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Abstract:

• Several procedures have been proposed for testing goodness-of-fit to the error distri-
bution in nonparametric regression models. The null distribution of the associated
test statistics is usually approximated by means of a parametric bootstrap which,
under certain conditions, provides a consistent estimator. This paper considers a
goodness-of-fit test whose test statistic is an L2 norm of the difference between the
empirical characteristic function of the residuals and a parametric estimate of the
characteristic function in the null hypothesis. It is proposed to approximate the null
distribution through a weighted bootstrap which also produces a consistent estimator
of the null distribution but, from a computational point of view, is more efficient than
the parametric bootstrap.
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1. INTRODUCTION

Let (X,Y ) be a bivariate random vector satisfying the general nonpara-

metric regression model

(1.1) Y = m(X) + σ(X)ε,

where m(x) = E(Y |X= x) is the regression function, σ2(x) = Var(Y |X= x)

is the conditional variance function and ε is the regression error, which is assumed

to be independent of X. Note that, by construction, E(ε) = 0 and Var(ε) = 1.

The covariate X is continuous with density function fX . The regression func-

tion, the variance function, the error distribution and that of the covariate are

unknown and no parametric models are assumed for them.

Because the knowledge of the error distribution will improve the statistical

analysis of model (1.1), several authors have proposed tests for such distribution,

that is, tests of the null hypothesis

H0 : F ∈ F ,

versus the alternative

H1 : F /∈ F ,
where F stands for the cumulative distribution function (CDF) of ε and F is a

parametric family,

F =
{

F (·; θ), θ ∈ Θ
}

, Θ ⊆ R
p.

Examples are the tests in Neumeyer et al. [17] and Heuchenne and Van Keilegom

[6], which are based on comparing the empirical CDF of the residuals to a para-

metric estimator of the CDF under the null hypothesis. Since the equality of the

CFDs can be also interpreted in terms of the associated characteristic functions

(CFs), Hušková and Meintanis [11] have proposed a test for H0 that is based on

comparing the empirical CF of the residuals to a parametric estimator of the CF

under the null hypothesis. As commented in Jiménez-Gamero [13], it is interes-

ting to observe that the last paper requires weaker conditions for the validity of

the procedures than the ones based on the CDF. Nevertheless, in all cases the

limit distribution of the proposed test statistics is unknown, even under the null

distribution, because it depends on the unknown value of the parameter θ. To

overcome this difficulty, these papers propose to use a parametric bootstrap (PB)

for approximating the null distribution of the test statistic. Although very easy

to implement, the PB can become very computationally expensive as the sample

size and/or the number of unknown parameters increase.

This paper studies another method for estimating the null distribution of

the test statistic Tn,w(θ̂) in [11]. Specifically, a weighted bootstrap (WB) appro-

ximation in the sense of Burke [2] is considered (see also Zhu [23]). This method
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has been previously suggested in Kojadinovic and Yan [15], to approximate the

null distribution of goodness-of-fit (GOF) tests based on the empirical CDF, and

in Jiménez-Gamero and Kim [14], to approximate the null distribution of GOF

tests based on the empirical CF (ECF), among others. Both papers assume ob-

servable independent and identically distributed (IID) data. They show that the

properties of the WB are quite similar to those of the PB (it provides a con-

sistent estimator of the null distribution and the resulting test is able to detect

any alternative) but, from a computational point of view, it is more efficient.

In view of the good properties of the WB in these and other papers, it is also

expected to work satisfactorily for estimating the null distribution of the test

statistic considered in this paper. The purpose of the current study is to investi-

gate, both theoretically and empirically, the use of the WB for approximating the

null distribution of Tn,w(θ̂). A main difference between the setting in this paper

and the one in [14, 15] is that in our case the errors are not observable. So we

replace the errors by the residuals, but the residuals are not independent.

The paper is organized as follows. Section 2 describes the test statistic and

explains some problems with the WB approximation. Section 3 gives a solution

to the problems described in the previous section and proves the consistency

of the proposed WB approximation. It also shows that the resulting test is

consistent, in the sense of being able to detect any alternative. The application

of the proposed WB approximation requires the estimation of certain functions

appearing in the linear expansion of the parameter estimators. The estimation

of such functions is dealt with in Section 4. Section 5 reports the results of

some simulation experiments designed to study the finite sample performance of

the proposed approximation and to compare it to the PB. From this numerical

study it is concluded that both approximations behave quite closely but, from a

computational point of view, the WB outperforms the PB. Section 6 concludes

and outlines possible extensions of the results presented in this paper. All proofs

and technical details are deferred to the last section.

