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Abstract:

• We present a joint modeling approach for multiple imputation of missing continu-
ous and categorical variables using Bayesian mixture models. The approach extends
the idea of focused clustering, in which one separates variables into two sets before
estimating the mixture model. Focus variables include variables with high rates of
missingness and possibly other variables that could help improve the quality of the
imputations. Non-focus variables include the remainder. In this way, one can use a
rich sub-model for the focus set and a simpler model for the non-focus set, thereby
concentrating fitting power on the variables with the highest rates of missingness.
We present a procedure for specifying which variables with low rates of missingness
to include in the focus set. We examine the performance of the imputation proce-
dure using simulation studies based on artificial data and on data from the American
Community Survey.
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1. INTRODUCTION

Nonparametric Bayesian (NB) mixture models are useful tools for analyzing

complicated data ([13], [5], [14], [3], [2]). They are especially useful as engines for

multiple imputation (MI, [16], [11], [18], [9], [12], [10], [7]). NB mixture models

are flexible enough to capture complex relationships among the variables, which

is advantageous in MI contexts where one seeks to create completed datasets for

use in multiple analyses.

In many contexts, only a few variables have high rates of missingness, and

other variables are nearly or completely observed. This can create estimation

difficulties when using mixture models as MI engines. In particular, with modest

sample sizes and many variables, mixture models have the potential to fit the

distribution of some variables well at the expense of others ([6], [19], [4]). The

mixture model easily could expend its fitting power on the marginal distribution

of the (nearly) completely observed variables at the expense of the distribution

of the variables with high rates of missingness ([4],[20]), which could lead to poor

quality imputations.

To get around this, [4] suggest using mixture models with focused clus-

tering. Using the nomenclature in [4], the variables with high rates of missing

data are called focus variables, and the others are called remainder variables. In

focused clustering, the mixture model includes one set of cluster indicators for

focus variables and a second set for remainder variables. The two sets are con-

nected using a tensor factorization prior ([15]). In this way, one can use a rich

sub-model for the focus set and a simpler model for the remainder set, thereby

concentrating fitting power on the variables with the highest rates of missingness.

In this article, we enhance the focused clustering approach for MI to facili-

tate higher quality imputations. In particular, we expand the definition of focus

variables to include variables with high fractions of missing data and (nearly)

completely observed variables that could improve the quality of the imputations

for the variables with high rates of missingness; we label the resulting set with

F . We define the non-focus variables to include those not in F ; we label these as

NF . We specify the variables to include in F as follows. First, we automatically

put all variables with high fractions of missing values in F . For each variable

not automatically in F , we compute its mutual information with the variables

automatically in F . We move variables with high mutual information values into

F ; the remaining variables we put in NF . We make these decisions in one step,

including all variables with high mutual information values in F . We refer to this

strategy as Move. We use Stay to refer to the strategy of putting only variables

with high fractions of missingness in F . Because Move allows local dependence

among the variables with high amounts of missing values and (nearly) completely
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observed variables that can be used to predict the missing values, it can improve

accuracy and, in some cases, computational efficiency.

The remainder of this article is organized as follows. In Section 2, we

present the focused clustering model, which we abbreviate as HCMM-FNF for

hierarchically coupled mixture model with focus/non-focus variables, and mo-

tivate the potential benefits of Move. In Section 3, we illustrate when Move

engenders benefits using four simple simulation scenarios. In Section 4, we apply

the strategies to data sampled from the American Community Survey. In Section

5, we conclude with a brief summary of findings.

2. SPECIFICATION OF HCMM-FNF

We indicate continuous variables with Y and categorical variables with X.

We use a superscript F to denote focus variables and the superscript NF to

denote non-focus variables. Thus, Y (F ), X(F ), Y (NF ) and X(NF ) are the focus

continuous, focus categorical, non-focus continuous, and non-focus categorical

variables, respectively. For purposes of explaining HCMM-FNF, here we assume

that F and NF have been pre-specified.

For each observation i = 1, ..., n, we have Y
(F )
i =

(

Y
(F )
i1 , ..., Y

(F )

iq(F )

)T
,

X
(F )
i =

(

X
(F )
i1 , ..., X

(F )

ip(F )

)T
, Y

(NF )
i =

(

Y
(NF )
i1 , ..., Y

(NF )

iq(NF )

)T
, and X

(NF )
i =

(

X
(NF )
i1 ,

..., X
(NF )

ip(NF )

)T
. Let Di be a regression design matrix containing the main effects

of X
(F )
i , Y

(NF )
i , and X

(NF )
i . A similar regression approach is proposed by [15].

