THE EXTREMAL INDEX OF SUB-SAMPLED PERIODIC SEQUENCES WITH STRONG LOCAL DEPENDENCE

Authors: H. Ferreira
- Department of Mathematics, University of Beira Interior, Portugal (ferreira@fenix2.ubi.pt)
A.P. Martins
- Department of Mathematics, University of Beira Interior, Portugal (amartins@noe.ubi.pt)

Abstract:

- Let $\mathbf{X}=\left\{X_{n}\right\}_{n \geq 1}$ be a T-periodic sequence. We define a family of local dependence conditions $D_{T}^{(k)}(\mathbf{u}), k \geq 1$, and calculate the extremal index $\theta_{\mathbf{X}}$ from the distributions of k consecutive variables of \mathbf{X}. For a periodic sub-sampled sequence $\mathbf{Y}=\left\{X_{g(n)}\right\}_{n \geq 1}$, where g generates blocks of I_{1} observations separated by J observations, we present results on local and long range dependence conditions and compute the extremal index $\theta_{\mathbf{Y}}$.

Key-Words:

- sub-sampling; periodic sequences; extremal index; extreme values.

1. INTRODUCTION

In this paper we consider that $\mathbf{X}=\left\{X_{n}\right\}_{n \geq 1}$ is a T-periodic sequence of random variables, i.e., there exists an integer $T \geq 1$ such that, for each choice of integers $1 \leq i_{1}<\ldots<i_{n},\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)$ and $\left(X_{i_{1}+T}, \ldots, X_{i_{n}+T}\right)$ have the same distribution. The period T will be considered the smallest integer satisfying the above definition.

We say that a T-periodic sequence \mathbf{X} has extremal index $\theta_{\mathbf{X}}$ when, $\forall \tau>0$, $\exists \mathbf{u}^{(\tau)}=\left\{u_{n}^{(\tau)}\right\}_{n \geq 1}$ such that

$$
\lim _{n \rightarrow \infty} n \frac{1}{T} \sum_{i=1}^{T} P\left(X_{i}>u_{n}^{(\tau)}\right)=\tau
$$

and

$$
\lim _{n \rightarrow \infty} P\left(\max \left\{X_{1}, \ldots, X_{n}\right) \leq u_{n}^{(\tau)}\right)=e^{-\theta_{\mathbf{x}} \tau}
$$

The elements of $\mathbf{u}^{(\tau)}$ are called normalized levels for \mathbf{X}.
Such as happens for stationary sequences, the extremal index of a periodic sequence (Alpuim ([1]), Ferreira ([4])) enables us to infer the limiting behaviour of M_{n} from the limiting behaviour of $\hat{M}_{n}=\max \left\{\hat{X}_{1}, \ldots, \hat{X}_{n}\right\}, n \geq 1$, where $\hat{\mathbf{X}}=$ $\left\{\hat{X}_{n}\right\}_{n \geq 1}$ is a periodic sequence of independent variables such that $F_{X_{i}}=F_{\hat{X}_{i}}$, $\forall i \geq 1$. Specifically,

$$
\lim _{n \rightarrow \infty} P\left(\max \left\{X_{1}, \ldots, X_{n}\right) \leq u_{n}^{(\tau)}\right)=\left(\lim _{n \rightarrow \infty} P\left(\max \left\{\hat{X}_{1}, \ldots, \hat{X}_{n}\right) \leq u_{n}^{(\tau)}\right)\right)^{\theta \mathbf{x}}
$$

holds true.
By evaluating its extremal index $\theta_{\mathbf{X}}$, we describe in section 2 the asymptotic behaviour of the partial maximum $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}, n \geq 1$, under the condition $D(\mathbf{u})$ of Leadbetter ([5]) and a local dependence condition that generalizes the $D^{(k)}(\mathbf{u})$ of Chernick et al. ([2]).

In section 3 we give sufficient conditions for the analogous dependence conditions to hold for a sub-sampled sequence $\mathbf{Y}=\left\{X_{g(n)}\right\}_{n \geq 1}$ and we relate the extremal indexes $\theta_{\mathbf{X}}$ and $\theta_{\mathbf{Y}}$.

There are important situations in finance, for instance, where it seems reasonable to sub-sample the process by blocks matching them with bussiness periods (Dacorogna et al. ([3])). For a complete description of the extremal behavior of sub-sampled sequences \mathbf{Y} from moving averages \mathbf{X} with regularly varying tails see Scotto and Ferreira ([10]) and references therein.

