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Abstract:

• In its standard form, a lifetime regression model usually assumes that the time until an
event occurs has a constant shape parameter and a scale parameter that is a function of
covariates. In this paper we consider lifetime models with shape parameter dependent
on a vector of covariates. Two special models are considered, the Weibull model and a
mixture model incorporating long-term survivors, when we consider that the incidence
probability is also dependent on covariates. Classical parameters estimation approach
is considered on two real data sets.
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1. INTRODUCTION

To express the distribution of a nonnegative random variable, T , which rep-
resents the lifetime of individuals (or components) in some population subjected
to covariate effects, several mathematically equivalent functions that uniquely de-
termine the distribution can be considered; namely, the cumulative distribution,
the density, the survival and the hazard functions [16]. For lifetime data, the
survival function at a particular time t is defined as

S0(t |µ(x), γ) = P (T > t |µ(x), γ) ,(1.1)

where µ(x) is a scale parameter that is a function of covariate involving unknown
parameters and γ is a constant unknown shape parameter. It is particularly
useful to define the survival model in terms of (1.1), because of its interpretation
as the probability of an individual (or component) surviving till time t [16].

Besides, in several applications, it is clear that a non-zero proportion of
patients or components can be considered cured, or do not fail in their testing
time [20]. In this context, we consider the model

S(t |x) = p+ (1−p)S0(t |µ(x), γ) ,(1.2)

where S is the population survival function and 0 < p < 1 represents the cured
fraction, which is cured or never fails with respect to the specific cause of death
(or failure). Observe that (1.2) is a mixture model with two components, where
S0 is the survival function of the individuals which are not cured. For the cured
patients, the survival function is equal to one for all finite values t. Mixture
survival models provide a way of modelling time to death when cure is possible,
simultaneously estimating death hazard of fatal cases and the proportion of cured
cases.

In many applications however the usual assumption of constant shape pa-
rameter γ cannot be appropriate. For instance, in some studies with fatigue of
materials, usually, it is assumed that the shape parameter of the Weibull distri-
bution depends on the stress levels, as we can see in Wang and Kececioglu ([30]),
Meeker and Escobar ([22]), Pascual and Meeker ([26]), Meeter and Meeker ([23]),
Meeker and Escobar ([21]), Hirose ([12]), Chan ([4]), Smith ([27]) and Nelson
([25]). Anderson ([1]) considers a Weibull accelerated regression model with the
dispersion parameter depending on the location parameter. In the context of risk
modelling, Hsieh ([13]) introduces heteroscedastic risk models, and Louzada-Neto
([19, 17]) introduces an extended risk model. Applications in the context of re-
gression models with normal errors and nonconstant scale are considered by Zhou
et al. ([31]) and Tanizaki and Zhang ([28]). Cepeda and Gamerman ([3]) consider
Bayesian modelling of variance heterogeneity in normal regression models.

In this paper we consider a general survival model with shape and cured
fraction parameters depending on covariates. The approach with constant shape
parameter was first used by Farewell [8]. The advantage of such a formulation
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is to have several usual survival models as particular cases. Maximum likelihood
estimation procedure is adopted for two special cases: the Weibull distribution
with shape parameter depending on a vector of covariates and a long-termWeibull
survival mixture model in the presence of covariates. In Section 2 we introduce a
general survival model with shape and scale parameters depending on covariates.
The Weibull case is introduced in Section 3. Two real data sets are presented in
Section 4. Some concluding remarks in Section 5 finalize the paper.

2. A GENERAL SURVIVAL MODEL

Consider a survival model with shape parameter depending on covariates.
The corresponding survival function is

S0(t |µ(x), γ(y)) = P (T > t |x, y) ,(2.1)

where µ(x) is a scale parameter depending on a covariate vector, x, and γ(y)
is the shape parameter depending on a covariate vector, y. Both µ and γ may
involve unknown parameters. Of course, the vectors x and y can be equal.

