) = (L′Λ−1L)−1 + κ κ′ ,(2.9)

with κ denoting the G-vector containing the asymptotic bias expressions given
by (2.7) and (2.8), the optimal number of extremes to be used in the estimation,
kopt, is defined as

kopt = argmin tr Ω(k) .

Note that Ω(k) depends on the unknown γj , ρj , j=1, ..., G, and bj
(nj+1

k+1

)
,

k=1, ..., nj−1, j=1, ..., G, which implies that the optimal k has to be derived
from an estimate of Ω(k). The following algorithm is used to estimate kopt and
hence γj , j=1, ..., G, adaptively:
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1. Obtain initial estimates of γj , ρj , j = 1, ..., G, together with estimates of
bj

(nj+1
k+1

)
, k=1, ..., nj−1, j=1, ..., G,

2. for k = 2, ...,min(nj ; j=1, ..., G)− 1 :
compute tr Ω̂(k) and let

k̂opt = argmin tr Ω̂(k) ,

3. repeat step 2 but with the parameter estimates obtained from using a com-
mon k and obtain an update of the parameter estimates.

The initial estimates for the unknown parameters (cf. step 1) are obtained by
fitting model (2.3) to the k largest observations of each group using a maximum
likelihood method (see Beirlant et al., 1999).

Inference about the regression vector β can be drawn using a likelihood
ratio test statistic. For k/nj , j=1, ..., G, sufficiently small, the slowly vary-
ing nuisance part of (2.3) can be ignored and hence inference can be based
on the reduced model j(logX(j)

nj−i+1,nj
− logX(j)

nj−i,nj
) ≈ (β0 + βj)F

(j)
i , i=1, ..., k,

j=1, ..., G. As in a ’classical’ one-way ANOVA situation the hypothesis of main
interest is H0 : β1 = ... = βG−1 = 0.

2.2. An illustration

The procedure described above will be illustrated on a simulated dataset.
The dataset contains observations from two groups with n1= n2 = 500. Data
were generated from Burr(η, τ, λ) distributions (Burr, 1942). The Burr(η, τ, λ)
distribution function, given by

FX(x) = 1−
(

η

η + xτ

)λ

x > 0; η, τ, λ > 0 ,

is clearly of Pareto-type with γ = 1
λτ and ρ = − 1

λ . For the simulated data λ = 1
and η=1 for both groups and τ1= 1, τ2 = 2 so γ1= 1, γ2 = 0.5 and ρ1= ρ2 = −1.
Application of the above algorithm results in k̂opt= 99, H

(1)
99,500=1.007 and

H
(2)
99,500 = 0.560. In Figure 1 we show the Pareto quantile plot for both groups.

On each quantile plot we superimposed the fitted lines passing through the anchor
points

(
log

(
501
100

)
, log x(j)

401,500

)
, j=1, 2, with respective slopes H

(j)
99,500, j=1, 2.

The lines fit the linear part of the Pareto quantile plot quite well. In Figure 2
we plot the trace of the AMSE-matrix (full line) and the trace of the estimated
AMSE-matrix (broken line) versus the number of extremes used in the estimation
of the regression coefficients, k. Note that around the optimal k value tr Ω(k)
is estimated quite well. The tr Ω(k) function reaches its minimum at k = 79
whereas for the estimate the minimum is reached at k = 99. For this simulated
dataset, the observed value of the likelihood ratio test statistic to assess the
validity of H0 : β1= 0 equals 16.834, leading to a rejection of H0.
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Figure 1: Burr(1, τj , 1) simulation with n1= n2= 500, τ1= 1 and τ2= 2.

(a) Pareto quantile plot for group 1 with line through(
log(501

100 ), log x
(1)
401,500

)
and slope H(1)

99,500= 1.007 superimposed;

(b) Pareto quantile plot for group 2 with line through(
log(501

100 ), log x
(2)
401,500

)
and slope H(2)

99,500= 0.560 superimposed.
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Figure 2: tr Ω(k) (full line) and tr Ω̂(k) (broken line) vs k.

