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Abstract:

• In this paper we analyze forecasting errors made by random coefficients bivariate
integer-valued autoregressive models of order one. These models are based on the
thinning operator to support discreteness of data. In order to achieve a comprehensive
analysis, we introduce a model that implements a binomial as well as a negative
binomial thinning operator. There are two components of the model: survival and
innovation. Forecasting errors made by each of these two sources of uncertainty are
unobservable in the classic way. Thus, we derive predictive distributions from which
we obtain the expected value of each component of the model. We provide an example
of residual analysis on real data.
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Residual Analysis with Bivariate INAR(1) Models 351

1. INTRODUCTION

An integer-valued time series is a sequence of integer data points measured

at uniform time intervals. Such series are present in many fields of sciences. For

example, in medicine the number of infected persons represents such a series, in

finance the number of defaults, in criminology the number of committed crimes,

in biology the size of the population of a species, etc. Thus, modelling integer-

valued time series and better understanding their nature is a point of interest

for many researchers. Some of the first models for non-negative integer-valued

time series were introduced by [7], [1] and [2]. These models have autoregressive

structure, where the autoregression is achieved through the thinning operator.

Models with the full autoregressive-moving average structure were investigated

in [8]. Following these ideas, many models have been developed. A survey on

integer-valued autoregressive processes can be found in [15].

While these are models with constant coefficients, [17] defined an integer-

valued random coefficient model. Using the approach proposed by [3], [12] in-

troduced a bivariate integer-valued random coefficient model. The dependence

between processes that this model consists of is achieved through their autore-

gressive components, which are based on the negative binomial thinning opera-

tor. Some modifications of this model regarding the thinning operator and the

marginal distribution are discussed in [9]. In this paper we focus on analyzing

prediction errors made by these types of models. Since these models are composed

of two components, survival and innovation, there are two sources of uncertainty.

We try to estimate the portion of prediction error made by the survival and by

the innovation component separately. Since these residuals are unobservable, we

derive predictive distribution and calculate expected values of these components.

Some aspects of predictive distributions for univariate models were presented in

[13] and [14]. Residual analysis for univariate models was discussed in [5] and

[16]. We extend the research on the bivariate models with random coefficients.

In addition, to cover two types of thinning operators, we introduce a bi-

variate model whose survival components are generated by different thinning op-

erators, namely, binomial and negative binomial. This mix of thinning operators

makes it possible to model two dependent processes whose survival parts have

different properties. While the survival component generated by the negative

binomial thinning operator does produce new members of the series, the other

one generated by the binomial thinning does not and new members depends only

on the innovation component. To motivate the model we consider two data se-

ries: monthly count of motor vehicle thefts and monthly count of drug dealing

activities. The first series is characterized by the fact that offended persons are

not provoked to commit the same criminal act, but the second series is to a large

extent generated by itself since some amount of drugs has been resold many times.
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The paper is organized as follows. In Section 2 we discuss the general

form of bivariate integer-valued autoregressive models of order one with random

coefficients. Section 3 introduces a bivariate model with both, binomial and

negative binomial, thinning operators. We discuss residual analysis in Section 4.

Real data modelling is considered in Section 5.

2. BIVARIATE INAR MODELS

In this section we state a general form of the random coefficient bivari-

ate integer-valued autoregressive models of order one (BINAR(1)). In order to

define a model suitable for the time series of count, we use the thinning oper-

ators. The binomial thinning operator is defined as α1 ◦ X =
∑X

i=1 Bi, where

X is a non-negative integer-valued random variable and {Bi} is a sequence of

i.i.d. Bernoulli random variables with mean parameter α1. The negative bino-

mial thinning operator is defined as α1 ∗X =
∑X

i=1 Gi, where {Gi} is a sequence

of i.i.d. geometric random variables with mean parameter α1. For the time being

we will not specify the thinning operator in the definition of BINAR(1) model.