Robinson and Tawn ([9]) pointed out the importance of the sampling frequency on the extremal properties and they have showed that if the sequence
$\mathbf{X}=\left\{X_{n}\right\}_{n \geq 1}$ and the sub-sampled sequence $\mathbf{Y}=\left\{X_{T n}\right\}_{n \geq 1}$ have extremal indexes $\theta_{\mathbf{X}}$ and $\theta_{\mathbf{Y}}$, respectively, then

$$
\theta_{\mathbf{X}} \leq \theta_{\mathbf{Y}} \leq T \theta_{\mathbf{X}}\left(1-\sum_{j=1}^{T-1}\left(1-\frac{j}{T}\right) \Pi(j)\right)
$$

where $\Pi(j), j \geq 1$, are the asymptotic cluster size distributions for \mathbf{X}. Moreover, the upper bound is obtained under the condition $D^{\prime \prime}\left(u_{n}\right)$ from Leadbetter and Nandagopalan ([6]).

Our results in section 3 enable the computation of the extremal index of periodic sub-sampled sequences $\mathbf{Y}=\left\{X_{g(n)}\right\}_{n \geq 1}$ for g such that $\lim _{n \rightarrow \infty} \frac{g(n)}{n}=G$, under a family of local dependence conditions for T-periodic sequences. They generalize the main result in Martins and Ferreira ([7]) concerning stationary sequences satisfying the condition $D^{\prime \prime}\left(u_{n}\right)$ and g defined as $g(n)=(n-1) \bmod I+$ $T\left[\frac{(n-1)}{I}\right], n \geq 1$.

2. COMPUTING THE EXTREMAL INDEX UNDER $D_{T}^{(k)}(\mathbf{u})$

We introduce a family of local dependence conditions for T-periodic sequences satisfying the long range dependence condition $D(\mathbf{u})$ from Leadbetter ([5]). The sequence of dependence coefficients in this condition will be referred as $\alpha^{(\mathbf{X}, \mathbf{u})}=\left\{\alpha_{n, l}^{(\mathbf{X}, \mathbf{u})}\right\}_{n \geq 1}$ and it is such that $\alpha_{n, l_{n}}^{(\mathbf{X}, \mathbf{u})}=o(1)$ for some $l_{n}=o(n)$. For simplicity we omit the sequences \mathbf{X} and \mathbf{u} in these notations whenever no doubt is created.

Definition 2.1. Let $k \geq 1$ be a fixed integer and \mathbf{X} a T-periodic sequence satisfying $D(\mathbf{u})$. The condition $D_{T}^{(k)}(\mathbf{u})$ holds for \mathbf{X} when there exists a sequence of integers $\mathbf{k}=\left\{k_{n}\right\}_{n \geq 1}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{n}=+\infty, \quad \lim _{n \rightarrow \infty} k_{n} \frac{l_{n}}{n}=0, \quad \lim _{n \rightarrow \infty} k_{n} \alpha_{n, l_{n}}=0 \tag{2.1}
\end{equation*}
$$

and

$$
\lim _{n \rightarrow \infty} S_{\left[\frac{n}{k_{n} T}\right]}^{(k)}=0
$$

where

$$
S_{\left[\frac{n}{k_{n} T}\right]}^{(1)}=n \frac{1}{T} \sum_{i=1}^{T} \sum_{j=i+1}^{\left[\frac{n}{k_{n} T}\right] T} P\left(X_{i}>u_{n}, X_{j}>u_{n}\right)
$$

and, for $k \geq 2$,

$$
S_{\left[\frac{n}{k_{n} T}\right]}^{(k)}=n \frac{1}{T} \sum_{i=1}^{T} \sum_{j=i+k}^{\left[\frac{n}{k_{n} T}\right] T} P\left(X_{i}>u_{n}, X_{j-1} \leq u_{n}<X_{j}\right)
$$

The extremal behaviour of \mathbf{X} has already been considered in Ferreira ([4]) under the conditions $D_{T}^{(k)}(\mathbf{u})$, for $k=1,2$.