2.3. Simulation results and practical examples

2.3.1. Simulation results

We illustrate the small sample behaviour of the weighted least squares es-
timator β̂k̂opt

using a simulation study. Datasets containing observations on 2,
3 and 4 groups were generated from Burr(1, τj , λj), j = 1, ..., G, distributions.
In Tables 1 and 2 we report the sample mean, sample standard deviation, empir-
ical RMSE and the ratio (empirical RMSE under common optimal k)/(empirical
RMSE under optimal k for each group separately) for samples of respectively 200
and 500 observations per group. The blocks λ = 0.5, λ = 1 and λ = 2 of both
tables report the results in case of a common λ, and hence a common ρ, over
the groups. The last λ-block of both tables reports results for the case λj = 1/j,
j = 1, ..., G, and hence ρj = −j, j = 1, ..., G. Values for the τ -parameters were
selected such that γj = j. From the ratio results it is clear that joint estimation of
the extreme-value indices with a common k can lead to important gains in empir-
ical MSE compared with a separate analysis. For instance in case G=3 and λ=2,
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joint estimation of β2 leads to a 30% gain in RMSE. Further, inspection of the
first three λ-blocks of both tables indicates that the gains tend to increase with λ.

Table 1: Burr data, 200 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5556 – 0.5039 2.0909 – 1.0209 0.0021 2.6197 – 1.5434 – 0.5131 0.5305

λ = 0.5
sd 0.1930 0.1596 0.2281 0.2137 0.2373 0.2544 0.2443 0.2697 0.3567
RMSE 0.2007 0.1595 0.2454 0.2146 0.2371 0.2809 0.2479 0.2697 0.3577
ratio 0.9531 0.8323 1.0255 0.8837 0.8361 1.0097 0.8905 0.7855 0.8762

mean 1.6694 – 0.5386 2.2485 – 1.0960 – 0.0106 2.8057 – 1.6346 – 0.5522 0.5450

λ = 1
sd 0.2787 0.2257 0.3316 0.2706 0.3156 0.3906 0.3449 0.3778 0.4614
RMSE 0.3259 0.2288 0.4141 0.2869 0.3154 0.4957 0.3699 0.3810 0.4632
ratio 0.9936 0.8345 0.9957 0.8150 0.7776 1.0058 0.8428 0.7733 0.8475

mean 2.0410 – 0.6390 2.6862 – 1.2943 – 0.0011 3.4326 – 1.9971 – 0.6735 0.6607

λ = 2
sd 0.4398 0.3463 0.4951 0.3962 0.4137 0.5749 0.4783 0.5366 0.6491
RMSE 0.6969 0.3729 0.8459 0.4932 0.4133 1.0952 0.6895 0.5634 0.6681
ratio 0.9695 0.7929 0.9685 0.7994 0.7061 0.9729 0.8206 0.7830 0.7343

mean 1.6079 – 0.4277 2.1199 – 0.8654 – 0.0088 2.6173 – 1.3233 – 0.4795 0.4147

λj = 1/j
sd 0.2094 0.1807 0.2251 0.1931 0.2342 0.2203 0.2039 0.2548 0.3257
RMSE 0.2354 0.1944 0.2548 0.2352 0.2342 0.2494 0.2696 0.2554 0.3363
ratio 0.9840 0.8974 1.0892 1.0082 0.8329 1.1020 1.0170 0.8230 0.9015

Table 2: Burr data, 500 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5443 – 0.5044 2.0412 – 1.0094 – 0.0043 2.5617 – 1.5185 – 0.4996 0.5020

λ = 0.5
sd 0.1380 0.1147 0.1769 0.1528 0.1868 0.1838 0.1775 0.2069 0.2613
RMSE 0.1448 0.1147 0.1815 0.1529 0.1867 0.1937 0.1783 0.2067 0.2610
ratio 1.0223 0.8638 1.1600 0.9581 0.9118 1.1233 0.9360 0.8576 0.8929

mean 1.5915 – 0.5126 2.1547 – 1.0720 0.0112 2.7099 – 1.6101 – 0.5293 0.5192

λ = 1
sd 0.2361 0.1741 0.2474 0.2115 0.2329 0.2580 0.2405 0.2891 0.3657
RMSE 0.2530 0.1744 0.2915 0.2232 0.2330 0.3324 0.2643 0.2903 0.3658
ratio 1.0454 0.8382 0.9870 0.8447 0.7551 1.0001 0.8506 0.8173 0.8216