For fitting long-term survival data, where a proportion of the individuals
are cured [20], we consider the general survival model

S(t|x,y, z) = p(z) + (1−p(z))S0(t |µ(x), γ(y)) ,(2.2)

where µ(x) and γ(y) are scale and shape parameters of the lifetime distribution
of non-cured patients and 0 < p(z) < 1 is the incidence probability depending on
a covariate vector, z, involving unknown parameters. For p(z) = 0 we have the
model (2.1).

A special case is given by the Weibull survival function for the non-cured
patients, given by

S0(t |µ(x), γ(y)) = exp

[

−

(

t

µ(x)

)γ(y)
]

.(2.3)

Let us assume a random sample T1, ..., Tn, such that, associated to each
Ti there are covariate vectors xt

i = (1, xi1, ..., xik), yt = (1, yi1, ..., yik) and
zt = (1, zi1, ..., zik), and an indicator variable δi, δi = 1 if ti is an observed life-
time or δi= 0 if ti is a censored observation (rigth-censored observations). Then,
for an uninformative censoring mechanism, the likelihood function [16] can be
written as

L =
n
∏

i=1

f(ti|xi,yi, zi)
δi S(ti|xi,yi, zi)

1−δi ,(2.4)

where f(ti|xi,yi, zi) is the density function and S(ti|xi,yi, zi) is defined in (2.2).
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Let θ
′

= (α,β,γ) be the parameter vector indexing (2.2). The maximum
likelihood estimator (MLE) of θ can be obtained by solving the system of non-
linear equations, ∂ logL/∂θ = 0. However, it can be hard to solve the system
of nonlinear equations above by pure Newton-type methods, since it is easy to
overstep the true minimum. An alternative algorithm is proposed by [30] based
on [15, 2, 9]. However, a straightforward procedure, which we prefer, is to maxi-
mize (2.4). This procedure can be implemented in a standard statistical software
such as R [14] or a SAS via a routine that finds a local maximum of a nonlin-
ear function using general-purpose optimization procedure. In the appendix, we
present the SAS code of the NLP procedure [10, 11] used to find out the maximum
likelihood estimates presented in our examples.

3. THE WEIBULL PARTICULAR CASE

Consider the general Weibull survival model obtained by considering (2.2)
with (2.3). Assuming that the scale parameter, the shape parameter and the
incidence probability are affected by covariate vectors x, y and z, respectively,

let us to consider p(zi) as a logit link, such as, log
(

p(zi)
1−p(zi)

)

= η0+
∑k

j=1 ηjzij , the

log-linear models log(µ(xi))=α0+
∑k

j=1 αjxij and log(γ(yi))=β0+
∑k

j=1 βjyij .
Thus, the log-likelihood function for γ, α and β is given by

l(α,β,γ|x,y, z) ∝
n
∑

i=1

δi

[

yt
i β + ey

t
iβxt

i α+ ey
t
iβ log(ti)

]

+
n
∑

i=1

δi log(p(zi)) −
n
∑

i=1

δi(ti e
xt

iα)e
yt

iβ(3.1)

+
n
∑

i=1

(1−δi) log

[

p(zi) + (1−p(zi)) e
(−ti e

xt
iα)e

yt
iβ
]

,

where p(zi)
−1=e−(γ0+

∑k
j=1γjzij)(1+eγ0+

∑k
j=1γjzij), αt=(α0, ..., αk), β

t= (β0, ..., βk),
γt=(γ0, ..., γk), x

t
i = (1, xi1, ..., xik), y

t = (1, yi1, ..., yik) and zt = (1, zi1, ..., zik).

4. SOME APPLICATIONS

4.1. A first application

To check the assumption of shape parameter dependent on the covariates
we can use graphical diagnostic methods. As a special case, consider the ac-
celerated lifetime test (ALT) data on PET film, (see, Table 1), introduced by
Hirose [12], see also Wang and Kececioglu ([30]). The ALT was performed at
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Table 1: Failure times (hours) from an accelerated life test on PET film
in SF6 gas insulated transformers, [12].