Let us denote a nonnegative bivariate time series of counts by Zn and introduce

a random matrix An =

[

U1n U2n

V1n V2n

]

, whose elements have the joint probability

mass function defined as P (U1n = α1, U2n = 0) = p = 1 − P (U1n = 0, U2n = α1)

and P (V1n = α2, V2n = 0) = q = 1 − P (V1n = 0, V2n = α2), where α1, α2 ∈ (0, 1)

and p, q ∈ [0, 1]. Then, the structure of BINAR(1) model is given by

(2.1) Zn = An ⋆ Zn−1 + en, n ≥ 1,

where {en} represents the innovation process, which is composed of two indepen-

dent series. The thinning operator is denoted with ⋆ and it acts as the matrix

multiplication. The two processes that figure in Zn are mutually dependent and

their dependence is achieved trough autoregressive components, which are named

survival processes. Coefficients that figure in (2.1) are random variables, which

make this model significantly different from the similar multivariate INAR models

(such as the one presented in [4] and [6]). Notice that

E(An) = A =

[

α1p α1(1 − p)
α2q α2(1 − q)

]

.

It is easy to show that E(An ⋆ Zn) = AE(Zn). Following the discus-

sion from [6], I − A is a non singular matrix if all eigenvalues of A are in-

side the unit circle, which is proved for matrix A in [12]. All this implies

that E(Zn) = (I − A)−1E(en). Since (I − A)−1 is a matrix of finite values,

E(Z0) < ∞ iff E(e1) < ∞. The conditional expectation for process (2.1) is
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E(Zn+k|Zn) = AkZn +(I−A)−1(I−Ak)(I−A)µ, where µ = E(Zn). The cor-

relation structure of BINAR(1) model is given as Cov(Zn+k, Zn) = AkV ar(Zn),

k ≥ 0. Since the eigenvalues of matrix A are inside the unit circle, covariance

tends to zero and conditional expectation tends to the unconditional one, as k

tends to infinity. More details on the correlation structure can be found in [9].

3. MODEL WITH MIXED THINNING OPERATORS

In this section we introduce a new bivariate time series model {(X1,n,X2,n)},

n ∈ N0, where the two time series are dependent but evolve under different thin-

ning operators. Let {X1,n} and {X2,n} be the two nonnegative integer-valued

time series with probability mass function P (Xi,n = k) = µk/(1 + µ)k+1, k ≥ 0,

µ > 0 and i ∈ {1, 2}. A mixed geometric bivariate autoregressive process of order

one (BVMIXGINAR(1)) is given by the following equations

X1,n =

{

α1 ◦ X1,n−1 + ε1,n, w.p. p,
α1 ◦ X2,n−1 + ε1,n, w.p. 1 − p,

(3.1)

X2,n =

{

α2 ∗ X1,n−1 + ε2,n, w.p. q,
α2 ∗ X2,n−1 + ε2,n, w.p. 1 − q,

(3.2)

where {ε1,n} and {ε2,n} are i.i.d. sequences. The random vectors (ε1,n, ε2,n)

and (X1,m, X2,m) are independent for all m < n. The thinning operators are

defined in previous section and the counting series in α1 ◦X1,n, α1 ◦X2,n, α2 ∗X1,n

and α2 ∗ X2,n are mutually independent for all n ∈ N0 and are also independent

of innovation processes {ε1,n} and {ε2,n}. The distributions of the innovation

processes are given by the following theorem.

Theorem 3.1. Let X1,0 and X2,0 have the Geom( µ
1+µ

) distribution, where

µ > 0. The stationary bivariate time series {(X1,n, X2,n)}n∈N0
given by equations

(3.1) and (3.2) has Geom( µ
1+µ

) marginal distributions if and only if the processes

{ε1,n} and {ε2,n} are distributed as

ε1,n
d
=

{

Geom( µ
1+µ

), w.p. 1 − α1,

0, w.p. α1,
(3.3)

ε2,n
d
=

{

Geom( µ
1+µ

), w.p.
µ(1−α2)−α2

µ−α2
,

Geom( α2

1+α2
), w.p. α2µ

µ−α2
,

(3.4)

where α1 ∈ (0, 1), α2 ∈ (0, µ
1+µ

] and p, q ∈ [0, 1].

Proof: Let us assume that the stationary time series {(X1,n, X2,n)} has

the geometric marginal distribution Geom( µ
1+µ

), µ > 0. Since the random vari-

ables X1,n and X2,n are equal in distribution, considering probability generating
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functions we obtain ΦX1,n
(s) = Φε1,n

(s)ΦX1,n−1
(ΦBi

(s)), which follows from (3.1).

