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Abstract:

• In several applications data are grouped and there are within-group correlations.
With continuous data, there are several available models that are often used; with
counting data, the Poisson distribution is the natural choice. In this paper a mixed
log-linear model based on a Poisson–Poisson conditional distribution is presented.
The initial model is a conditional model for the mean of the response variable, and
the marginal model is formed thereafter. Random effects with Poisson distribution
are introduced and a variance-covariance matrix for the response vector is formed
embodying the covariance structure induced by the grouping of the data.
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1. INTRODUCTION

In many applications in biology, agriculture, engineering and economics,
for instance, grouped data reveal within-group correlation. For continuous data
there are several available models which are used. These include Variance Com-
ponent Models and Mixed Models (Laird and Ware [2], Pinheiro and Bates [6])
which embody fixed and random effects. Both models are based on the Multi-
variate Normal distribution, which has friendly properties, as the marginal and
conditional distributions are still Normal.

Goldstein [1] gives several examples where ignoring the group structure can
lead to imprecise estimates, confidence intervals and significant tests. He alerts
that grouped data should be modelled respecting its particular structure.

A mixed log-linear model based on the Poisson–Poisson hierarchical distri-
bution will be presented for grouped count data. The initial model is a conditional
model for the mean of Y , and the marginal model is derived afterwards. It will be
shown that building the model this way and introducing random Poisson effects, is
a means of introducing overdispersion in a pseudo-Poisson model (overdispersion
is said to exist when var(Y ) = φE(Y ), φ>1). Moreover, the variance-covariance
matrix is built for the response vectorY, which embodies the covariance structure
induced by the grouping of the data.

Several authors (McCulloch and Searle [5], Vonesh and Chinchilli [7]) have
made references to some mixed models based on Poisson–Gamma or Bernoulli–
Beta distributions as they are conjugate families. Starting from a model where
Yij |bi follows a Poisson law and bi a Gamma one, and as the Yij |bi are con-
ditionally independent, the derived density function for Yi, a density product,
is computationally unfriendly. In this paper a practical and simpler approach
is proposed, that starts from a Poisson–Poisson model and uses the marginal
moments of the response variable. The parameters are then estimated, with the
iterative, non-linear, generalized least squares method.

In this presentation, attention is given to the simplest case of a single
random effect. This is not as restrictive as it seems because, as was referred
above, it portrays a situation of overdispersion with within-group correlation.

2. THE LOG-LINEAR CONDITIONAL MODEL

Consider M groups, with ni observations per group (counts), where a
within-group correlation structure is expected. Define the mixed log-linear model

log [E(Yi|bi)] = Xiβ + 1ni
bi , i = 1, ...,M, j = 1, ..., ni .(2.1)
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Here Yi = [Yi1 ... Yini
]T is a random vector ni×1, bi is a random variable

(1×1), Xi is a known model matrix of order ni×p, β is a p×1 vector of unknown
fixed parameters and 1ni

is a vector ni×1 of ones. Yi and bi are independent for
different i’s.

Consider that each Yij |bi is a random variable conditionally independent
for different j’s following the Poisson law

Yij |bi ∼ P
(

exp
{

xT
j β + bi

}

)

, i = 1, ...,M, j = 1, ..., ni ,

where xT
j is row j of the model matrix Xi and β is the same as before. Let

bi ∼ P (θi) ,

θi > 0 ,

independent for different i’s.

Hence E(bi) = var(bi) = θi, i = 1, ...,M.

Note that Y, the vector of all the random variables, is an N×1 vector
which is partioned as M components Yi, each of which is a random ni-vector,
i = 1...,M ,

Y =
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Y11
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Y1n1

Y21
...

YMnM

























.

N is the total number of observations, N=
∑M

i=1 ni. Note that cov(Yij , Yik) 6= 0,
j 6= k, i.e., the Yij for j = 1, .., ni, are not independent as they represent the
same group, but they are independent for different i’s (groups). Each bi random
variable is introduced to portray the situation of within group correlation for
group i, i = 1, ...,M.