mean 1.8470 – 0.5969 2.4778 – 1.2054 0.0009 3.1297 – 1.8401 – 0.5969 0.5744

λ = 2
sd 0.3471 0.2575 0.3909 0.3110 0.3424 0.4022 0.3442 0.3804 0.4884
RMSE 0.4905 0.2749 0.6171 0.3724 0.3421 0.7470 0.4837 0.3922 0.4936
ratio 1.0089 0.8265 0.9869 0.8235 0.7558 0.9995 0.8697 0.7440 0.7543

mean 1.5648 – 0.4519 2.0722 – 0.9158 – 0.0330 2.5736 – 1.3565 – 0.5005 0.4668

λj = 1/j
sd 0.1578 0.1391 0.1481 0.1367 0.1849 0.1523 0.1533 0.1912 0.2406
RMSE 0.1704 0.1470 0.1647 0.1604 0.1877 0.1690 0.2099 0.1910 0.2427
ratio 1.0395 0.9922 1.0576 0.9993 0.9823 1.1274 1.1048 0.8420 0.9789

Also, we performed a small sample simulation study to assess whether the
likelihood ratio test for the hypothesis of no factor effects in the reduced model
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j
(
logX(j)

nj−i+1,nj
− logX(j)

nj−i,nj

) ≈ (β0 + βj)F
(j)
i , i=1, ..., k, j=1, ..., G, satisfies

the proposed significance level. Datasets containing 3 groups of 500 observations
each were generated from Burr(1, τj , λj) distributions. Concerning the parameter
λj (and hence ρj), 4 cases were considered: λj = 0.5, λj = 1, λj = 2 and λj = 1/j,
j = 1, ..., G. The parameters τj , j = 1, ..., G, were selected such that all γj = 1
(simulation under H0) and the significance level was set at α = 0.05. Table 3
reports the empirical significance level for each setting of ρ for different k-values.
As can be seen, the empirical significance levels are slightly below 0.05 for the
cases with common ρ. In case the ρ parameter varies over the groups, the test
performs only well at the smaller values of k, a result that could be expected.

Table 3: Burr data, 500 observations/group, 500 simulation runs:
empirical significance levels.

k = 10 k = 50 k = 100 k = 200 k = 400

ρ = −2 0.034 0.040 0.044 0.044 0.018
ρ = −1 0.048 0.036 0.034 0.026 0.044
ρ = −0.5 0.040 0.030 0.030 0.020 0.058
ρj = −j 0.048 0.042 0.094 0.612 1.000

2.3.2. Practical example 1: fire claim data

Our first example comes from an actuarial context. The reinsurance broker
Aon Re Belgium provided claim data, generated by a fire insurance portfolio, for
three types of buildings. The sample sizes are n1 = 167, n2 = 700 and n3 = 801.
Application of the proposed procedure results in k̂opt = 50, H

(1)
50,167 = 1.027,

H
(2)
50,700 = 1.064 and H

(3)
50,801 = 1.413. The Pareto quantile plots together with the

lines passing through
(
log( nj+1

k̂opt+1
), log x(j)

nj−k̂opt,nj

)
and slopes H(j)

k̂opt,nj
, j=1, 2, 3,

are given in Figure 3. As is clear from this figure, the Pareto quantile plots are
almost linear in their extreme values indicating a reasonable fit of the Pareto
distribution to the tails of the conditional claim size distributions. Concerning
the γ estimate for group 3 (see also Figure 3 (c)) actuaries will find the estimate
high. Remark however that other characteristics, such as the sum insured, can
have an important influence on the tail index estimates but have been ignored
in this analysis. Given an observed value for the likelihood ratio test statistic of
3.152, the null hypothesis of no group effects cannot be rejected.
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Figure 3: Claim data: Pareto quantile plots.
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2.3.3. Practical example 2: earthquake data

As a second example we examined the earthquake data introduced in Pisa-
renko and Sornette (2001). This dataset is extracted from the Harvard catalog
and contains information about the seismic moment (in dyne-cm) of shallow
earthquakes (depth < 70 km) over the period 1977–2000. In Pisarenko and Sor-
nette (2001), the tails of the seismic moment distributions for subduction and mi-
docean ridge zones are compared by fitting the generalized Pareto distribution to
seismic moment exceedances over 1024 dyne-cm. For these data n1 = 6458 (sub-
duction zones) and n2 = 1665 (midocean ridge zones). The procedure described
above with k ≥ 20 yielded k̂opt= 97 with H

(1)
97,6458 = 1.232 and H

(2)
97,1665 = 0.821.