From their geometric distribution we obtain

Φε1,n
(s) =

1 + µα1(1 − s)

1 + µ(1 − s)
= α1 + (1 − α1)

1

1 + µ − µs
,

which proves equation (3.3). In a similar manner we derive the probability gen-

erating function for ε2,n and obtain

Φε2,n
(s) =

(1 + µ)(1 + α2 − α2s) − µ

(1 + µ − µs)(1 + α2 − α2s)

=
µ(1 − α2) − α2

µ − α2

1

a + µ − µs
+

α2µ

µ − α2

1

1 + α2 − α2s
.

Now, equation (3.4) follows under the constraints given in [11] for NGINAR(1)

model.

Conversely, let us assume that the distributions of the random variables ε1,n

and ε2,n are given by equations (3.3) and (3.4), respectively. Since X1,0
d
= X2,0

d
=

Geom(µ/(1 + µ)), we obtain

ΦX1,1
(s) = ΦX1,0

(1 − α1 + α1s)Φε1,1
(s)

=
1

1 + µ − µ(1 − α1 + α1s)

1 + µα1(1 − s)

1 + µ(1 − s)
=

1

1 + µ − µs

and

ΦX2,1
(s) = ΦX2,0

(

1

1 + α2 − α2s

)

Φε2,1
(s)

=
1

1 + µ(1 − 1
1+α2−α2s

)
·

(1 + µ)(1 + α2 − α2s) − µ

(1 + µ − µs)(1 + α2 − α2s)
=

1

1 + µ − µs
.

Thus, X1,1 and X2,1 have geometric distribution with parameter µ/(1+µ). Using

mathematical induction we can prove that X1,n
d
=X2,n

d
=Geom(µ/(1+µ)) for any

n ∈ N0.

Even if we assume that X1,0 and X2,0 have the same arbitrary distribution,

X1,n as well as X2,n converges to geometric distribution Geom(µ/(1 + µ)), as

n → ∞, if random variables ε1,n and ε2,n have the distribution given by Theorem

3.1. This can be proved with the following two equations. The first equation is

ΦX1,n
(s) = ΦX1,n−1

(1 − α1 + α1s)Φε1,n
(s)

= ΦX1,0
(1 − αn

1 + αn
1s)

n−1
∏

k=0

1 + µαk+1
1 (1 − s)

1 + µαk
1(1 − s)

= ΦX1,0
(1 − αn

1 + αn
1s)

1 + µαn
1 (1 − s)

1 + µ(1 − s)

n→∞
−−−→

1

1 + µ − µs
.
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Also,

ΦX2,n
(s) = ΦX2,n−1

(

1

1 + α2 − α2s

)

Φε2,n
(s)

= ΦX2,0

(

1−α2+α2(1−s)(1−αn−1
2 )

1−α2+α2(1−s)(1−αn
2 )

)n−1
∏

k=0

Φε2,k

(

1−α2+α2(1−s)(1−αk−1
2 )

1−α2+α2(1−s)(1−αk
2)

)

= ΦX2,0

(

1−α2+α2(1−s)(1−αn−1
2 )

1−α2+α2(1−s)(1−αn
2 )

)

×
(1 − α2

2(1 − s) − α2s)(1 + αn
2µ(1 − s) − αn+1

2 (1 + µ)(1 − s) − α2s)

(1 − αn+1
2 (1 − s) − α2s)(1 + α2µ(1 − s) − α2

2(1 + µ)(1 − s) − α2s)

n→∞
−−−→

1

1+µ−µs
.

Random variables X1,n and X2,n are independent for known X1,n−1 and

X2,n−1. Thus, the conditional distribution of (X1,n, X2,n), given (X1,n−1, X2,n−1),

is defined as

P (X1,n = x, X2,n = y|X1,n−1 = u, X2,n−1 = v)

= P (X1,n =x|X1,n−1 =u, X2,n−1 =v)P (X2,n =y|X1,n−1 =u, X2,n−1 =v).