If $\max \left\{X_{i}, X_{i+1}, \ldots, X_{j}\right\}$ is denoted by $M_{i, j}^{(\mathbf{X})}$ and we put $M_{i, j}^{(\mathbf{X})}=-\infty$ for $i>j$, then $\lim _{n \rightarrow \infty} S_{\left[\frac{n}{k_{n} T}\right]}^{(k)}=0$ implies

$$
\lim _{n \rightarrow \infty} n \frac{1}{T} \sum_{i=1}^{T} \sum_{j=i+k}^{\left[\frac{n}{k_{n} T}\right] T} P\left(X_{i}>u_{n} \geq M_{i+1, i+k-1}, X_{j}>u_{n}\right)=0
$$

which leads to

$$
\lim _{n \rightarrow \infty} n \frac{1}{T} \sum_{i=1}^{T} P\left(X_{i}>u_{n} \geq M_{i+1, i+k-1}, M_{i+k,\left[\frac{n}{k_{n} T}\right] T}>u_{n}\right)=0
$$

This last restriction, when $T=1$, is the one considered in $D^{(k)}(\mathbf{u})$ by Chernick et al. ([2]) for stationary sequences. Under $D^{(k)}(\mathbf{u})$ they compute $\theta_{\mathbf{X}}$ from the distribution of the first k variables of \mathbf{X} and apply the result to several autoregressive sequences. In the following we will extend their results for periodic sequences.

Proposition 2.1. If the T-periodic sequence \mathbf{X} satisfies $D(\mathbf{u})$ and $D_{T}^{(k)}(\mathbf{u})$ then

$$
P\left(M_{n} \leq u_{n}\right)-\exp \left(\frac{n}{T} \sum_{i=1}^{T} P\left(X_{i}>u_{n} \geq M_{i+1, i+k-1}\right)\right)=o(1)
$$

Proof: Under $D(\mathbf{u})$ we have, for \mathbf{k} as in (2.1),

$$
P\left(M_{n} \leq u_{n}\right)-P^{k_{n}}\left(M_{\left[\frac{n}{k_{n} T}\right] T} \leq u_{n}\right)=o(1)
$$

and therefore it is enough to proof that

$$
\begin{equation*}
P\left(M_{\left[\frac{n}{k_{n} T}\right] T}>u_{n}\right)-\frac{\frac{n}{T} \sum_{i=1}^{T} P\left(X_{i}>u_{n} \geq M_{i+1, i+k-1}\right)}{k_{n}}=o(1) . \tag{2.2}
\end{equation*}
$$

Since, by applying $D_{T}^{(k)}(\mathbf{u})$,

$$
\begin{aligned}
P\left(M_{\left[\frac{n}{k_{n} T}\right] T}>u_{n}\right) & =P\left(\bigcup_{i=1}^{\left[\frac{n}{k_{n} T}\right] T}\left\{X_{i}>u_{n} \geq M_{i+1,\left[\frac{n}{k_{n} T}\right] T}\right\}\right) \\
& =\left[\frac{n}{k_{n} T}\right] \sum_{i=1}^{T} P\left(X_{i}>u_{n} \geq M_{i+1, i+k-1}\right)-A_{n}
\end{aligned}
$$

holds with $k_{n} A_{n} \leq S_{\left[\frac{n}{k_{n} T}\right]}^{(k)}=o(1)$, we conclude (2.2).

As a consequence of this result we compute the extremal index as follows.
Corollary 2.1. If the T-periodic sequence \mathbf{X} satisfies $D(\mathbf{u})$ for all $\mathbf{u}=\mathbf{u}^{(\tau)}$ and $D_{T}^{(k)}(\mathbf{v})$ for some $\mathbf{v}=\mathbf{v}^{\left(\tau_{0}\right)}$ then there exists $\theta_{\mathbf{X}}$ if and only if there exists

$$
\nu_{\mathbf{X}}=\lim _{n \rightarrow \infty} n \frac{1}{T} \sum_{i=1}^{T} P\left(X_{i}>v_{n} \geq M_{i+1, i+k-1}\right)
$$

and in this case it holds

$$
\theta_{\mathbf{X}}=\frac{\nu_{\mathbf{X}}}{\tau_{0}} .
$$

We can apply this result to calculate the extremal index of a T-periodic moving average, following the approach of Chernick et al. ([2]) for the stationary case.