3. THE MARGINAL MODEL FOR Y

The parameter estimates are computed from a model based on the marginal
moments of Y. The mean value, variance and covariance of the Y marginals are
then computed.

Let Yij be the variable that corresponds to the j-th observation in group i,

i = 1, ...,M, j = 1, ..., ni. As it is assumed that Yij |bi ∼ P
(

exp
{

xT
j β + bi

})
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and bi ∼ P (θi),

E(Yij) = Ebi

[

E(Yij |bi)
]

= E
(

exp{xT
j β + bi}

)

= exp{xT
j β}Mbi

(1) ,

where Mbi
(·) is the bi moment generating function. Then

E(Yij) = exp{x
T
j β} exp{(e−1) θi}

= exp
{

xT
j β + (e−1) θi

}

,

where e is the Neper number, and

log [E(Yij)] = xT
j β + (e−1) θi .

Note the offset, (e−1) θi, that comes out in the marginal expected value
of Yij , derived from the introduction of the random effect bi in the conditional
model.

For the Yij variance,

var(Yij) = var
[

E(Yij |bi)
]

+ E
[

var(Yij |bi)
]

= var
(

exp{xT
j β + bi}

)

+ E
(

exp{xT
j β + bi}

)

= E
(

exp
{

2(xT
j β + bi)

})

−
[

E
(

exp
{

xT
j β + bi

})]2

+ E
(

exp
{

xT
j β + bi

})

= exp{xT
j β}

[

exp{xT
j β}Mbi

(2)− exp{xT
j β}(Mbi

(1))2 +Mbi
(1)
]

= E(Yij)

[

exp{xT
j β}

Mbi
(2)

Mbi
(1)

− exp{xT
j β}Mbi

(1) + 1

]

.

It is known that the distribution of Yij is not Poisson, but it may be called
pseudo-Poisson with overdispersion. Note that

var(Yij) = ϕE(Yij) ,

where the contribution of bi for the “overdispersion component” is highlighted,

ϕ = exp{xT
j β}

Mbi
(2)

Mbi
(1)

− exp{xT
j β}Mbi

(1) + 1 .
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Finally,

var(Yij) = exp{x
T
j β} exp{(e−1) θi} ×

×

[

exp{xT
j β}

exp{(e2−1) θi}

exp{(e−1) θi}
− exp{xT

j β} exp{(e−1) θi} + 1

]

= exp{2xT
j β}

[

exp{(e2−1) θi} − exp{2 (e−1) θi}
]

+ exp{xT
j β} exp{(e−1) θi}

= C(θi) exp{2x
T
j β}+K(θi) exp{x

T
j β} ,

where

C(θi) = exp{(e
2−1) θi} − exp{2(e−1) θi} ,

and

K(θi) = exp{(e−1) θi} .(3.1)

For the covariance, with j 6= k, and for the i group,

cov(Yij , Yik) = cov
[

E(Yij |bi), E(Yik|bi)
]

+ E
[

cov(Yij , Yik|bi)
]

= cov
[

E(Yij |bi), E(Yik|bi)
]

+ E(0)

= exp{xT
j β + xT

k β} var[exp{bi}]

= exp{xT
j β + xT

k β}
[

Mbi
(2)− (Mbi

(1))2
]

= exp{xT
j β + xT

k β}
[

exp{(e2−1) θi} − exp{2(e−1) θi}
]

= C(θi) exp{x
T
j β + xT

k β} .

3.1. Parameter estimation

The parameter estimates are obtain minimizing

M
∑

i=1

(

yi −K(θi) exp{Xi β}
)T

V−1
i

(

yi −K(θi) exp{Xiβ}
)

(3.2)

where yi is a ni-dimension vector of responses and K(θi) = exp{(e−1) θi},
i = 1, ...,M . Matrix Vi, the variance-covariance matrix of Yi, is symmetric
of order ni × ni, with generic element υjk:

Vi = [υjk]j,k=1,...,ni
, i = 1, ...,M ,

υjj = C(θi) exp{2x
T
j β}+K(θi) exp{x

T
j β} ,

υjk = C(θi) exp{x
T
j β + xT

k β} , j 6= k .
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As Vi depends on β and θi it becomes necessary to apply an iterative
method. It is possible to apply the IRGLS — Iterative Reweighted Generalized
Least Squares method. This is an improvement of the Estimated Generalized
Least Squares (EGLS) procedure which iterates using updated values of Vi(β̂, θ̂i)
to wash out any inefficiency associated with the initial estimates of β and θi.
At each iterationVi is updated using current estimates of the parameters. IRGLS
may be applied to small or moderate samples (Vonesh and Chinchilli [7]).