The conditional probability mass function of the random variable X1,n for given

X1,n−1 and X2,n−1 has the form

P (X1,n = x|X1,n−1 = u, X2,n−1 = v)

= p

min(x,u)
∑

k=0

P (ε1,n =x−k)P (α1◦X1,n−1 =k|X1,n−1 =u)

+ (1 − p)

min(x,v)
∑

k=0

P (ε1,n =x−k)P (α1◦X2,n−1 =k|X2,n−1 =v).(3.5)

Similarly, for X2,n the form is

P (X2,n = y|X1,n−1 = u, X2,n−1 = v)

= q

y
∑

k=0

P (ε2,n =y−k)P (α2∗X1,n−1 =k|X1,n−1 =u)

+ (1−q)

y
∑

k=0

P (ε2,n =y−k)P (α2∗X2,n−1 =k|X2,n−1 =v).(3.6)

The random variables α1 ◦X and α2 ∗X under the condition X = u have binomial

and negative binomial distribution with parameters (u, α1) and (u, α2

1+α2
), respec-

tively (where the probability mass function for negative binomial distribution is

taken as P (α2 ∗ X = k|X = u) =
(

u+k−1
k

) αk
2

(1+α2)k+u ). Notice that the probability

mass functions for the innovation processes are, respectively,

P (ε1,n = x − k) = 1{x=k}α1 + (1 − α1)
µx−k

(1 + µ)x−k+1
,
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P (ε2,n = y − k) =
µ(1 − α2) − α2

µ − α2

µy−k

(1 + µ)y−k+1
+

α2µ

µ − α2

αy−k
2

(1 + α2)y−k+1
,

where 1A is the indicator function of a random event A.

The estimation of unknown parameters of the bivariate INAR(1) models

with random coefficients is discussed in details in [9]. We consider the conditional

maximum likelihood method for parameters estimation of the model presented in

this paper.

For the given values {(X1,k, X2,k)}k=0,n, we set the conditional likelihood

function as

L1(θ) =
n
∑

i=1

lnP (X1,i = x1,i, X2,i = x2,i|X1,i−1 = x1,i−1, X2,i−1 = x2,i−1, θ),

where θ = (α1, α2, p, q, µ) is a vector of unknown parameters. The probability

mass function is defined as a product of functions (3.5) and (3.6). The maximiza-

tion of the log-likelihood function is obtained by numerical procedure, which, in

our case, is conducted through the programming language R and the function

nlm.

4. RESIDUALS

The standard statistic used for determining a goodness of fit is obtained by

summing squared residuals. The residuals are obtained as a difference between

a value at time n and an expected value of the process in time n for the given

value at n − 1, i.e.,

rX1,n = X1,n − α1pX1,n−1 − α1(1 − p)X2,n−1 − µε1
,

rX2,n = X2,n − α2qX1,n−1 − α2(1 − q)X2,n−1 − µε2
,

where µεi
are the expected values of the random variables εi, i ∈ {1, 2}. Since

our process is composed of two sources of uncertainty (survival process and in-

novation process) it would be useful to track residuals of each source separately.

This idea for one-dimensional INAR process is presented in [5] and [16], while

we extend it for the bivariate case where the coefficients of the model are ran-

dom variables. The residual analysis for a bivariate model is also investigated

in [10], but the model has constant coefficients, independent survival processes

and dependent innovation processes, which makes it significantly different from

BVMIXGINAR(1) model.

If we introduce the two pairs of random variables (U1n, U2n) and (V1n, V2n)
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defined in Section 2, we can present BVMIXGINAR(1) model as

X1,n = U1n ◦ X1,n−1 + U2n ◦ X2,n−1 + ε1,n,(4.1)

X2,n = V1n ∗ X1,n−1 + V2n ∗ X2,n−1 + ε2,n.(4.2)

The process in this form is more tractable in terms of survival and innovation

components. Therefore, we get two sets of residuals: rsur
X1,n = U1n ◦X1,n−1 +U2n ◦

X2,n−1 − α1pX1,n−1 − α1(1 − p)X2,n−1 and rin
X1,n = ε1,n − µε1

(analogous for the

process {X2,n}). The problem that arises here is that the binomial thinning

component and the innovation component are not observable. Thus, we have

to consider their conditional expectation with respect to the σ-algebra gener-

ated by vectors (X1,n, X2,n), (X1,n−1, X2,n−1), ..., (X1,0, X2,0). Since the process

{(X1,n, X2,n)} is lag-one dependent, we investigate conditional expectations with

respect to the σ-algebra generated only with random vectors at moments n and

n − 1, Fn(X1,n, X2,n, X1,n−1, X2,n−1).