Let $\mathbf{Z}=\left\{Z_{n}\right\}_{n \geq 1}$ be a T-periodic sequence of independent variables with regularly varying equivalent tails with exponent $-\alpha$ satisfying

$$
\lim _{x \rightarrow \infty} \frac{P\left(Z_{i}>x\right)}{P\left(Z_{j}>x\right)}=\gamma_{i, j}^{(+)}>0, \quad \lim _{x \rightarrow \infty} \frac{P\left(Z_{i}<-x\right)}{P\left(Z_{j}<-x\right)}=\gamma_{i, j}^{(-)}>0, \quad i, j=1, \ldots, T,
$$

and

$$
\lim _{x \rightarrow \infty} \frac{P\left(Z_{i}>x\right)}{P\left(\left|Z_{i}\right|>x\right)}=p_{i} \in[0,1], \quad i=1, \ldots, T
$$

For $\tau_{i}>0, i=1, \ldots, T$, and $\tau=\frac{1}{T} \sum_{i=1}^{T} \tau_{i}$, let $\mathbf{u}^{(\tau)}$ be defined by $\lim _{n \rightarrow \infty} n P\left(\left|Z_{i}\right|>u_{n}\right)=\tau_{i} /\left\{p_{i} \sum_{s=0}^{T-1} \gamma_{i-s, i}^{(+)} \sum_{j=-\infty}^{\infty}\left[c_{j T+s}^{+}\right]^{\alpha}+q_{i} \sum_{s=0}^{T-1} \gamma_{i-s, i}^{(-)} \sum_{j=-\infty}^{\infty}\left[c_{j T+s}^{-}\right]^{\alpha}\right\}$, where $q_{i}=1-p_{i}, c_{j}^{+}=\max \left\{c_{j}, 0\right\}, c_{j}^{-}=\max \left\{-c_{j}, 0\right\}$ and $\mathbf{c}=\left\{c_{j}\right\}$ is a sequence of constants such that $\sum_{j=-\infty}^{+\infty}\left|c_{j}\right|^{\delta}<+\infty$ for some $\delta<\min \{\alpha, 1\}$.

For the T-periodic moving average $X_{n}=\sum_{j=-\infty}^{+\infty} c_{j} Z_{n-j}, n \geq 1$, by applying our result to the $2 m$-dependent T-periodic sequence $X_{n}^{(m)}=\sum_{j=-m}^{m} c_{j} Z_{n-j}$ and following in a straighforward way the reasoning of Chernick et al. ([2]), we find

$$
\theta=\frac{\sum_{i=1}^{T} \gamma_{i, 1}\left\{p_{i} \sum_{s=0}^{T-1} \gamma_{i-s, i}^{(+)} c_{s}^{+}(\alpha)+q_{i} \sum_{s=0}^{T-1} \gamma_{i-s, i}^{(-)} c_{s}^{-}(\alpha)\right\}}{\sum_{i=1}^{T} \gamma_{i, 1}\left\{p_{i} \sum_{s=0}^{T-1} \gamma_{i-s, i}^{(+)} \sum_{j=-\infty}^{\infty}\left[c_{j T+s}^{+}\right]^{\alpha}+q_{i} \sum_{s=0}^{T-1} \gamma_{i-s, i}^{(-)} \sum_{j=-\infty}^{\infty}\left[c_{j T+s}^{-}\right]^{\alpha}\right\}},
$$

where

$$
c_{s}^{+}(\alpha)=\sum_{j=-\infty}^{\infty}\left(\left[c_{j T+s}^{+}\right]^{\alpha} \max _{r>j T+s}\left\{c_{r}^{+}\right\}^{\alpha}\right)^{+}, \quad c_{s}^{-}(\alpha)=\sum_{j=-\infty}^{\infty}\left(\left[c_{j T+s}^{-}\right]^{\alpha} \max _{r>j T+s}\left\{c_{r}^{-}\right\}^{\alpha}\right)^{+} .
$$

For details on the proofs of this example see Martins and Ferreira ([8]).

3. PERIODIC SUB-SAMPLED SEQUENCE

We first set sufficient conditions for the previous results to hold for $\mathbf{Y}=$ $\left\{X_{g(n)}\right\}_{n \geq 1}$. Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a strictly increasing function for which there exists positive integers I_{1} and I_{2} such that, $\forall n, k \in \mathbb{N}$, it holds $g\left(n+k I_{1}\right)=g(n)+k I_{2}$. We will refer such g as an I_{1}, I_{2}-periodic function and suppose that I_{1} and I_{2} are the smallest integers satisfying the definition.