The following notation will be used along the paper: all vectors are col-

umn vectors; for any vector a, ak denotes its k-th coordinate and ‖a‖ its Eu-

clidean norm; the superscript T denotes transpose; Eθ and Pθ denote expec-

tation and probability, respectively, assuming that the data has CDF F (·; θ);
P∗ denotes the conditional probability law, given the data; all limits in this

paper are taken when n→ ∞;
L→ denotes convergence in distribution;

P→ de-

notes convergence in probability;
a.s.→ denotes the almost sure convergence; for

any complex number z = a+ ib, |z| is its modulus; an unspecified integral de-

notes integration over the whole real line R; for a given non-negative real-valued

function w we denote ‖ · ‖w to the norm and 〈·, ·〉w to the scalar product in the

Hilbert space L2(w) = {g : R → C,
∫

|g(t)|2w(t)dt <∞}; if F is a CDF, then

L2(F ) = {g : R → C,
∫

|g(t)|2dF (t) <∞}; for any real function f(t; θ) differen-

tiable at t ∈ R and at θ = (θ1, θ2, ..., θp)
T ∈ R

p the following notations will be
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used:

f ′(t; θ) =
∂

∂t
f(t; θ) , f(r)(t; θ) =

∂

∂θr
f(t; θ), 1 ≤ r ≤ p,

∇f(t; θ) =
(

f(1)(t; θ), f(2)(t; θ), ..., f(p)(t; θ)
)T
.

2. THE TEST STATISTIC

Let (X1, Y1), ..., (Xn, Yn) be IID from model (1.1), that is, Yj = m(Xj) +

σ(Xj)εj , 1 ≤ j ≤ n. Since the hypothesis H0 is on the common error distribution,

ε1, ..., εn, and the errors are not observable, the inference must be based on the

residuals,

ε̂j =
Yj − m̂(Xj)

σ̂(Xj)
, 1 ≤ j ≤ n,

where m̂(·) and σ̂(·) are estimators of m(·) and σ(·), respectively. Several choices

are possible for m̂(·) and σ̂(·). Here, as in [11], we use the following kernel

estimators for the density function fX of X, the regression function m(·) and the

variance function σ2(·),

f̂X(x) =
1

n

n
∑

j=1

Khn
(Xj − x) ,

m̂(x) =
1

nf̂X(x)

n
∑

j=1

Khn
(Xj − x)Yj ,

σ̂2(x) =
1

nf̂X(x)

n
∑

j=1

Khn
(Xj − x) {Yj − m̂(x)}2 ,

where Khn
(·) = 1

hn
K( ·

hn
), K(·) is a kernel and hn is the bandwidth, satisfying

certain conditions that will be specified later.

Hušková and Meintanis [11] proposed the following test for testing H0,

Ψ =

{

1, if Tn,w(θ̂) ≥ tn,ω,α,

0, otherwise,

where tn,ω,α is the 1 − α percentile of the null distribution of Tn,ω(θ̂),

(2.1) Tn,ω(θ̂) = n

∫

|cn(t) − c(t, θ̂)|2ω(t)dt = n‖cn(t) − c(t, θ̂)‖2
w,

cn(t) is the ECF of the residuals,

cn(t) =
1

n

n
∑

j=1

exp(itε̂j) =
1

n

n
∑

j=1

cos(tε̂j) + i
1

n

n
∑

j=1

sin(tε̂j),
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c(t; θ) is the CF associated to F (ε; θ), that is, c(t; θ) = Eθ{exp(itε)} = R(t; θ) +

iI(t; θ), ω(t) is a nonnegative function such that
∫

ω(t)dt <∞, which may depend

on θ, and θ̂ is a consistent estimator of θ satisfying the following assumption.

(A.1) Under H0,
√
n(θ̂ − θ0) =

1√
n

n
∑

j=1

ψ(εj ; θ0) + op(1), where θ0 is the

true parameter value, Eθ0
{ψ(εj ; θ0)}= 0 and Eθ0

{

‖ψ(εj ; θ0)‖2
}

<∞.