In Figure 4 we show the Pareto quantile plots of the seismic moments for (a) sub-
duction zones and (b) midocean ridge zones on which we superimposed the lines
through

(
log( nj+1

k̂opt+1
), log x(j)

nj−k̂opt,nj

)
with slope H

(j)

k̂opt,nj
, j = 1, 2 (solid lines).

For the hypothesis test of no difference between the tail heaviness of the seismic
moment distribution of subduction and midocean ridge zones a likelihood ratio
statistic of 7.92 was obtained, resulting in a rejection of H0. The GPD based
approach described in Pisarenko and Sornette (2001) yielded tail index estimates
of 1.51 and 1.02 for subduction respectively midocean ridge zones, so our results
are slightly more conservative. Likewise these authors found significant differ-
ences in the tail heaviness of the seismic moment distributions. Note that the
Pareto quantile plots bend down at the largest observations indicating a weaker
behaviour of the ultimate tail of the seismic moment distribution. Nevertheless,
these largest observations form more or less a straight line pattern. So, also the
ultimate tail could be described by a Pareto-type law. This fact is further illus-
trated in Figure 5 where we plot tr Ω̂(k) as a function of log(k). Relaxation of
the constraint that k should be at least 20 results in the global optimum k̂opt=12
with γ̂1 = 0.541 and γ̂2 = 0.427. In Figure 4 the resulting optimal fits are plotted
with dotted lines. At k̂opt the null hypothesis of no difference in tail behaviour
cannot be rejected on basis of the above described likelihood ratio test statistic.
Similarily to the results presented here, Pisarenko and Sornette (2001) also found
deviations between the GPD and the ultimate tail of the seismic moment distri-
bution. For plausible explanations of this phenomenon we refer to their paper
and the references therein.
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Figure 5: Earthquake data: tr Ω̂(k) vs log(k).

3. LINEAR MODEL FORMULATION, γ ∈ R

3.1. Description of the model

In this section we discuss the simultaneous estimation of several extreme-
value indices in the general case γ ∈ R. Consider again a sample of independent
and identically distributed positive random variables X(j)

1 , ..., X
(j)
nj according to

some distribution function FX(j) , j=1, ..., G, with G denoting the number of
groups. Further, assume that the G groups are independent of each other and
that FX(j) ∈ D(Hγj ) for some γj ∈ R. In Theorem 1 of Beirlant et al. (1996)
it is shown that FX(j) ∈ D(Hγj ) implies that

UHX(j)(x) = xγj l̆j(x)

with UHX(j) and l̆j denoting the UH function respectively the slowly varying
function of group j.
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Under the slow variation with remainder condition imposed on l̆j , the fol-
lowing relation holds (see Beirlant et al., 2000)

(i+1) log
UH

(j)
i,nj

UH
(j)
i+1,nj

− (i+1) log
i+1
i

+
i+1
i

= γj + gj

(
nj+1
k+1

)(
i+1
k+1

)−ρ̆j

+ ε
(j)
i

i=1, ..., k, j=1, ..., G ,(3.1)

where gj is some generic notation for a function decreasing to zero for increasing
values of the argument and

UH
(j)
i,nj

= X
(j)
nj−i,nj

(
1
i

i∑
m=1

logX(j)
nj−m+1,nj

− logX(j)
nj−i,nj

)
.

The residuals of model (3.1) have a mean approximately equal to zero and a
covariance matrix given by

Σε(j) =
[
Cov

(
ε(j)
s , ε

(j)
t

)]
s,t

∼


γj

t
s < t

(γj − 1)2 +
1 + 2s
s2

s = t
j=1, ..., G .