Let θ = (θ1, ..., θM ) and τ = (β,θ). IRGLS corresponds to solving a set of
generalized estimating equations (Liang and Zeger [3]):

U(τ ) =

M
∑

i=1

Ui(β, θi) = 0 ,

or

M
∑

i=1

{

DT
i (β, θi)V

−1
i (β, θi)

(

yi − µi(β, θi)
)

}

= 0 ,(3.3)

where Di(β, θi)=
∂µi(β, θi)

∂(β, θi)T
and µi=E(Yi). A solution to (3.3) can be obtained

using the Gauss–Newton algorithm whereby estimates of τ are updated as

τ̂ (t+1) = τ̂ (t) +Ω(τ̂ (t))U(τ̂ (t)) ,

with

Ω(τ̂ (t)) =

[

M
∑

i=1

DT
i (β̂

(t)
, θ̂

(t)
i ) V−1

i (β̂
(t)
,θ̂

(t)
i ) Di(β̂

(t)
, θ̂

(t)
i )

]−1

.

3.2. Inference and asymptotic properties

It is known (Vonesh and Chinchilli [7]) that the τ IRGLS estimator, under
regularity conditions that are usually satisfied, is asymptotically strongly con-
sistent and has a Normal asymptotic distribution with mean zero and variance
matrix given by:

Ω(τ̂ ) = var(τ̂ ) =

[

M
∑

i=1

DT
i (β, θi)V

−1
i (β, θi)Di(β, θi)

]−1

.

In terms of inference var(τ̂ ) is replaced by

Ω̂(τ̂ ) =

[

M
∑

i=1

DT
i (β̂, θ̂i)V

−1
i (β̂, θ̂i)Di(β̂, θ̂i)

]−1

.
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To protect against possible misspecification of Vi(β, θi) one can use, if
necessary, robust inference based on the robust estimator suggested by Liang
and Zeger [3],

Ω̂R(τ̂ ) = Ω̂(τ̂ )

[

M
∑

i=1

Ui(β̂, θ̂i)U
T
i (β̂, θ̂i)

]

Ω̂(τ̂ ) ,

where

Ui(β̂, θ̂i) = DT
i (β̂, θ̂i)V

−1
i (β̂, θ̂i)

(

yi − µi(β̂, θ̂i)
)

.

3.3. Computational issues and model linearization

To optimize the objective function (3.2), it is advisable, in practical and
computational terms, to find a linearization of the model that transforms the
expected value of the variable in a linear function of the parameters β, as it
simplifies the objective function and the variance-covariance matrix considered
in it.

Let µij = E(Yij) = K(θi) exp{x
T
j β} and ηij = log(µij). Consider the new

random variable

ζij = ηij − log [K(θi)] + (Yij − µij)
dηij

dµij
;

then

E(ζij) = ηij − log [K(θi)] = xT
j β ,

which is linear in β.

Or

ζij = xT
j β + (Yij − µij)×

1

µij

= xT
j β +

Yij

K(θi) exp{xT
j β}

− 1 .

Let ζ be the N×1 vector, ζ =
[

ζT
1 ζT

2 ... ζT
M

]T
, ζi = [ζi1 ζi2 ... ζini

]T ,
i = 1, ...,M and W the block diagonal variance-covariance matrix in ζ,
W =

⊕M
i=1 Wi, where Wi is a matrix ni×ni, symmetric, with generic element

wjk. For each group i, i = 1, ...,M and j = 1, ..., ni,

wjj = var(ζij)

=

[

1

K(θi) exp{xT
j β}

]2

var(Yij)

=
C(θi)

[K(θi)]
2 +

1

K(θi) exp{xT
j β}

.
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On the other hand, for j 6= k in the i group,

wjk = cov(ζij , ζik)

=
cov(Yij , Yik)

[

K(θi) exp{xT
j β}

] [

K(θi) exp{xT
k β}

]

=
C(θi)

[K(θi)]
2 .