HCMM-FNF can be described as follows.
(

Y
(F )
i |Di, H

(FY )
i = a,−

)

∼ N
(

y
(F )
i |DiB

(F )
a ,Σ(F )

a

)

,(2.1)

Pr
(

X
(F )
i = x

(F )
i |H

(FX)
i = b,−

)

=

p(F )
∏

j=1

ψ
(F )(j)

b,x
(F )
ij

,(2.2)

(

Y
(NF )
i |H

(NF )
i = h,−

)

∼ N
(

y
(NF )
i |B

(NF )
h ,Σ

(NF )
h

)

,(2.3)

Pr
(

X
(NF )
i = c

(NF )
i |H

(NF )
i = h,−

)

∼

p(NF )
∏

j=1

ψ
(NF )(j)

h,x
(NF )
ij

,(2.4)

Pr
(

H
(FY )
i = a, H

(FX)
i = b |Zi = z

)

= φ(FY )
z,a φ

(FX)
z,b ,(2.5)

Pr
(

H
(NF )
i = h |Zi = z) = φ

(NF )
z,h ,(2.6)

Pr
(

Zi = z
)

= λz.(2.7)

H
(FY )
i ∈ {1, ..., k(FY )} is the mixture component index of Y

(F )
i . H(FX) ∈

{1, ..., k(FX)} is the mixture component index of X
(F )
i . H

(NF )
i ∈ {1, ..., k(NF )}
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is the mixture component index of Y
(NF )
i and X

(NF )
i . Zi ∈ {1, ..., k(Z)} is the

mixture component index of H
(F )
i and H

(NF )
i . B

(F )
a and Σ

(F )
a are the matrix

of regression coefficients and the covariance matrix in H
(FY )
i = a. ψ

(F )(j)

b,x
(F )
ij

is the

probability of X
(F )
ij = x

(F )
ij in H

(FX)
i = b. B

(NF )
h and Σ

(NF )
h are the mean vec-

tor and the covariance matrix in H
(NF )
i = h. Here, Σ

(NF )
h is a diagonal matrix

with non-zero entries
(

η
(NF )
h,1 , ..., η

(NF )

h,q(NF )

)

. Thus, the variables in Y
(NF )
i are con-

ditionally independent. Finally, ψ
(NF )(j)

h,x
(NF )
ij

is the probability of X
(NF )
ij = x

(NF )
ij in

H
(FX)
i = h.

To allow closed-form expressions for the posteriors, we take conjugacy into

consideration when specifying the prior distributions. For the multinomial vari-

ables, we have

ψ
(F )(j)
b

i.i.d.
∼ Dir

(

γ
(j)
b,1 , ..., γ

(j)

b,d
(F )
j

)

,(2.8)

ψ
(NF )(j)
h

i.i.d.
∼ Dir

(

γ
(j)
h,1, ..., γ

(j)

h,d
(NF )
j

)

(2.9)

(

γ
(j)
b,1 , ..., γ

(j)

b,d
(F )
j

)T
=
(

1/d
(F )
j , ..., 1/d

(F )
j

)T
,(2.10)

(

γ
(j)
h,1, ..., γ

(j)

h,d
(NF )
j

)T
=
(

1/d
(NF )
j , ..., 1/d

(NF )
j

)T
,(2.11)

For the multivariate normal variables, we have

Pr
(

B(F )
a ,Σ(F )

a

)

= N
(

B
(F )
0 , I, T

(F )
B

)

× IW
(

ν(F ),Σ(F )
)

,(2.12)

Pr
(

B
(NF )
h

)

= N
(

B
(NF )
0 , T

(NF )
B

)

,(2.13)

Pr
(

η
(NF )
h,j

)

= IG
(

ν(NF ), η
(NF )
j

)

,(2.14)

where T
(F )
B =Diag

(

τ
(F )
1 , ..., τ

(F )

q(F )

)

and T
(NF )
B =Diag

(

τ
(NF )
1 , ..., τ

(NF )

q(NF )