Therefore $\mathbf{Y}=\left\{X_{g(n)}\right\}_{n \geq 1}$ is obtained from \mathbf{X} by sub-sampling blocks of I_{1} variables separated by $J=I_{2}-\left(g\left(I_{1}\right)-g(1)\right)-1 \geq 1$ variables.

In a particular case considered in Scotto and Ferreira ([10]), \mathbf{X} is a stationary moving average with heavy-tailed innovations and g generates blocks of I_{1} consecutive observations separated by $J \geq 1$ observations.

Proposition 3.1. If \mathbf{X} is a T-periodic sequence and g is an I_{1}, I_{2}-periodic function with I_{2} a multiple of T, then $\mathbf{Y}=\left\{X_{g(n)}\right\}$ is an I_{1}-periodic sequence.

Proof: For each choice of integers $1 \leq i_{1}<\ldots<i_{n}, p \geq 1$, we have

$$
\begin{aligned}
& \left(Y_{i_{1}+I_{1}}, \ldots, Y_{i_{n}+I_{1}}\right)=\left(X_{g\left(i_{1}+I_{1}\right)}, \ldots, X_{g\left(i_{n}+I_{1}\right)}\right)= \\
& \quad=\left(X_{g\left(i_{1}\right)+I_{2}}, \ldots, X_{g\left(i_{n}\right)+I_{2}}\right) \stackrel{d}{=}\left(X_{g\left(i_{1}\right)}, \ldots, X_{g\left(i_{n}\right)}\right)=\left(Y_{i_{1}}, \ldots, Y_{i_{n}}\right)
\end{aligned}
$$

In the next result, we denote a sequence \mathbf{u} such that $\lim _{n \rightarrow \infty} n P\left(X_{i}>u_{n}^{\left(\tau_{i}\right)}\right)=$ τ_{i} by $\mathbf{u}=\mathbf{u}^{\left(\tau_{i}, X_{i}\right)}$. From the definition of normalized levels and $\mathbf{Y} \subset \mathbf{X}$ we give a simple procedure to get $\mathbf{v}=\mathbf{v}^{(\tau, \mathbf{Y})}$ with $\tau=\frac{1}{I_{1}} \sum_{i=1}^{I_{1}} G^{-1} \tau_{g(i)}$ and $G=\lim _{n \rightarrow \infty} \frac{g(n)}{n}$.

Proposition 3.2. Let \mathbf{X} be a T-periodic sequence and g an I_{1}, I_{2}-periodic function with I_{2} a multiple of T. If $\lim _{n \rightarrow \infty} \frac{g(n)}{n}=G$ and $\mathbf{u}=\mathbf{u}^{\left(\tau_{i}, X_{i}\right)}, i=1, \ldots, T$, then $\mathbf{v}=\left\{u_{g(n)}\right\}$ satisfies:
(i) $\quad \mathbf{v}=\mathbf{v}^{\left(G^{-1} \tau_{i}, X_{i}\right)}, \quad i=1, \ldots, T$.
(ii) $\quad \mathbf{v}=\mathbf{v}^{\left(G^{-1} \tau_{g(i)}, Y_{i}\right)}, \quad i=1, \ldots, I_{1}$, and $\left\{\tau_{g(1)}, \ldots, \tau_{g\left(I_{1}\right)}\right\} \subset\left\{\tau_{1}, \ldots, \tau_{T}\right\}$.

For $\mathbf{u}=\mathbf{u}^{\left(\tau_{i}^{\prime}, X_{i}\right)}$, with $\tau_{i}^{\prime}=G \tau_{i}, i=1, \ldots, T$, we have $\mathbf{v}=\left\{u_{g(n)}\right\}=\mathbf{v}^{\left(\tau_{i}, Y_{i}\right)}$ and we can easily get $\alpha_{n, l_{g(n)}^{(\mathbf{Y})}}^{(\mathbf{Y}, \mathbf{v})} \leq \alpha_{g(n), l_{g(n)}^{(\mathbf{X})}}^{(\mathbf{X}, \mathbf{u})}$ with $l_{g(n)}^{(\mathbf{X})}=o(n)$.