The minimization problem (3.2) becomes equivalent to,

min(ζ −Xβ)T W−1(ζ −Xβ) ,(3.4)

where X is a model matrix of order N×p, ζ is a N×1 vector, ζ = [ζT
1 ζT

2 ... ζT
M ]

T ,

ζi = [ζi1 ζi2 ... ζini
]T , i = 1, ...,M and W =

M
⊕

i=1
Wi, Wi = [wjk]j,k=1,...,ni

, with

wjj =
C(θi)

[K(θi)]
2 +

1

K(θi) exp{xT
j β}

,

wjk =
C(θi)

[K(θi)]
2 , j 6= k .

The following algorithm is proposed.

Algorithm:

1. Let t = 0. Obtain initial estimates for β, β̂
(0)
.

A log-linear model considering all variables as independent can be used, so
that,

logµ = Xβ ,

where µ = E(Y), Y is the N×1 vector of all variables, each obeying a
Poisson law with mean µij , i=1, ...,M, j=1, ..., ni, X is a model matrix of
order N×p, and β is a p×1 vector of unknown parameters to be estimated,

considering in β all the main effects of the model. Thereby β̂
(0)
is found

and it will be used in 4.

2. Obtain initial estimates for θi, θ̂
(0)
i , i=1, ...,M.

The estimates can be initialized near zero, or can be obtained by finding the
Ordinary Least Squares estimates θ̂i, that minimizes the objective function

M
∑

i=1

(

yi −K(θi) exp{Xiβ̂
(0)
}
)T (

yi −K(θi) exp{Xiβ̂
(0)
}
)

,

where β̂
(0)
was found in 1.
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3. Compute K
(t)
i =K(θ̂

(t)
i ), C

(t)
i =C(θ̂

(t)
i ), following (3.1) and also A

(t)
i =

C
(t)
i

(K
(t)
i )2

,

i=1, ...,M.

4. Compute

ζ̂
(t)
ij = xT

j β̂
(t)
+

yij

K
(t)
i exp{xT

j β̂
(t)
}
− 1 , i = 1, ...,M, j = 1, ..., ni ,

Ŵ
(t)
i = Jni

A
(t)
i + diag

{

1

K
(t)
i exp{Xiβ̂

(t)
}

}

, i = 1, ...,M ,

(where Jni
is a square ni dimensional matrix of ones and Xiβ is a ni×1

vector with elements xT
j β, j=1, ..., ni),

Ŵ(t) = diag
{

Ŵ
(t)
1 , ...,Ŵ

(t)
M

}

,

and
Σ̂(t) =

[

Ŵ(t)
]−1

.

5. Update β̂
(t+1)

and θ̂
(t+1)
i that minimize

(ζ −Xβ)T Σ̂(t)(ζ −Xβ) ,

where X is a model matrix of order N × p, ζ is a N × 1 vector,

ζ =
[

ζT
1 ζT

2 ... ζT
M

]T
, ζi= [ζi1 ζi2 ... ζini

]T , i = 1, ...,M.

6. Let t = t+ 1. Iterate steps 3 to 6 until the estimates have all stabilized.

Notice that the algorithm uses the IRGLS estimation.

In the final model the fitted values are given by

ŷij = K(θ̂i) exp{x
T
j β̂} , i = 1, ...,M, j = 1, ..., ni .

Note the i-group effect K(θi) present in the fitted values.