After introduction of the classical one-way ANOVA parametrization de-
scribed above and deletion of the terms gj

(nj+1
k+1

)(
i+1
k+1

)−ρ̆j in model (3.1) (these
terms tend to 0 as nj → ∞ and k/nj → 0), the following estimators are obtained:

β̃0 =
1
G

G∑
j=1

γ̃j and β̃j = γ̃j − β̃0 , j = 1, ..., G ,(3.2)

with

γ̃j =
1
k

k∑
i=1

(i+1) log
UH

(j)
i,nj

UH
(j)
i+1,nj

− (i+1) log
i+1
i

+
i+1
i

 .(3.3)

Using least squares computations, the asymptotic covariance matrix of β̃
′
=

(β̃0, β̃1, ..., β̃G−1) is given by:

Acov(β̃) = (L′L)−1L′ΣL(L′L)−1(3.4)

with Σ = Block-diag(Σε(j) ; j = 1, ..., G). For the main term of the bias of the
estimators we have

Abias(β̃0) =
1
G

G∑
j=1

gj

(nj+1
k+1

)
1− ρ̆j

,

Abias(β̃j) =
gj

(nj+1
k+1

)
1− ρ̆j

− 1
G

G∑
l=1

gl

(
nl+1
k+1

)
1− ρ̆l

, j = 1, ..., G−1 .
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Application of the estimators defined by (3.2) and (3.3) requires the selec-
tion of the number of UH statistics k to be used in the estimation. Again the
asymptotic variance and bias are combined in an AMSE criterion. Hence, the
optimal k-value is defined as

kopt = argmin tr
[
(L′L)−1L′ΣL(L′L)−1 + κ̆ κ̆′

]
with κ̆ the vector containing the asymptotic bias expressions given above.

For k/nj sufficiently small, hypothesis tests about the regression coefficients
can be based on the reduced model

(i+1) log
UH

(j)
i,nj

UH
(j)
i+1,nj

− (i+1) log
i+1
i

+
i+1
i

≈ β0 + βj + ε
(j)
i ,

i = 1, ..., k, j = 1, ..., G .(3.5)

After transformation of model (3.5) by a matrix C such that Cov(Cε) = I

(see Beirlant et al., 2000), where ε′ = (ε(j)
i ; i=1, ..., k, j=1, ..., G), hypothesis

about β can be tested using a classical F -test statistic.

3.2. Simulation results and a practical example

3.2.1. Simulation results

First, we apply the above proposed estimation procedure for γj ∈ R,
j = 1, ..., G, to the simulated Burr datasets described in the previous section.
Tables 4 and 5 contain the results for samples with 200 respectively 500 observa-
tions per group. Unlike the algorithm for γj>0, j=1, ..., G, where the empirical
MSE gains obtained from using a common k tend to increase with ρ, here the
gains are quite stable with respect to the parameter ρ̆.

Next we examine the small sample properties of the proposed procedure
using datasets with γj < 0, j = 1, ..., G. Datasets containing observations on 2,
3 and 4 groups were generated from reversed Burr distributions. The reversed
Burr distribution function, given by

1− FX(x) =
(

2
1 + (1−x)−τ

)δ

0 < x < 1; δ, τ > 0 ,

belongs to the maximum domain of attraction of the GEV for some γ < 0,
and hence the UHX function can be written as in (1.9) with γ = −1/(δτ).
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Table 4: Burr data, 200 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5256 – 0.5099 2.0626 – 1.0214 – 0.0032 2.5822 – 1.5482 – 0.5062 0.5205

λ = 0.5
sd 0.1892 0.1640 0.2035 0.2177 0.2399 0.2199 0.2427 0.2820 0.3430
RMSE 0.1907 0.1641 0.2128 0.2186 0.2397 0.2345 0.2472 0.2818 0.3433
ratio 1.0344 0.8736 1.0406 0.9479 0.8351 1.0570 0.9699 0.8559 0.8567

mean 1.6101 – 0.5434 2.1938 – 1.0937 – 0.0098 2.7627 – 1.6551 – 0.5598 0.5514

λ = 1
sd 0.2761 0.2220 0.2981 0.2765 0.3298 0.3168 0.3290 0.3654 0.4256
RMSE 0.2970 0.2260 0.3553 0.2917 0.3297 0.4113 0.3634 0.3699 0.4283
ratio 1.0450 0.8703 1.0929 0.9609 0.8416 1.1019 0.9746 0.8044 0.8383

mean 1.9493 – 0.6621 2.6153 – 1.3241 0.0035 3.3430 – 2.0366 – 0.6866 0.6582

λ = 2
sd 0.3754 0.3112 0.4224 0.3845 0.4239 0.5087 0.4792 0.4817 0.6217
RMSE 0.5853 0.3506 0.7461 0.5026 0.4235 0.9843 0.7191 0.5161 0.6409
ratio 1.0126 0.8442 1.0240 0.9237 0.7982 1.0679 0.9670 0.8137 0.7989