Moreover, if $\mathbf{v}=\mathbf{v}^{\left(\tau_{0, i}, X_{i}\right)}, i=1, \ldots, T$, then $\mathbf{w}=\left\{v_{\left[n I_{2} / I_{1}\right]}\right\}$ satisfies

$$
\begin{aligned}
& \mathbf{w}=\mathbf{w}^{\left(\tau_{0, i} I_{1} / I_{2}, X_{i}\right)}, \quad i=1, \ldots, T \\
& \mathbf{w}=\mathbf{w}^{\left(\tau_{0, g(i)} I_{1} / I_{2}, Y_{i}\right)}, \quad i=1, \ldots, I_{1}
\end{aligned}
$$

and

$$
S_{\left[\frac{n}{k_{n} I_{1}}\right]}^{(k, \mathbf{Y}, \mathbf{w})} \leq A S_{\left[\frac{n}{k_{n}^{\prime} T}\right]}^{(k, \mathbf{X}, \mathbf{w})}
$$

where A is a constant and $k_{n}^{\prime}=k_{\left[n I_{1} / I_{2}\right]}$.
These are the main arguments to obtain the following result.
Proposition 3.3. Let \mathbf{X} be a T-periodic sequence \mathbf{X} satisfying $D(\mathbf{u})$ for all $\mathbf{u}=\mathbf{u}^{\left(\tau_{i}, X_{i}\right)}$ for some $i \in\{1, \ldots, T\}$ and $D_{T}^{(k)}(\mathbf{v})$ for some $\mathbf{v}=\mathbf{v}^{\left(\tau_{0}, i, X_{i}\right)}$, $i=1, \ldots, T$, with $\mathbf{k}^{\prime}=\left\{k_{\left[n I_{1} / I_{2}\right]}\right\}$ and $\mathbf{k}=\left\{k_{n}\right\}$ as in (2.1). Then, for g as in the above proposition, $\mathbf{Y}=\left\{X_{g(n)}\right\}$ satisfies:
(i) $D(\mathbf{u})$ for all $\mathbf{u}=\mathbf{u}^{\left(\tau_{i}, Y_{i}\right)}, i=1, \ldots, I_{1}$,
(ii) $\quad D_{I_{1}}^{(k)}(\mathbf{w})$ for $\mathbf{w}=\left\{v_{\left[n I_{2} / I_{1}\right]}\right\}=\mathbf{w}^{\left(\tau_{0, g(i) I_{1} / I_{2}}, Y_{i}\right)}, i=1, \ldots, I_{1}$, with $\mathbf{k}=\left\{k_{n}\right\}$.

We will assume that \mathbf{X} is in the conditions of Proposition 3.3 and calculate the extremal index of the periodic sub-sampled sequence $\mathbf{Y}=\left\{X_{g(n)}\right\}$ as a consequence of this proposition and Corollary 2.1.

Proposition 3.4. Let \mathbf{X} be a T-periodic sequence \mathbf{X} satisfying $D(\mathbf{u})$ for all $\mathbf{u}=\mathbf{u}^{\left(\tau_{i}, X_{i}\right)}$ for some $i \in\{1, \ldots, T\}$ and $D_{T}^{(k)}(\mathbf{v})$ for some $\mathbf{v}=\mathbf{v}^{\left(\tau_{0, i}, X_{i}\right)}$, $i=1, \ldots, T$, with $\mathbf{k}^{\prime}=\left\{k_{\left[n I_{1} / I_{2}\right]}\right\}$ and $\mathbf{k}=\left\{k_{n}\right\}$ as in (2.1). Then, for g as in the above proposition, $\mathbf{Y}=\left\{X_{g(n)}\right\}$ has extremal index $\theta_{\mathbf{Y}}$ if and only if there exists

$$
\nu_{\mathbf{Y}}=\lim _{n \rightarrow \infty} n \frac{1}{I_{1}} \sum_{i=1}^{I_{1}} P\left(X_{g(i)}>v_{\left[n I_{2} / I_{1}\right]} \geq \max \left\{X_{g(i+1)}, X_{g(i+2)}, \ldots, X_{g(i+k-1)}\right\}\right)
$$

In this case

$$
\theta_{\mathbf{Y}}=\frac{I_{1} \nu_{\mathbf{Y}}}{\sum_{i=1}^{I_{1}} \tau_{0, g(i)}}
$$