)

, and

τ
(F )
j

i.i.d.
∼ G

(

ατ (F ) , βτ (F )

)

,(2.15)

τ
(NF )
j

i.i.d.
∼ G

(

ατ (NF ) , βτ (NF )

)

.(2.16)

For the hyper-prior distributions, we have

(

B
(F )
0 ,Σ(F )

)

∼ N
(

0, I, σ
(F )2

0 I
)

×W
(

ω(F ),Σ
(F )
0

)

,(2.17)
(

B
(NF )
0

)

∼ N
(

0, σ
(NF )2

0 I
)

,(2.18)
(

η
(NF )
j

)

∼ IG
(

ν(NF ), η
(NF )
0

)

.(2.19)

We let ν(F ) = q(F ) +2, ν(NF ) = 2, ω(F ) = q(F )+1, ω(NF ) =1, Σ
(F )
0 = I/(q(F )+1),

and η
(NF )
0 = 1.
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The hierarchical priors for the latent variables follow a truncated version

of the stick-breaking construction of the Dirichlet process ([17], [8]). We have

φ(FY )
z,a = V (FY )

z,a

∏

l<a

(

1−V
(FY )
z,l

)

, V (FY )
z,a

i.i.d.
∼ B(1, β(FY )), V

(FY )

z,k(FY ) =1,(2.20)

φ
(FX)
z,b = V

(FX)
z,b

∏

l<b

(

1−V
(FX)
z,l

)

, V
(FX)
z,b

i.i.d.
∼ B(1, β(FX)), V

(FX)

z,k(FX) =1,(2.21)

φ
(NF )
z,h = V

(NF )
z,h

∏

l<h

(

1−V
(NF )
z,l

)

, V
(NF )
z,h

i.i.d.
∼ B(1, β(NF )), V

(NF )

z,k(NF ) =1,(2.22)

λz = Wz

∏

l<z

(1−Wl), Wz
i.i.d.
∼ B(1, α), Wk(Z) = 1.(2.23)

Details about the method of fitting the model can be found in Chapter 4 of [20].

Figure 1 is a graphical representation of HCMM-FNF. It is apparent that

dependence between X(F ) and all variables in NF is captured only by the low-

est level of mixture components, which could make accurate estimation of these

associations difficult. Dependence between Y (F ) and all variables in NF is cap-

tured via the component regressions and the lowest level of mixture components.

Figure 1: Graphical model representation of HCMM-FNF. X(F ), Y (F ),
X(NF ), and Y (NF ) are the observed categorical and continuous
variables. H(F ) and H(NF ) are the mixture components of F
and NF variables, respectively. Z is the mixture component
for H(F ) and H(NF ).

While this encodes dependence between Y (F ) and all variables in NF , we expect

HCMM-FNF to do a better job capturing the joint distribution among variables

within F than the relationships of Y (F ) with variables in NF , as the variables

within F share mixture components directly. This suggests that when the as-

sociations between some variables in Y (F ) and Y (NF ) are strong or nonlinear, it

may be advantageous to put all those variables in F . Similarly, when Y (F ) and
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X(NF ) are highly associated, moving X(NF ) to F may improve the estimation

of the associations between Y (F ) and X(NF ). Similarly, when some variables in

Y (NF ) are highly associated with X(F ), or when some variables in X(NF ) are

highly associated with X(F ), moving them to F could help the model estimate

the associations.

These observations motivate why Move could lead to improved estimation

over Stay. We now explore that possibility using simulation studies.

3. SIMULATION STUDIES

We investigate the potential of Move to improve the quality of imputations

using four simple scenarios. To describe each scenario, let (F0) index the focus

variables automatically included in F , i.e., those with high rates of missing values,

and (NF0) index the other variables. The sets of variables defined by (F0) and

(NF0), which we call F0 and NF0, respectively, are those used in Stay. In Move,

we put some variables in NF0 in F .

3.1. Simulation scenarios and evaluation metrics

In Scenario 1, we make variables in X(NF0) highly associated with some

variables in X(F0). We generate six binary X(NF0) variables from an arbitrarily

chosen joint distribution, constructed from a mixture of products of multino-

mial distributions. To create the dependencies between the categorical variables

in F0 and NF0, we generate four X(F0) variables according to Bernoulli dis-

tributions with Pr
(

X
(F0)
j = x |X

(NF0)
j = x

)

= 0.9, with x ∈ {1, 2} for j = 1, ..., 4.