Let us introduce the notations Pu,v(A) = P (A|X1,n−1 = u, X2,n−1 = v) and

Px1,x2,u,v(A) = P (A|X1,n = x1, X2,n = x2, X1,n−1 = u, X2,n−1 = v). The condi-

tional probability mass function of the first addend in equation (4.1) with respect

to the σ-algebra Fn, for m, x, y, u, v ∈ N0, is

Px1,x2,u,v(U1n ◦ X1,n−1 = m)

=
Pu,v(U1n ◦ X1,n−1 = m, U1n ◦ X1,n−1 + U2n ◦ X2,n−1 + ε1,n = x1)

Pu,v(X1,n = x1)

=
1

Pu,v(X1,n = x1)
[pPu,v(α1 ◦ X1,n−1 = m, 0 ◦ X2,n−1 + ε1,n = x1 − m)

+ (1 − p)Pu,v(0 ◦ X1,n−1 = m, α1 ◦ X2,n−1 + ε1,n = x1 − m)]

=
1

Pu,v(X1,n = x1)
[pP (Bin(u, α1) = m)P (ε1,n = x1 − m)

+ (1 − p)1{m=0}P (Bin(v, α1) + ε1,n = x1 − m)],

where Bin(u, α) denotes a random variable with binomial distribution and pa-

rameters u i α. In a similar manner, for r, k, s ∈ N0, we obtain the following three

equations,

Px1,x2,u,v(U2n◦X2,n−1 =r) =
1

Pu,v(X1,n =x1)
[pI{r=0}P (Bin(u, α1)+ε1,n =x1)

+ (1−p)P (Bin(v, α2) = r)P (ε1,n = x1 − r)],

Px1,x2,u,v(V1n∗X1,n−1 =k) =
1

Pu,v(X2,n =x2)
[qP (NB(u, α2)=k)P (ε2,n =x2−k)

+ (1−q)I{k=0}P (NB(v, α2)+ε2,n =x2)],

Px1,x2,u,v(V2n ∗ X2,n−1 = s) =
1

Pu,v(X2,n =x2)
[qI{s=0}P (NB(u, α2)+ε2,n =x2)

+(1−q)P (NB(v, α2)=s)P (ε2,n =y − s)].
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In the last two equations the notation NB(u, α) stands for a random variable

with negative binomial distribution with parameters u and α
1+α

.

With these results in mind and applying some algebra, we obtain the fol-

lowing equations

E(Uin ◦ Xi,n−1|Fn) =

ui
∑

j=1

jPx1,x2,u,v(Uin ◦ Xi,n−1 = j)

=
pi

Pu,v(X1,n = x1)

min(ui,x1)
∑

j=1

j

(

ui

j

)

αj
1(1 − α1)

ui−jP (ε1,n = x1 − j)

=
α1piui

Pu,v(X1,n = x1)

min(ui−1,x1−1)
∑

j=0

(

ui−1

j

)

αj
1(1−α1)

ui−1−jP (ε1,n = x1−1−j)

=
α1piui

Pu,v(X1,n = x1)
P ′

i,ui−1(α1 ◦ Xi,n−1 + ε1,n = x1 − 1)

and

E(Vin ∗ Xi,n−1|Fn) =

x2
∑

j=1

jPx1,x2,u,v(Vin ∗ Xi,n−1 = j)

=
qi

Pu,v(X2,n = x2)

x2
∑

j=1

j

(

ui + j − 1

j

)

αj
2

(1 + α2)ui+j
P (ε2,n = x2 − j)

=
α2qiui

Pu,v(X2,n = x2)

x2−1
∑

j=0

(

ui + 1 + j − 1

j

)

αj
2

(1 + α2)ui+1+j
P (ε2,n = x2 − 1 − j)