Assumption (A.1) implies that, when the null hypothesis is true and θ0
denotes the true parameter value,

√
n(θ̂ − θ0) is asymptotically normally dis-

tributed. This assumption is satisfied by commonly used estimators such as ma-

ximum likelihood estimators and method of moment estimators when ε1, ..., εn
are observable and, in such a case, the expression of the function ψ is well-known

(see, for example, [1, Ch. 5]). In our setting, the errors are not observable and

the expression of the function ψ differs from the observable case. This topic will

be discussed in detail in Section 4.

Theorem 1 in [11] states that if θ̂ satisfies (A.1), H0 is true and θ0 is the true

parameter value, under certain additional conditions (assumptions (A.2)–(A.7) in

Section 7),

(2.2) Tn,ω(θ̂)
L−→ ‖Z(t; θ0)‖2

ω,

where {Z(t; θ0), t ∈ R} is a centered Gaussian process on L2(ω) with covariance

structure of the form Covθ0
{Z1(ε; t, θ0, ψ), Z1(ε; s, θ0, ψ)},

(2.3)
Z1(ε; t, θ, ψ) = cos(tε) + sin(tε) −R(t; θ) − I(t; θ) − tε{R(t; θ) − I(t; θ)}

−t ε2−1
2 {R′(t; θ) + I ′(t; θ)} − ψT (ε; θ){∇R(t; θ) + ∇I(t; θ)}.

Clearly, the asymptotic null distribution of Tn,ω(θ̂) is unknown. It depends on

the hypothetical the error distribution, on the chosen estimator and the true

unknown value of the parameter.

In order to try to approximate the null distribution of Tn,ω(θ̂) we first

observe that it resembles a degree-2 V-statistic, because

Tn,ω(θ̂) =
1

n

n
∑

j=1

n
∑

k=1

ρ(ε̂j , ε̂k; θ̂),

with ρ(ε, z; θ) = u(ε−z)−u0(ε; θ)−u0(z; θ)+u00(θ), u0(ε; θ) =
∫

u(ε−z)dF (z; θ),

u00(θ) =
∫

u(ε− z)dF (ε; θ)dF (z; θ), and u(t) =
∫

cos(tε)ω(ε)dε.

Dehling and Mikosch [4] (see also Hušková and Janssen [10]) showed that if

ε1, ..., εn are IID, ξ1, ..., ξn are IID with E(ξ1) = 0 and Var(ξ1) = 1, independent

of ε1, ..., εn and Vn = 1
n2

∑

1≤j,k≤n g(εj , εk) is a degenerate degree-2 V-statistic,
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then the conditional distribution, given ε1, ..., εn, of

1

n

∑

1≤j,k≤n

g(εj , εk)ξjξk

consistently estimates that of nVn. In the light of this result, since ε̂j and θ̂

are approximations to εj and θ, respectively, one may be tempted to estimate

the null distribution of Tn,ω(θ̂) by means of the conditional distribution, given

(X1, Y1), ..., (Xn, Yn), of

(2.4) W ∗ =
1

n

∑

1≤j,k≤n

ρ(ε̂j , ε̂k; θ̂)ξjξk.

We will see that this approach is wrong. The next result gives the limit distribu-

tion of W ∗. The required assumptions are listed in Section 7.

Theorem 2.1. Suppose that ‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, that as-

sumptions (A.2)–(A.6) hold, that the first partial derivatives R(r)(t; θ), I(r)(t; θ),

1 ≤ r ≤ p, exist and are continuous functions ∀θ ∈ U(θ1) ⊆ Θ, an open neighbor-

hood of θ1, and they are bounded by functions in L2(ω), ∀θ ∈ U(θ1), then

sup
x

|P∗ {W ∗ ≤ x} − P {W0 ≤ x}| P−→ 0,

where W0 = ‖Z0(t; θ1)‖2
ω, {Z0(t; θ1), t ∈ R} is a centered Gaussian process on

L2(ω) with covariance structure of the form Cov{Z0(ε; t, θ1), Z0(ε; s, θ1)},
Z0(ε; t, θ) = cos(tε) + sin(tε) −R(t; θ) − I(t; θ).