Under Move, we put
(

X
(NF0)
1 , ..., X

(NF0)
4

)

in F .

In Scenario 2, we make some variables in Y (NF0) highly associated with

variables in X(F0). We generate six Y (NF0) variables from an arbitrary mixture

of normal distributions. We create four binary X(F0) variables from Bernoulli

distributions with

log

(

Pr
(

X
(F0)
j = 2 |Y

(NF0)
j = y

(NF0)
j

)

Pr
(

X
(F0)
j = 1 |Y

(NF0)
j = y

(NF0)
j

)

)

= y
(NF0)
j ,(3.1)

for j = 1, ..., 4. Under Move, we put
(

Y
(NF0)
1 , ..., Y

(NF0)
4

)

in F .

In Scenario 3, we make some variables in X(NF0) highly associated with

Y (F0). We generate six binaryX(NF0) variables from an arbitrarily chosen mixture

of products of multinomial distributions. We generate four Y (F0) according to
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(

Y
(F0)
j |X

(NF0)
j = x

(NF0)
j

)

∼ N
(

y
(F0)
j |x

(NF0)
j , 0.005

)

, with j = 1, ..., 4. Under Move,

we put
(

X
(NF0)
1 , ..., X

(NF0)
4

)

in F .

In Scenario 4, we make some variables in Y (NF0) highly associated with

Y (F0). We generate six Y (NF0) variables from an arbitrarily chosen mixture

of normal distributions. We generate four Y (F0) according to
(

Y
(F0)
j |Y

(NF0)
j =

y
(NF0)
j

)

∼ N
(

0.9y
(NF0)
j , 0.005

)

, for j = 1, ..., 4. Under Move, we put
(

Y
(NF0)
1 , ...,

Y
(NF0)
4

)

in F .

We use two evaluation metrics in the simulations. Let q
(s)
k,j,l be the kth quan-

tity of interest in the jth repeated sample for the lth imputation. The superscript

(s) indicates that the estimate is from Stay. Similarly, we define q
(m)
k,j,l for the

estimate obtained from Move. Notations without any superscripts and subscript

l, such as qk,j , stand for the quantities from the truth, defined as the complete

data without any missing values.

Metric I: We define the absolute differences as d
(s)
k,j,l = |q

(s)
k,j,l − qk,j | for

Stay and d
(m)
k,j,l = |q

(m)
k,j,l − qk,j | for Move. We compute d

(s)
k,j = (1/L)

∑L
l=1 d

(s)
k,j,l and

d
(m)
k,j = (1/L)

∑L
l=1 d

(m)
k,j,l. For each quantity, we conduct a paired t-test of the

hypothesis H0 : µ
(s)
k = µ

(m)
k , where µ

(s)
k is the population mean of d

(s)
k,j and µ

(m)
k

is the population mean of d
(m)
k,j . When the p-value is below 0.01, we consider the

difference between Stay and Move statistically significant.

Metric II: We define the percentage changes as ∆d
(s)
k,j,l =

q
(s)
k,j,l

−qk,j

qk,j
×100%

for Stay and ∆d
(m)
k,j,l =

q
(m)
k,j,l

−qk,j

qk,j
× 100% for Move. This metric is useful when the

quantities of interest are not in the same units. For each quantity k, we let

∆d
(s)
k = (1/JL)

∑J
j=1

∑L
l=1 ∆d

(s)
k,j,l and ∆d

(m)
k = (1/JL)

∑J
j=1

∑L
l=1 ∆d

(m)
k,j,l. We

then draw box plots for all {∆d
(s)
k } and {∆d

(m)
k } of the same type. For example,

we draw box plots of {∆d
(s)
k } and {∆d

(m)
k } for all possible correlations between

Y (F ) and Y (NF ).