Voltage Failure times

5 kV
7131, 8482, 8559, 8762, 9026, 9034, 9104, 9104.25∗,
9104.25∗, 9104.25∗

7 kV
50.25, 87.75, 87.76, 87.77, 92.90, 92.91, 95.96, 108.3,
108.3, 117.9, 123.9, 124.3, 129.7, 135.6, 135.6

10 kV 15.17, 19.87, 20.18, 21.50, 21.88, 22.23, 23.02, 28.17, 29.70

15 kV 2.40, 2.42, 3.17, 3.75, 4.65, 4.95, 6.23, 6.68, 7.30

Starred quantities denote censored observations.

four levels of the voltage; v = 5, 7, 10 and 15, with 10, 15, 10 and 9 observations
each, respectively. Three censored values were observed at v = 5. Denoting by
S(t)=P (T >t), the survival function, we should have parallel straight lines for the
plots of log(− log Ŝ(t)) versus log(t) for each stress level considering the Weibull
distribution [16]. This is also true for the Weibull probability plot, Figure 1-b.
In Figures 1-a and 1-b we observe straight lines which indicates that the Weibull
distribution is appropriate, but we do not have parallel lines which indicates
different shape parameters for each stress level. Interested readers can refer to
Chapters 2, 7 and 8 of Meeker and Escobar ([22]), which present different methods
to search for an appropriate lifetime distribution for fitting a set of data.
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Figure 1: Weibull fit for PET film data, Table 1.
(a): Hazard plot.
(b): Probability plot. 5 kV (◦), 7 kV (4), 10 kV (+) and 15 kV (×).

Figure 1 indicate that the scale and shape parameter of the Weibull dis-
tribution should be affected by the stress levels. Moreover, following [30], plots
show that log µ̂ and log γ̂ have linear relationships with x1 = y1 = − log(v−4.76),
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where µ̂ and γ̂ are the MLEs of µ and γ, obtained by considering each individual
covariate level, which are given in Table 2, the constant 4.76 is a fixed threshold
level [12], below which a failure is unlikely to occur.

Table 2: Maximum likelihood and standard deviation estimates
considering a Weibull model for each stress level.

MLE
Level log-likelihood µ̂ γ̂

5 kV −57.7394
9.1145
(0.0196)

2.9721
(0.3496)

7 kV −67.5903
4.7367
(0.0480)

1.7315
(0.2100)

10 KV −28.1308
3.1873
(0.0541)

1.8230
(0.2375)

15 kV −17.4361
1.6474
(0.1179)

1.0938
(0.2676)

Table 3 shows the MLEs for the parameter of (2.3) and their standard
deviations assuming log(µ(x1)) = α0 + α1 log(v − 4.76) and γ(y1) = constant
(hereafter called Model A) and log(γ(y1)) = β0 + β1 log(v − 4.76) (hereafter
called Model B).

Table 3: Maximum likelihood estimates considering
two Weibull models.

Estimates
Model Parameter MLE StDev

α0 6.3480 0.0399
model A α1 −1.9629 0.0265

β 1.6080 0.1281

α0 6.3285 0.0213
α1 −1.9529 0.0156

model B β0 2.2311 0.1776
β1 −0.4636 0.1152

Locally at the MLEs, the values of the log-likelihood functions are −179.9849

(for Model A) and −173.2728 (for Model B). The values of the likelihood ra-
tio statistics, Wald and score statistics to test model A against model B, that
is, H0 : β1= 0 against H1 : β1 6= 0, are equal to 13.4240, 16.1896 and 17.0416,
respectively. Their empirical p-values obtained from 10 000 bootstrap simula-
tions are equal to 0.0007, 0.0007 and 0.0014, respectively, leading to a strong
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evidence in favour of the complete model (Model B). The empirical distributions
of these statistics are given in Figure 2 together with their Q-Q plots. We do not
observe a good approximation to the chi-square distribution with one degree of
freedom.
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Figure 2: Empirical distributions. (a): Likelihood ratio statistic; (b): Score statistic;
(c): Wald statistic; (d-f): Q-Q plots for (a), (b) and (c).