From the result in Theorem 2.1 and (2.2), it is clear that the conditional

distribution of W ∗ does not provide a consistent estimator of the null distribution

of Tn,ω(θ̂) because replacing m(·), σ(·) and θ by m̂(·), σ̂(·) and θ̂, respectively,

has an impact on the asymptotic null distribution of the test statistic that is not

captured by the conditional distribution of W ∗. The next Section shows how to

deal with this problem.

Before ending this section we do some comments on the behaviour of θ̂

under the alternative. Theorem 2.1 assumes that θ̂ has a limit (in probability),

θ1. In practice, to estimate θ one proceeds as if H0 were true. For example, θ is

usually estimated by its quasi maximum likelihood estimator, which maximizes

the likelihood under the null hypothesis (with the errors replaced by the resi-

duals). IfH0 is true, under certain assumptions, the resulting estimator converges

to the true parameter value (see Section 4); if H0 is not true, then proceeding as

in White [22] for observable data, it can shown that, under certain conditions,

the estimator also converges to a well-defined limit. Similar comments could be

done for other estimators.
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3. CONSISTENCY OF THE WB APPROXIMATION

If assumptions (A.1)–(A.7) hold andH0 is true, from the proof of Theorem 1

in [11], it follows that

(3.1) Tn,ω(θ̂) = T1,n,ω(θ0) + op(1),

where

T1,n,ω(θ) = ‖ 1√
n

n
∑

j=1

Z1(εj ; t, θ, ψ)‖2
ω,

with Z1(ε; t, θ, ψ) as defined in (2.3). Now, from (3.1) and applying the results in

[4], we get that the conditional distribution, given (X1, Y1), ..., (Xn, Yn), of

T ∗
1,n,ω(θ0) = ‖ 1√

n

n
∑

j=1

Z1(εj ; t, θ0, ψ)ξj‖2
ω,

provides a consistent estimator of the distribution of Tn,ω(θ̂), when H0 is true.

From a practical point of view, this result is useless because Z1(εj ; t, θ0, ψ) de-

pends on the non-observable error εj , on the unknown value of θ0 and on the

function ψ(εj ; θ0), whose explicit expression is usually unknown. Suppose that

‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being the true parameter value if H0 is

true. To overcome these difficulties we replace εj by ε̂j , θ0 by θ̂ and ψ(εj ; θ0) by

ψn(ε̂j ; θ̂), where ψn(·; θ̂) is a function of the data which approximates ψ in such

a way that

(3.2)

1

n

n
∑

j=1

‖ψn(ε̂j ; θ̂) − ψ1(εj ; θ1)‖2 P−→ 0,

with E{‖ψ1(ε; θ1)‖2} <∞ and ψ1(ε; θ1) = ψ(ε; θ1) if H0 is true.

The choice of ψn will depend on ψ, that is, on the estimator of θ considered.

Section 4 studies some proposals for ψn satisfying (3.2) for two common choices

for θ̂: the maximum likelihood estimator and the method of moments estimator,

both based on the residuals. So, the null distribution of Tn,ω(θ̂) is now estimated

by means of the conditional distribution, given (X1, Y1), ..., (Xn, Yn), of

T ∗
2,n,ω(θ̂) = ‖ 1√

n

n
∑

j=1

Z1(ε̂j ; t, θ̂, ψn)ξj‖2
ω.

The next theorem gives the limit of the conditional distribution of T ∗
2,n,ω(θ̂), given

(X1, Y1), ...(Xn, Yn).

Theorem 3.1. Suppose that ‖θ̂− θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being

the true parameter value if H0 is true, and that assumptions (A.1)–(A.7) and

(3.2) hold, then

sup
x

∣

∣

∣
P∗

{

T ∗
2,n,ω(θ̂) ≤ x

}

− P {T2 ≤ x}
∣

∣

∣

P−→ 0,
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where T2 = ‖Z2(t; θ1)‖2
ω, {Z2(t; θ1), t ∈ R} is a centered Gaussian process on

L2(ω) with covariance structure of the form Cov{Z1(ε; t, θ1, ψ1), Z1(ε; s, θ1, ψ1)}.

The result in Theorem 3.1 is valid whether the null hypothesis H0 is true

or not. An immediate consequence of this fact and (2.2) is the following.