3.2. Results

For each scenario, we generate 100 independent datasets comprising n =

1, 000 observations. For some variables, we make 50% of values missing completely

at random (MCAR) and automatically put them in F0; for the remainder, we

make only 1% MCAR and put them in NF0. In each incomplete dataset, we

fit HCMM-FNF with Move and Stay, using 25, 000 iterations as burn-in, which

is sufficient based on standard diagnosis of MCMC convergence. After burnin,

we run the chains for 1, 000 iterations, and from these keep L = 10 imputations

spaced 100 iterations apart.
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Figure 2 displays results from Scenario 1 for bivariate probabilities between

the categorical variables in F0 and NF0. Generally, the cell probabilities are es-

timated more accurately under Move than Stay. The improvements are most

noticeable in the probabilities involving
(

X
(NF0)
j , X

(F0)
j

)

where j = 1, ..., 4. De-

tailed investigation of the box plots for small values of Metric II indicates that

the percentage changes under Move are generally smaller than those under Stay.

Figure 2: Bivariate cell probabilities for Stay and Move in Scenario 1.
The left plot shows Metric I, where triangles correspond to p-
values below 0.01 when testing for average differences in the
two strategies. The right plot shows Metric II. The median of
the relative differences is 0.0 for both Stay and Move.

In Scenario 2, we examine the coefficients of the logistic regressions of each

X(F0) variable on each Y (NF0) variable. As evident in Figure 3, these coefficients

are estimated more accurately in Move than in Stay. The accuracy gains are

largest for the coefficients involving
(

X
(F0)
j , Y

(NF0)
j

)

where j = 1, ..., 4.

Figure 3: Coefficients in logistic regressions for Stay and Move in Scenario 2.
The left plot shows Metric I, where triangles correspond to p-values
below 0.01 when testing for average differences in the two strategies.
The right plot shows Metric II. The median of the relative differences
is −44.8 for Stay and −9.9 for Move.
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In Scenario 3, we are interested in the associations between the variables

in Y (F0) and X(NF0). We measure these associations using logistic regressions of

X
(NF0)
j on Y

(F0)
k for j ∈ {1, ..., 4} and k ∈ {1, ..., 6}. As evident in Figure 4, there

are no significant differences between Move and Stay on Metric I. The box plots

for Metric II show that the two medians are close, although the spread of values

for Move is smaller than that for Stay.

Figure 4: Coefficients in logistic regressions for Stay and Move in Scenario 3.
The left plot shows Metric I, and the right plot shows Metric II. The
median of the relative differences is −0.09 for Stay and −0.10 for
Move.

For Scenario 4, Figure 5 displays results for the pairwise correlations of

variables in Y (F0) and Y (NF0). There are no significant differences between Move

and Stay for Metric I or Metric II.

Figure 5: Pairwise correlations for Move and Stay in Scenario 4. The
left plot shows Metric I, and the right plot shows Metric II.
The median of the relative differences is −12.4 for Stay and
−4.3 for Move.
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3.3. Summary of results

When using Stay, associations between X(F0) and X(NF0) are estimated

only through the tensor factorization. Apparently, in Scenario 1 this is not suf-

ficient to capture the dependence. In contrast, by using common mixture com-

ponents for all the categorical variables in F , Move captures the dependence

structure in Scenario 1 more effectively than Stay. We reach similar findings

for Scenario 2, in which the local dependence enabled by Move captures associa-

tions involving X(F0) and Y (NF0) more effectively than relying only on the tensor

factorization to capture the dependence. These results are in accord with the

motivation we gave at the end of Section 2 for moving some (nearly) completely

observed variables to F .

For the associations between Y (F0) and NF0, Move does not offer sig-

nificant benefits over Stay in Scenarios 3 and 4. Apparently, Stay adequately

incorporates the dependence between Y (F0) and
(

X(F0), X(NF0), Y (NF0)
)

through

the mixture component regressions, so that moving variables to F does not no-

ticeably improve the imputation quality. We also tried four modifications of these

scenarios that use nonlinear associations between Y (F0) and variables in NF0; see

[20] for details of the designs. The performances of Move and Stay were qualita-

tively similar. Apparently, by using mixture distributions for the focus variables,

we potentially can capture nonlinear relationships among the continuous focus

variables.

4. EMPIRICAL STUDY

The findings in Section 3.3 are based on stylized simulation scenarios de-

signed to clarify when Move can be advantageous. Further, in the studies we

moved the nearly completely observed variables known to have strong associa-

tions with the variables in F0; in genuine settings we need empirical measures to

identify these variables. In this section we present such measures and investigate

whether or not similar behavior holds for genuine data.