In summary, in this proposed modelling strategy, the starting point is
a conditional model in Yi|bi, considering log [E(Yi|bi)] = Xiβ + 1ni

bi. A distri-
bution for the random variable bi is introduced that allows correlation structure
representation within the groups. The parameters are then estimated using the
IRGLS method, based on Y moments.
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4. A MODELLING EXAMPLE WITH WATER SAMPLES

The total number of coliforms (rod-shaped bacteria) in a water sample
is measured in MPN/100ml, number of coliforms (in thousands) per 100 ml of
water.

A set of grouped data is analyzed here. The number of coliforms in three
collection spouts was registered in Lis river of the Leiria district, Portugal, in 54
occasions [source: INAG, Portugal].

The data is presented in the following graphics by temperature and pH

which are the covariates of the modelling process.
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Figure 1: Number of coliforms by temperature.
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Figure 2: Number of coliforms by pH.
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Observing the earlier graphics no systematic pattern is observed. However,
looking at Figure 3, which represents the same observations per group — Amor,
Milagres and Ponte das Mestras collection spouts, a dependence between the res-
ponse variable and the covariates is highlighted. It may be also noticed that the
response behaves differently for different groups.
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Figure 3: Number of coliforms by temperature and captation.
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Figure 4: Number of coliforms by pH and captation.

In fact, at Ponte das Mestras and Milagres, the number of coliforms seems to
follow the temperature and pH increase. However, at Amor, this is not observed.
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The response variable, the number of coliforms, is a discrete variable (count-
ing), suggesting a model based on some Poisson distribution and the method
described earlier was implemented. This was done using S language and a small
program that supports the method.

The modelling process will start with a log-linear Poisson model (point
1 of the proposed algorithm) considering all the variables as independent, and
therefore, β initial values are obtained.

Considering the linear predictor

β0 + β1 temp+ β2 pH ,

β̂0 = 1.22, β̂1= 0.01 and β̂2 = 0.23 are obtained, where temp is the temperature

covariate. Overdispersion is observed in the model.

The θi, i = 1, 2, 3, parameters were initialized near zero.

It was observed that models with an intercept (β0) have worst conver-
gence, so all the models were considered without this parameter. Starting from

β̂
(0)
1 = 0.02 and β̂

(0)
2 = 0.39, which were obtained from a log-linear Poisson model

without intercept, the proposed methodology leads to the estimates

β̂1 = 0.03, β̂2 = 0.14, θ̂1 = 0.77, θ̂2 = 0.98 and θ̂3 = 1.00 ,

where θ1 comes from Amor, θ2 from Milagres and θ3 from Ponte das Mestras.

However the β̂1 and β̂2 standard errors were estimated as 0.02 and 0.09,
respectively, so they are not jointly significant. The θi standard errors were all
significant.

So the models whose linear predictor has only one covariate, temperature
or pH, will be compared.

Model
with linear predictor

Objective function (3.4)
value

β1 temp 78.10
β2 pH, 81.77

The model with the temperature covariate is chosen, as it has a lower value
for function (3.4). The following estimates and standard errors were obtained in
the selected model.

Parameter Referred to Estimate Standard Error
β1 temperature 0.04 0.01
θ1 Amor 1.16 0.16
θ2 Milagres 1.49 0.13
θ3 Ponte das Mestras 1.48 0.14

The normalized residuals are concentrated in [−2.04, 1.16].
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It can be noticed that the water temperature influences the number of
coliforms, because the coefficient of the temperature covariate is significant, al-
though it has a low estimate (β̂1 = 0.04). The number of coliforms increases
with water temperature, but not in the same way in all the spouts. In fact, in
Amor this is not evident, thereby the correspondent θi estimate is the lower one.
Probably, in this group, there are some other factors important to the coliform
concentrations that were not considered here.

The select quasi-log-linear model, based on the quasi-likelihood function
(as overdispersion is present), has linear predictor β0 + β2 pH, considering pH
the most significant covariate, but this model has no better fit than the mixed
Poisson–Poisson considered in this paper.

As a result, clusters in data should not be ignored. It is possible to model
grouped count data with the mixed Poisson–Poisson model and the algorithm
proposed above. This methodology estimates the fixed and covariance parameters
respecting the between groups correlations structure. Using the IRGLS method
it becomes possible to obtain consistent estimates.
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