Corollary 3.1. If H0 is true and the assumptions in Theorem 3.1 hold,

then

sup
x

∣

∣

∣
P∗

{

T ∗
2,n,ω(θ̂) ≤ x

}

− Pθ1

{

Tn,ω(θ̂) ≤ x
}

∣

∣

∣

P−→ 0.

Let α ∈ (0, 1) and

Ψ∗ =

{

1, if Tn,ω(θ̂) ≥ t∗2,n,ω,α,

0, otherwise,

where t∗2,n,ω,α is the 1 − α percentile of the conditional distribution of T ∗
2,n,ω(θ̂),

or equivalently, Ψ∗ = 1 if p∗ ≤ α, where p∗ = P∗
{

T ∗
2,n,ω(θ̂) ≥ Tn,ω(θ̂)obs

}

and

Tn,ω(θ̂)obs is the observed value of the test statistic. The result in Corollary

3.1 states that Ψ∗ is asymptotically correct, in the sense that its type I error is

asymptotically equal to the nominal value α.

Corollary 3.2. Suppose that H0 is not true and let c(t) denote the true

CF of the errors. If the assumptions in Theorem 3.1 hold and ω is such that

(3.3) κ = ‖c(t) − c(t; θ1)‖2
ω > 0,

then P (Ψ∗ = 1) → 1.

Corollary 3.2 shows that, if ω is such that (3.3) holds, then the test Ψ∗ is

consistent in the sense of being able to asymptotically detect any (fixed) alterna-

tive. Since two distinct characteristic functions can be equal in a finite interval

(Feller [5, p.506]), a general way to ensure (3.3) is to take ω positive for almost

all (with respect to the Lebesgue measure) points in R.

Remark 3.1. If model (1.1) is homoscedastic, that is, if σ(x) = σ, ∀x,
for some unknown σ > 0, we can use the residuals ε̃j = Yj − m̂(Xj), 1 ≤ j ≤ n,

and consider σ as a parameter of the family F . In this framework, the result in

Theorem 3.1 (with weaker assumptions) keeps on being true with the following

simpler expression for Z1(ε; t, θ, ψ),

Z1(ε; t, θ, ψ) = cos(tε) −R(t; θ) + sin(tε) − I(t; θ) − tεR(t; θ) + tεI(t; θ)

−ψT (ε; θ){∇R(t; θ) + ∇I(t; θ)}.
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Remark 3.2. If the null hypothesis is simple, then the result in Theorem

3.1 (with weaker assumptions) is also true with the following simpler expression

for Z1(ε; t, θ, ψ) = Z1(ε; t),

Z1(ε; t) = cos(tε) −R(t) + sin(tε) − I(t) − tεR(t) + tεI(t)

− t
ε2 − 1

2
{R′(t) + I ′(t)},

where R(t) and I(t) denote the real and the imaginary parts of the CF of the law

in the null hypothesis.

Remark 3.3. If model (1.1) is homoscedastic and the null hypothesis

is simple, which implies that σ(x) = σ, ∀x, for some known σ > 0, as observed

in Remark 3.1, we can use the residuals ε̃ = Yj − m̂(Xj), 1 ≤ j ≤ n. In this

setting, the result in Theorem 3.1 (with weaker assumptions) is also true with

the following simpler expression for Z1(ε; t, θ, ψ) = Z1(ε; t),

Z1(ε; t) = cos(tε) −R(t) + sin(tε) − I(t) − tεR(t) + tεI(t),

where R(t) and I(t) denote the real and the imaginary parts of the CF of the law

in the null hypothesis.

Remark 3.4. When the null hypothesis is simple, the asymptotic null

distribution of the test statistic Tn,ω(θ̂) does not depend on unknown parameters.

So, in this case the asymptotic null distribution could be used to approximate

the null distribution. The simulations carried out (reported in Section 5) reveal

that, for small to moderate sample sizes, the WB provides a better fit.

Remark 3.5. Theorem 3 in [11] shows that the PB null distribution

estimator of Tn,ω(θ̂) satisfies a result which is similar to that stated in Corollary

3.1 for the WB estimator. Nevertheless, although the tests Ψ∗ and the one

obtained by approximating tn,ω,α through its PB estimator, are both of them

consistent against all fixed alternatives, their powers will be different for finite

sample sizes.