4.1. Illustrative Data: The American Community Survey

The American Community Survey (ACS), an ongoing survey conducted by

the U.S. Census Bureau, collects demographic, housing, social, and economic data

from sampled households along with information on the people who live in these

households. It is a rich and dynamic resource for public policy decision making
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and analysis. Researchers can access public use files from the Integrated Public

Use Microdata Series (IPUMS, usa.ipums.org). Relationships among variables in

the ACS can be complex and difficult to capture with standard imputation models

([15]). Thus, we can benefit from using HCMM-FNF for imputation modeling.

We subset the ACS data to include only household heads who own their

living units, were employed during the year of 2010 in the state of North Car-

olina, and have complete data; this subset has 19, 492 cases. We systematically

sample 1, 026 household heads as our working dataset. To facilitate reasonable

computation time, we choose the 16 variables in Table 1. Since IPUMS processes

the raw data, the percentage of missing values for each variable in the IPUMS file

is less than 2%. We therefore introduce additional missing values for purposes of

the empirical study.

Before presenting results, we note that we repeated both studies on a second

random sample of 1, 026 qualifying household heads. The patterns are very similar

to the ones presented here; see Chapter 4 of [20] for details.

Table 1: Variables in ACS empirical study. First four variables are for
households; the remainder are for the head of the household.
Cts is short for continuous, and Cat is short for categorical.
# Levels is the number of levels of the categorical variable.
PROPTX99 is categorical with a large number of levels, and
is modeled as such. It is treated as continuous when we report
results.

Name Label Cts./Cat.[#Levels]

PROPTX99 Annual property taxes Cat[67]
COSTELEC Annual electricity cost Cts
COSTGAS Annual gas cost Cts
COSTWATR Annual water cost Cts
AGE Age Cts
SEX Sex Cat[2]
MARST Marital status Cat[6]
RACE Race Cat[7]
HCOVANY Any health insurance coverage Cat[2]
EDUC Educational attainment Cat[9]
SCHLTYPE Public or private school Cat[3]
INCTOT Total personal income Cts
OCCSCORE Occupational income score Cts
PWTYPE Place of work: metropolitan status Cat[5]
MIGRATE1 Migration status, 1 year Cat[4]
DIFFSENS Vision or hearing difficulty Cat[2]
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4.2. Studies

As the measure to determine which variables to move into F , we use the

relative mutual information. For any two continuous variables A and B, the

mutual information is

I(A,B) =

∫

B

∫

A

p(a, b) log

(

p(a, b)

p(a)p(b)

)

da db.(4.1)

The relative mutual information with respect to a variable A is a ratio of I(A,B)

over I(A,A). For categorical variables, we replace the integrals with summations.

We run two studies, which we call the high and low mutual information

studies. In each study, we impute the missingness in the working dataset using

three models: HCMM-FNF with Stay, HCMM-FNF with Move, and the mixture

model of [15], which we label HCMM-LD. HCMM-LD does not use any focused

clustering, essentially putting all variables in F . We use the performance of

HCMM-LD as a benchmark for Stay and Move.

High Mutual Information (HMI) Study

We begin with a study in which variables in NF0 are predictive of variables

in X(F0), i.e., they share high amounts of mutual information. From the categor-

ical variables in Table 1, we assign EDUC and PROPTX99 to have 50% values

MCAR and thus to be in F′ automatically. We assign INCTOT, OCCSCORE,

AGE, COSTELEC, COSTGAS, and COSTWATR as Y (NF0), and the remaining

variables as X(NF0). Variables in NF0 have 1% values MCAR.

INCTOT and OCCSCORE have relatively high mutual information with

EDUC and PROPTX99 with values at 0.26 and 0.22, respectively. All other

values are 0.11 or lower, with all but two being below 0.05. Thus, we add INCTOT

and OCCSCORE to the focus variables under Move. We analyze the marginal

probabilities of PROPTX99 and EDUC, and pay special attention to associations

between the variables in F after Move.