Let

$$
\nu_{\mathbf{X}}=\lim _{n \rightarrow \infty} n \frac{1}{T} \sum_{i=1}^{T} P\left(X_{i}>v_{n} \geq M_{i+1, i+k-1}^{(\mathbf{X})}\right),
$$

and $\theta_{\mathbf{X}}=\frac{\nu_{\mathbf{X}}}{\tau_{0}}$, with $\tau_{0}=\frac{1}{T} \sum_{i=1}^{T} \tau_{0, i}$.
For the particular case of $I_{1}=T$ and $g(i+1)=g(i)$, for $i=1, \ldots, I_{1}$, we find $\theta_{\mathbf{Y}}=\theta_{\mathbf{X}}+\frac{\rho}{T \tau_{0}}$ where

$$
\begin{aligned}
\rho= & \lim _{n \rightarrow \infty} n P\left(X_{g\left(I_{1}\right)}>v_{\left[n I_{2} / I_{1}\right]} \geq \max \left\{X_{g(1)+I_{2}}, X_{g(2)+I_{2}}, \ldots, X_{g(k-1)+I_{2}}\right\}\right) \\
& -\lim _{n \rightarrow \infty} n P\left(X_{g\left(I_{1}\right)}>v_{\left[n I_{2} / I_{1}\right]} \geq M_{g\left(I_{1}\right)+1, g\left(I_{1}\right)+k-1}^{(\mathbf{X})}\right) .
\end{aligned}
$$

If $k=1$ then $\rho=0$, as expected, and for the particular cases where $1=T=I_{1}$ and $k=2$ we have very simple expressions for ρ (Martins and Ferreira ([7])). They can be applied, for instance, to calculate the extremal index of the subsampled $\operatorname{ARMAX}(\alpha)$ process considered in Robinson and Tawn ([9]). For that example we find

$$
\theta_{\mathbf{Y}}=\theta_{\mathbf{X}}+\frac{\rho}{\tau_{0}}=1-\alpha+\frac{\alpha\left(1-\alpha^{I_{2}-1}\right) \tau_{0}}{\tau_{0}}=1-\alpha^{I_{2}}
$$

equal to the value of Robinson and Tawn ([9]) for the sampling case $\mathbf{Y}=\left\{X_{n I_{2}}\right\}$.

4. CONCLUDING REMARKS

Under the local dependence condition $D_{T}^{(k)}\left(\mathbf{u}^{(\tau)}\right)$ we compute the extremal index of the T-periodic sequence \mathbf{X} from the T distributions of k consecutive variables as well as the extremal index of some sub-sampled I_{1}-periodic sequences $\mathbf{Y}=\left\{X_{g(n)}\right\}$.

It would be interesting to apply these results to functions g used in applications and moving averages or Markov sequences \mathbf{X} where $D^{\prime \prime}\left(u_{n}\right)$ fails. This remains as topic of future research.

ACKNOWLEDGMENTS

We are grateful to a referee's corrections and rigorous report.

REFERENCES

[1] Alpuim, M.T. (1988). Contribuições à teoria de extremos em sucessões dependentes. Ph.D. Thesis, DEIOC, Univ. of Lisbon.
[2] Chernick, M.R.; Hsing, T. and McCormick, W.P. (1991). Calculating the extremal index for a class of stationary sequences, Adv. Appl. Prob., 23, 835-850.
[3] Dacorogna, M.M.; Müller, U.A.; Nagler, R.J.; Olsen, R.B. and Pictet, O.V. (1993). A geopraphical model for the daily and weekly seasonal volatility in the foreign exchange market, Journal of International Money and Finance, 12, 413-438.
[4] Ferreira, H. (1994). Multivariate extreme values in T-periodic random sequences under mild oscillation restrictions, Stochastic Process. Appl, 49, 111-125.
[5] Leadbetter, M.R. (1983). Extremes and local dependence in stationary sequences, Z. Wahrschtheor, 65, 291-306.
[6] Leadbetter, M.R. and Nandagopalan, L. (1989). On exceedance point processes for stationary sequences under mild oscillation restrictions, Lect. Notes Statist., 51, 69-80.
[7] Martins, A. and Ferreira, H. (2003a). The extremal index of sub-sampled processes. To appear in J. Statist. Plann. and Inference.
[8] Martins, A. and Ferreira, H. (2003b). Índice extremal de médias móveis periódicas com caudas de variação regular. Pre-print. Univ. of Beira Interior.
[9] Robinson, M.E. and Tawn, J.A. (2000). Extremal analysis of processes sampled at different frequencies, J.R. Statist. Soc. B, 62, 117-135.
[10] Scotto, M.G. and Ferreira, H. (2002). Extremes of deterministic sub-sampled moving averages with heavy-tailed innovations. Preprint Univ. of Lisbon.