=
α2qiui

Pu,v(X2,n = x2)
P ′

i,ui+1(α2 ∗ Xi,n−1 + ε2,n = x2 − 1),

where we introduced the notations P ′
i,x(A) = P (A|Xi,n−1 = x), i = 1, 2, p1 = p,

p2 = 1 − p, q1 = q, q2 = 1 − q, u1 = u and u2 = v. Thus, we can conclude that

the conditional expectation of the survival part of the process (4.1) is calculated

as

E(U1n◦X1,n−1+U2n◦X2,n−1|Fn)=pE(α1◦X1,n−1|Fn)+(1−p)E(α1◦X2,n−1|Fn)

=
1

Pu,v(X1,n = x1)
· [α1puP1,u−1(α1 ◦ X1,n−1 + ε1,n = x1 − 1)

+α1(1 − p)vP2,v−1(α1 ◦ X2,n−1 + ε1,n = x1 − 1)]

and for the process (4.2) as

E(V1n∗X1,n−1+V2n∗X2,n−1|Fn)=qE(α2∗X1,n−1|Fn)+(1−q)E(α2∗X2,n−1|Fn)

=
1

Pu,v(X2,n = x2)
· [quα2P1,u+1(α2 ∗ X1,n−1 + ε2,n = x2 − 1)

+(1 − q)vα2P2,v+1(α2 ∗ X2,n−1 + ε2,n = x2 − 1)] .
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We have defined the innovation processes such that (ε1,n, ε2,n) is independent of

(X1,m, X2,m) for m < n. Since we observed the conditional expectation at time

n with respect to the σ-algebra Fn, we need to pay special attention here. The

conditional probability mass functions are

Px1,x2,u,v(ε1,n = x1 − k)=
P (ε1,n = x1 − k)

Pu,v(X1,n = x1)

×[pPu,v(α1 ◦ X1,n−1 =k)+(1−p)Pu,v(α1 ◦ X2,n−1 =k)]

and

Px1,x2,u,v(ε2,n = x2 − k)=
P (ε2,n = x2 − k)

Pu,v(X2,n = x2)

×[qPu,v(α2∗X1,n−1 =k)+(1−q)Pu,v(α2∗X2,n−1 =k)] .

Hance, the corresponding conditional expectations are

E(ε1,n|Fn) =
1

Pu,v(X1,n = x1)

×[p (x1P1,u(α1◦X1,n−1+ε1,n =x1)−α1uP1,u−1(α1◦X1,n−1+ε1,n =x1−1))

+ (1−p) (x1P2,v(α1◦X2,n−1+ε1,n =x1)−α1vP2,v−1(α1◦X2,n−1+ε1,n =x1−1))]

and

E(ε2,n|Fn) =
1

Pu,v(X2,n = x2)

×[q (x2P1,u(α2∗X1,n−1+ε2,n =x2)−α2uP1,u+1(α2∗X1,n−1+ε2,n =x2−1))

+ (1−q) (x2P2,v(α2∗X2,n−1+ε2,n =x2)−α2vP2,v+1(α2∗X2,n−1+ε2,n =x2−1))] .

Now we can distinguish between the error from the survival and the error

from the innovation process. If we sum these two values we obtain the following

results

rsurr
X1,n + rin

X1,n =E(pα1 ◦ X1,n−1 + (1 − p)α1 ◦ X2,n−1|X1,n, X1,n−1)

− α1pX1,n−1 − α1(1 − p)X2,n−1 + E(ε1,n|X1,n, X1,n−1) − µε

=E(pα1 ◦ X1,n−1 + (1 − p)α1 ◦ X2,n−1 + ε1,n|X1,n, X1,n−1)

− α1pX1,n−1 − α1(1 − p)X2,n−1 − µε1,n

=X1,n − α1pX1,n−1 − α1(1 − p)X2,n−1 − µε1
= rX1,n.(4.3)

We can conclude that the sum of these two error terms is equal to the error term

obtained by using conditional expectation for the process {X1,n} with respect to

σ-algebra Fn−1. The conclusion is analogous for the process {X2,n}.

5. APPLICATION

In this section, we discuss the characteristics of data for which BVMIXGI-

NAR(1) model is the most adequate. We compare results of BVMIXGINAR(1)
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model with results of some other bivariate models. At the end of the section we

analyze prediction errors of BVMIXGINAR(1) model and suggest how the model

can be improved.