Figure 6 displays contour plots from the kernel density estimates of the

standardized values of log(1 + INCTOT ) and PROPTX99 for the missing obser-

vations. The true density is unimodal, concentrated in the area with PROPTX99

from (5, 45) and log(1 + INCTOT ) from (−1.5, 1.2). By comparison, the com-

pleted data density estimates under HCMM-LD and Stay have a large spread

and distorted contours. The density estimate under Move looks most similar to

the truth.
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(a) True (b) HCMM-LD

(c) Stay (d) Move

Figure 6: Contour plots from the kernel density estimates of log(1 + INCTOT )
(standardized) and PROPTX99 for the missing observations in the HMI

study. Each completed-data plot is from one randomly selected dataset.

Figure 7 displays the kernel density estimate of the standardized

OCCSCORE and PROPTX99 for the missing observations. The true density

has two high density, connected modes and one low density, isolated mode.

The small mode reflects household heads whose occupational score is around

1 (41 on the original scale) and pay a high amount for their property taxes. Both

HCMM-LD and Stay have trouble capturing this isolated mode; Move captures

it more effectively than the other models. There are no significant differences

among the three models for other quantities, including the marginal cell counts

of EDUC and the bivariate associations involving EDUC. Details can be found

in Chapter 4 of [20].
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(a) True (b) HCMM-LD

(c) Stay (d) Move

Figure 7: Contour plots from the kernel density of OCCSCORE (stan-
dardized) and PROPTX99 for the missing observations in the
HMI study. Each completed-data plot is from one randomly
selected dataset.

Low Mutual Information (LMI) Study

We next consider a study where we treat EDUC and DIFFSENS as X(F0),

INCTOT and OCCSCORE as Y (F0), PROPTX99, SEX, RACE, MARST,

MIGRATE1, HCOVANY, and PWTYPE as X(NF0), and the remaining vari-

ables as Y (NF0). We again make 50% of values MCAR for variables in F0 and 1%

of values MCAR for variables in NF0. The four variables in F0 frequently are

used to assess socioeconomic status, which motivates why we create a simulation

where they are the variables with high rates of missing data.
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PROPTX99 has high relative mutual information with INCTOT and

OCCSCORE as described previously. It also has relative mutual information

values of 0.16 for EDUC and DIFFSENS, the two categorical focus variables.

Other relationships are comparatively weak, with only one value exceeding 0.10

(AGE and DIFFSENS at 0.13). Thus, we add only PROPTX99 to the focus

variables under Move.

Based on results in Section 3, we do not expect moving PROPTX99 to F to

improve the quality of imputations substantially. In the simulations of Scenario

3 where we moved categorical variables highly associated with continuous Y (F0),

which most closely matches the characteristics of the LMI setting, Move and

Stay had similar performances. The results from LMI bear this out. We compare

the marginal probability densities of INCTOT and OCCSCORE, the marginal cell

counts of EDUC and DIFFSENS, the joint distributions of (INCTOT,

OCCSCORE), (INCTOT, PROPTX99), and (OCCSCORE, PROPTX99), and

the associations of (INCTOT, EDUC), (OCCSCORE, EDUC), (PROPTX99,

EDUC), (INCTOT, DIFFSENS), (OCCSCORE, DIFFSENS), and (PROPTX99,

DIFFSENS). We find that Stay and Move perform very similarly. They also are

not very different from HCMM-LD. To save space, we do not present these results

here; details are in Chapter 4 of [20].

5. CONCLUSION

In general, the results of the artificial data simulations and the empirical

study tell a consistent story. Compared to Stay, Move can improve estimation of

the distribution of focus categorical variables, particularly for their associations

with the variables moved to F . Move improved the estimate of the association

between INCTOT and PROPTX99, as well as OCCSCORE and PROPTX99,

in HMI. The degree of improvement depends on the strength of the association

between X(F0) and NF0. This is evident in the result that Move did not sub-

stantially improve the accuracy of estimates involving EDUC in both HMI and

LMI, as well as those involving DIFFSENS in LMI. For continuous variables in

F0, Stay and Move performed similarly, suggesting that Move does not help much

in terms of accuracy when the initial focus variables are continuous.

As a final comment, we note that Move and Stay can offer computational

advantages over HCMM-LD. With HCMM-LD, one models all continuous vari-

ables with a multivariate normal distribution, which can result in a large number

of covariance parameters when there are many continuous variables. In contrast,

both Stay and Move assume that Y (NF ) are locally independent, thereby remov-

ing them from the multivariate normal distributions.
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