mean 1.5676 – 0.4476 2.0855 – 0.9109 0.0056 2.5848 – 1.3936 – 0.4717 0.4442

λj = 1/j
sd 0.2193 0.1847 0.1951 0.1872 0.2328 0.1942 0.2151 0.2328 0.3021
RMSE 0.2293 0.1918 0.2128 0.2072 0.2326 0.2118 0.2398 0.2343 0.3069
ratio 1.0134 0.8453 1.0516 0.8570 0.8256 1.0663 0.8528 0.7954 0.8536

Table 5: Burr data, 500 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5418 – 0.5127 2.0358 – 1.0206 0.0090 2.5558 – 1.5364 – 0.4929 0.4996

λ = 0.5
sd 0.1224 0.1080 0.1477 0.1434 0.1580 0.1559 0.1647 0.1766 0.2327
RMSE 0.1293 0.1087 0.1519 0.1447 0.1581 0.1655 0.1685 0.1765 0.2325
ratio 0.9691 0.8252 1.0148 0.8856 0.7395 1.0485 0.8854 0.7377 0.8045

mean 1.5714 – 0.5267 2.1576 – 1.1004 0.0046 2.7033 – 1.6413 – 0.5303 0.5206

λ = 1
sd 0.2143 0.1610 0.2171 0.2016 0.2072 0.2236 0.2291 0.2584 0.3106
RMSE 0.2257 0.1630 0.2681 0.2250 0.2070 0.3020 0.2689 0.2599 0.3110
ratio 1.0499 0.8362 1.0968 0.9123 0.7304 1.1378 0.9745 0.7719 0.7635

mean 1.8209 – 0.6052 2.4664 – 1.2380 0.0095 3.1143 – 1.8831 – 0.6011 0.5939

λ = 2
sd 0.2977 0.2396 0.3398 0.3064 0.2972 0.3628 0.3374 0.3519 0.4398
RMSE 0.4375 0.2615 0.5769 0.3878 0.2971 0.7132 0.5103 0.3658 0.4493
ratio 1.0465 0.8265 1.0787 0.8909 0.7386 1.1111 0.9947 0.7491 0.7358

mean 1.5557 – 0.4606 2.0663 – 0.9269 – 0.0044 2.5786 – 1.4014 – 0.4880 0.4672

λj = 1/j
sd 0.1504 0.1255 0.1336 0.1346 0.1623 0.1226 0.1346 0.1659 0.2057
RMSE 0.1603 0.1314 0.1490 0.1531 0.1622 0.1455 0.1668 0.1662 0.2081
ratio 1.0041 0.7875 1.0173 0.8254 0.7941 1.1045 0.8256 0.7483 0.8470

Also, the l̆ function associated with the UHX function satisfies the slow variation
with remainder condition with ρ̆ = −min

(
1
δ ,

1
δτ

)
. In this simulation a common δ

value was used for all groups. Further, values for the τ parameters were selected
such that γj = −j, j=1, ..., G. Two cases were considered: δ = 1 and δ = 2 giving
ρ̆ = −1 and ρ̆ = −0.5. Table 6 summarizes the simulation results. As expected,
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the estimators are more biased as the ρ̆-parameter increases. The gains obtained
by using a common k-value compared to a separate analysis of each group are
quite stable with respect to ρ̆.

Table 6: Reversed Burr data, 500 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value – 1.5 0.5 – 2 1 0 – 2.5 1.5 0.5 – 0.5

mean – 1.6382 0.5689 – 2.1603 1.1005 – 0.0094 – 2.6820 1.6190 0.5077 – 0.5401

δ = 1
sd 0.1310 0.1124 0.1696 0.1510 0.1445 0.1861 0.1718 0.1832 0.2433
RMSE 0.1903 0.1317 0.2332 0.1813 0.1447 0.2602 0.2089 0.1832 0.2464
ratio 0.9650 0.9516 1.0028 1.0213 0.7320 1.0149 1.0585 0.8410 0.8030

mean – 1.8888 0.6507 – 2.4375 1.2155 – 0.0080 – 2.9633 1.7470 0.5565 – 0.5651

δ = 2
sd 0.1646 0.1301 0.2234 0.1969 0.1785 0.2716 0.2466 0.2353 0.2821
RMSE 0.4221 0.1990 0.4911 0.2918 0.1785 0.5369 0.3488 0.2418 0.2892
ratio 0.9628 0.9593 0.9294 0.9865 0.7342 0.9667 1.0708 0.7785 0.7152