We analyze data from the Pittsburgh police department number 407, which

can be found on the website www.forecastingprinciples, where we focus on the

number of stolen vehicles (MVTHEFT) and the number of reported drug activ-

ities (C DRUG) per month from January 1990 to December 2001. The average

values of these two series are 1.74 and 1.5, and the variances are 2.98 and 5.01,

respectively. The correlation between the series is 0.22. The bar plots and cor-

relograms are given in Figure 1. Both corelograms show the presence of lag 1

autocorrelation. Although there are some autocorrelations on higher lags for se-

ries C DRUG, the value on the first lag is dominant. High positive correlation

between the series, overdispersion and the first lag autocorrelation imply that

BVMIXGINAR(1) might be adequate.

Figure 1: Data series and autocorrelation function for MVTHEFT and
C DRUG series.

We compare BVMIXGINAR(1) model with models BVNGINAR(1) intro-

duced in [12], and BVPOINAR(1) introduced in [9], since both of these models

have random coefficients and a similar structure. For the three models, we com-

pare their values of the log-likelihood functions and the root mean square errors

(RMS) made by one step ahead prediction. The results are presented in Table 1.
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Table 1: Parameter estimates of INAR models, root mean square errors
and the log-likelihood function for MVTHEFT and C DRUG
data series.

Model CML estimates
log- RMS RMS

likelihood MVTHEFT C DRUG

BVMIXGINAR(1)
α̂1 = 0.148(0.1), α̂2 = 0.472(0.095),

−477.51 1.695 1.990
p̂ = 0.469(0.325), q̂ = 0.02(0.08), µ̂ = 1.598(0.164)

BVNGINAR(1)
α̂1 = 0.242(0.166), α̂2 = 0.473(0.095),

−478.5 1.703 1.990
p̂ = 0.39(0.244), q̂ = 0.02(0.078), µ̂ = 1.604(0.171)

BVPOINAR(1)
α̂1 = 0.217(0.066), α̂2 = 0.41(0.055),

−516.62 1.701 1.998
p̂ = 0.328(0.172), q̂ = 0.068(0.066), λ̂ = 1.687(0.11)

According to the test results, BVMIXGINAR(1) is the most adequate for

these data. Notice that models with geometric distribution obtain higher values of

the likelihood function. BVMIXGINAR(1) achieves slightly higher log-likelihood

values than BVNGINAR(1) but much lower RMS for MVTHEFT series. Mod-

elling C DRUG series with geometric distribution where survival processes evolve

under negative binomial thinning provides the best results. RMS for C DRUG

are the same for BVMIXGINAR(1) and BVNGINAR(1). The improvement with

BVMIXGINAR(1) is with RMS for MVTHEFT. The assumption that one sur-

vival process evolves under binomial and the other survival process under negative

binomial thinning improves prediction performance. We need this mix of thin-

ning operators when we model two series with different behavior, as the case here.

Since once sold drugs are often resold, but once stolen vehicle cannot be stolen

again, we have here one process that is self-generated and one that is not.

The estimated parameters of BVMIXGINAR(1) indicate that drug activi-

ties influence the number of stolen vehicles in this area, while vice versa does not

hold since the value of parameter q is statistically equal to zero.

We continue with the prediction performance analysis by focusing on the

prediction errors made by the survival and innovation components separately. We

calculate these residuals and plot them to assess the adequacy of each component.

As given by equation (4.3), the sum of these two residuals is equal to the residuals

obtained by the usual definition. The residuals are presented in Figure 2. It can

be noticed that the residuals of the innovation processes are much higher than the

residuals of the survival processes, apart from the few cases of C DRUG series.

Further, the correlation between the two type of residuals is 0.425 for MVTHEFT

and 0.506 for C DRUG series. The correlation is positive but not as high as one

might expect. These results also add value to the model since an imprecise

prediction of one component can be absorbed by the prediction of the other

component. Another interesting point is a low correlation of only 0.11 between the

innovation processes of the two series, which supports the structural assumption

that innovation processes are independent. Higher residuals generated by the
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innovation processes indicate that future work should focus on improving the

innovation processes.

Figure 2: Upper figure shows the residuals for MVTHEFT and lower for
C DRUG series.
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