4.2. A second application

As an example where scale, shape and the proportion of immunes pa-
rameters may depend on covariates, consider the ovarian cancer data given by
Edmunson et al. ([7]) and Therneau ([29]) (see also, [20] pp. 134 and [5] pp. 142).
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The response variable (see, Table 4) was the survival time, in years, for 26 women
following randomization to one or other of the two chemotherapy treatments.
In Table 4 the censor indicator variable is 1 if ti is an observed survival time and
0 if ti is a right-censored observation. As pointed out in [20], we notice that large
survival times tend to be censored, so there is some evidence of the existence of
an immune component. To verify the possible difference between two treatments
(treatment 1: standard chemotherapy — cyclophosphamide alone; treatment
2: combined chemotherapy — cyclophosphamide combined with adriamycin),
[5] considered the usual Weibull regression model with covariates affecting only
the scale parameter and concluded that there is a nonsignificant difference be-
tween the two treatments. In fact, the final model considered by Collett (1994)
included age and treatment as covariates.

Table 4: Survival times (in years) of ovarian cancer patients.

Survival Time
Group 1

Censor
Indicator

Survival Time
Group 2

Censor
Indicator

0.1616 1 0.9671 1
0.3151 1 1.0000 1
0.4274 1 1.2712 1
0.7342 1 1.3014 1
0.9014 1 1.5425 1
1.1808 1 1.0329 0
1.7479 1 1.1534 0
1.2274 0 2.0384 0
1.3068 0 2.1068 0
2.2000 0 2.1096 0
2.3425 0 3.0932 0
2.8493 0 3.3041 0
3.0301 0 3.3616 0

From the survival curves (see, Figure 3), we observe that there are large
censored observations, which could indicate the presence of immune individu-
als [20]. Therefore, we assume the model (2.2) with S0(t) given by (2.3) with
log( pi

1−pi
) = η0 + η1xi, log(µi) = α0 + α1xi and log(γi) = β0 + β1xi, where xi

taking the value 1 if individual i is in the treatment group 1 or the value 2
if i is in the treatment group 2.

In this way, we can have the following hypothesis tests:

H0 : η1= 0 (no treatment effect in the proportion of cured patients),
H0 : α1 = 0 (no treatment effect in the ratio of susceptible patients) or
H0 : β1 = 0 (no treatment effect in the shape of the lifetime distribution).
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In Table 5 we have the MLE and their asymptotic standard-deviation estimates
considering 4 models:

Model 1: log( pi

1−pi
) = η0, log(µi) = α0 and log(γi) = β0;

Model 2: log( pi

1−pi
) = η0, log(µi) = α0 + α1xi and log(γi) = β0;

Model 3: log( pi

1−pi
) = η0, log(µi) = α0 + α1xi and log(γi) = β0 + β1xi and

Model 4: log( pi

1−pi
) = η0 + η1xi, log(µi) = α0 +α1xi and log(γi) = β0 + β1xi.

Locally at the MLE, the values of −2 log(likelihood) are given by 49.3512
(Model 1), 48.1652 (Model 2), 40.6565 (Model 3) and 40.2318 (Model 4).
We observe that Model 4 seems to give better fit for the data. This result is
corroborated by Figure 3, where we have the plots of the fitted survival curves
obtained from Models 2, 3 and 4 and the nonparametric Kaplan–Meier survival
curve. We omitted the fitted survival curve from Model 1, which is very far from
the Kaplan–Meier survival curve.

Table 5: Maximum likelihood estimates — long-term survivors models.

Parameter

Model η0 β0 α0 α1 β1 η1

1
0.0284

(0.4300)
0.7457

(0.2658)
0.1423

(0.1572)

2
0.0614

(0.4464)
0.7222

(0.2663)
-0.3759

(0.5293)
0.3600

(0.3764)

3
0.0420

(0.4240)
-1.0535

(0.7314)
-0.4173

(0.5749)
0.3482

(0.2936)
1.4744

(0.4686)

4
0.8870

(1.3954)
-1.0782

(0.7615)
-0.3627

(0.6232)
0.3201

(0.3175)
1.4833

(0.4812)
-0.5614

(0.8725)

It is important to point out that in this application we have a small data set
(26 patients) and should be careful to conclude that model 4 provides a better fit.
In fact, model 3 and model 4 give similar fits for the survival curves (see Figure 3)
and the difference 40.6565− 40.2318 = 0.4247 is nonsignificant. In this case the
cured proportions and rates of failure do not seem to differ significantly between
the treatment groups.