Finally, the procedure was applied to datasets containing groups for
which the γj , j=1, ..., G, can have a different sign and/or be equal to zero.
Here, datasets containing observations on 2 and 3 groups were generated from
the generalized Pareto distribution with distribution function given by (1.3).
The slowly varying function l̆ of the GPD satisfies the slow variation with remain-
der condition with ρ̆ = −|γ|. In this simulation, we took σ = 1. Table 7 contains
the results for these problem sets. Also here we see that using a common optimal
k can yield important efficiency gains compared to a separate analysis of each
group, except in case β0, β1 are both negative.

Table 7: GPD data, 500 observations/group, 500 simulation runs.

G = 2 G = 2 G = 2 G = 3

β0 β1 β0 β1 β0 β1 β0 β1 β2

value – 0.25 – 0.25 0 – 0.5 0.25 – 0.25 0 – 0.5 0

mean – 0.1582 – 0.2591 0.0970 – 0.5046 0.3442 – 0.2518 0.0977 – 0.5063 – 0.0024
sd 0.0749 0.0734 0.0867 0.0800 0.1031 0.0819 0.0725 0.0789 0.0865
RMSE 0.1184 0.0739 0.1300 0.0800 0.1396 0.0819 0.1216 0.0791 0.0865
ratio 1.0551 0.9719 1.0204 0.8498 1.0317 0.8839 1.1251 0.8635 0.8507
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3.2.2. Practical example 3: US wind speed data

The wind speed database, provided by the National Institute of Standards
and Technology (NIST), contains information about 49 weather stations in the
U.S.. The data have been filed for a period of 15 to 26 years. They are the
daily fastest-mile wind speeds, measured by anemometers 10m above ground.
For more information about these data we refer to Simiu et al. (1979) and Simiu
and Heckert (1995). We restrict our attention to three cities: Des Moines (Iowa),
Grand Rapids (Michigan) and Albuquerque (New Mexico). Boxplots of the daily
fastest wind speeds (in miles per hour) are given in Figure 6. The generalized
quantile plot for each city is given in Figure 7. These plots allow to distinguish
between the wind speed tail behavior of the different cities: the Des Moines data
(Figure 7 (a)) are heavy tailed (γ > 0), the Grand Rapids data (Figure 7 (b))
seem to be moderately tailed with γ≈0 and the Albuquerque data (Figure 7 (c))
are weakly tailed (γ < 0). The line structures in these plots are the result of
an inherent grouping of the data due to a loss of accuracy during the data col-
lection process. Consequently many wind speed levels are registered more than
once. Application of the above described procedure resulted in k̂opt = 357 with
γ̃1= 0.144, γ̃2 = 0.053 and γ̃3 = −0.088. On each generalized quantile plot we
superimposed the line passing through the anchor point

(
log( nj

k+1), logUH
(j)
k+1,nj

)
with slope γ̃j .
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Figure 6: Wind speed data: Boxplots of the daily fastest wind speeds
in miles per hour.
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Figure 7: Wind speed data: generalized quantile plots for
(a) Des Moines, (b) Grand Rapids and (c) Albuquerque.
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4. CONCLUSION

In this paper we discussed the simultaneous estimation of tail indices when
data on several independent groups are available. The proposed methods are
based on regression models linking statistics related to the tail of the underlying
distribution function to the extreme-value index and parameters describing the
second order tail behaviour. The optimal number of extremes (in case γ > 0)
or UH statistics (in case γ ∈ R) was derived from the trace of the AMSE matrix.
It appears from the simulation results that combining data from several groups
can lead to significant improvements in the estimation of the extreme-value in-
dex. A drawback of using a common k-value is that the procedure can run into
difficulties when the design is severely unbalanced. However, this problem is eas-
ily remedied by using a common relative tail sample fraction. Future work will
concentrate on the further extension of the proposed methods towards the esti-
mation of other tail characteristics such as extreme quantiles or small exceedance
probabilities.
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