Lifetime Models with Nonconstant Shape Parameters 35

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
(t

)

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

S
(t

)

(b)

Figure 3: Survival curves.
(a): standard chemotherapy;
(b): combined chemotherapy;
(−−−) Kaplan–Meier;
(· · · ) model 2;
(— ·—) model 3;
(——) model 4.

5. CONCLUDING REMARKS

In this paper, we consider a general class of survival models where the
shape, the scale and the incidence probability parameters can be dependent on
covariates. The major advantage of the general survival class of models lies on
its ability to accommodate several usual survival models. From the practical
viewpoint the methodology can be implemented straightforwardly and runs im-
mediately using existing statistical packages.
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Appendix A — Maximum Likelihood, First Application

In this appendix, we present the SAS code used to get the maximum
likelihood estimates presented the both examples. The optimization of the
log-likelihood was made by using the nonlinear programming SAS procedure
considering the trust-region algorithm, [6, 24].

Listing 1: Single Weibull model.

proc nlp data=h i r o s e tech=t r phes cov=2 varde f=n ;
max L ;
parms alpha0 = 6 . 0 , beta0 = 1 .0 ;
mu = exp ( alpha0 ) ;
beta = exp ( beta0 ) ;
logH = log ( beta)−beta ∗ l og (mu)+beta ∗ l og ( t ) ;
logS = −( t /mu)∗∗ beta ;
L = de l t a ∗ logH+logS ;
by vo l tage ;

run ;

Listing 2: Weibull model with constant shape parameter.

proc nlp data=h i r o s e tech=t r phes cov=2 varde f=n ;
max L ;
parms alpha0 = 6 . 0 , alpha1 = 0 . 9 , beta0 = 1 . 0 ;
mu = exp ( alpha0+alpha1 ∗ vo l tage ) ;
beta = exp ( beta0 ) ;
logH = log ( beta)−beta ∗ l og (mu)+beta ∗ l og ( t ) ;
logS = −( t /mu)∗∗ beta ;
L = de l t a ∗ logH+logS ;
run ;

Listing 3: Weibull model with nonconstant shape parameter.

proc nlp data=h i r o s e tech=t r phes cov=2 varde f=n ;
max L ;
parms
alpha0 = 6 . 0 , alpha1 = −2.0 , beta0 = 2 . 2 , beta1 = −0.4;
mu = exp ( alpha0+alpha1 ∗ vo l tage ) ;
beta = exp ( beta0+beta1 ∗ vo l tage ) ;
logH = log ( beta)−beta ∗ l og (mu)+beta ∗ l og ( t ) ;
logS = −( t /mu)∗∗ beta ;
L = de l t a ∗ logH+logS ;
run ;
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Appendix B — Maximum Likelihood, Second Application

Listing 4: Long-term survivors model — model 4.

proc nlp data = dados tech=t r cov=2 varde f=n phes ;
max L ;
parms alpha0 =−0.4 , alpha1 = 0 . 3 , beta0 = −1.0 ,

beta1 = 1 .4 , g0 = 0 .0 , g1 = 0 .0 ;
mu = exp ( alpha0+alpha1 ∗ treatment ) ;
beta = exp ( beta0+beta1 ∗ treatment ) ;
p = exp ( g0+g1∗x1)/(1+exp ( g0+g1∗ treatment ) ) ;
h = ( beta /mu)∗ ( t /mu)∗∗ ( beta −1);
S = exp(−( t /mu)∗∗ beta ) ;
Lc = log (p)+ log (h)+ log (S ) ;
Li = log (1−p+p∗S ) ;
L = de l t a ∗Lc+(1−de l t a )∗ Li ;

run ;
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