So far we have assumed that the weight function does not depend on θ, but

in some cases it does. Such dependence is motivated by the recommendations

in Epps and Pulley [8], who suggest to choose ω(t) giving high weight where

the ECF is a relatively precise estimator of the population CF. It entails taking

ω(t) = ν{|c(t; θ̂)|}, for some ν, a nonnegative increasing function. For example, if
∫

|c(t; θ)|2dt <∞, one could choose ω(t) = |c(t; θ̂)|2/
∫

|c(x; θ̂)|2dx, which is the

choice for ω in Epps and Pulley [8] (see also Epps [7]). In addition, as observed

in Jiménez-Gamero et al. [12], such choice for ω(t) may have some computational
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advantages when the density (under the null hypothesis) of ε1 − ε2, ε1 − ε2 + ε3
and ε1 − ε2 + ε3 − ε4 is known since from expression (14) in [12], the test statistic

(2.1) can be expressed as

1

fε1−ε2
(0; θ̂)







1

n

n
∑

j,k=1

fε1−ε2
(ε̂j − ε̂k; θ̂)

− 2
n

∑

j=1

fε1−ε2+ε3
(ε̂j ; θ̂) + nfε1−ε2+ε3−ε4

(0; θ̂)







,

where fU (x; θ) is the density function of U .

If the weight function ω depends on θ, ω(t) = ω(t; θ), then the test statistic

(2.1) becomes

Tn,ω̂(θ̂) = n

∫

|cn(t) − c(t; θ̂)|2ω(t; θ̂)dt = n‖cn(t) − c(t; θ̂)‖2
ω̂,

where the subindex ω̂ means that the weight function depends on θ̂, that is,

ω(t) = ω(t; θ̂). To deal with this case we will assume that the weight function is

smooth as a function of θ, as expressed in the next assumption.

(A.8) |ω(t; θ1)− ω(t; θ)| ≤ ω0(t; θ1)‖θ− θ1‖, ∀ θ in an open neighborhood

of θ1, with ω0(t; θ1) satisfying
∫

ω0(t; θ1)dt <∞.

If assumption (A.8) holds, assumptions (A.2), (A.7) hold with ω(t) = ω0(t; θ)

and H0 is true, then

Tn,ω̂(θ̂) = T 1
n,ω(θ̂) + op(1),

with T 1
n,ω(θ̂) = n

∫

|cn(t) − c(t, θ̂)|2ω(t; θ1)dt.

Let T ∗
3,n,ω(θ̂) = ‖ 1√

n

∑n
j=1 Z1(ε̂j ; t, θ̂, ψn)ξj‖2

ω̂ and

Ψ1∗ =

{

1, if Tn,ω̂(θ̂) ≥ t∗3,n,ω,α,

0, otherwise,

where t∗3,n,ω,α is the 1 − α percentile of the conditional distribution of T ∗
3,n,ω(θ̂).

Now, proceeding as in the case where ω does not depend on the parameter θ, we

state the following result.

Theorem 3.2. Suppose that ‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being

the true parameter value if H0 is true, that assumptions (A.1)–(A.8) and (3.2)

hold, where both (A.2) and (A.7) hold with ω(t) = ω0(t; θ1) and ω(t) = ω(t; θ1).

(a) If H0 is true, then

sup
x

∣

∣

∣
P∗

{

T ∗
3,n,ω(θ̂) ≤ x

}

− Pθ1

{

Tn,ω̂(θ̂) ≤ x
}∣

∣

∣

P−→ 0.

(b) If H0 is not true and (3.3) holds with ω(t) = ω(t; θ1), then

P (Ψ1∗ = 1) → 1.
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The observation in Remark 3.1 also applies in this case.

Remark 3.6. The results stated up to now keep on being true if instead of

using the raw multipliers, ξ1, ..., ξn, we use the centered multipliers, ξ1−ξ̄, ..., ξn−ξ̄,
as suggested in [2, 15], where ξ̄ = 1

n

∑n
j=1 ξj .

Remark 3.7. In practice, to calculate the WB approximation to the null

distribution of Tn,ω(θ̂) (analogously for Tn,ω̂(θ̂)) we proceed as follows:

1. Calculate the residuals ε̂1, ..., ε̂n (or ε̃1, ..., ε̃n, if the model is homoscedas-

tic).

2. Calculate θ̂ and the observed value of the test statistic Tn,ω(θ̂)obs.

3. Calculate mjk = 〈Z1(ε̂j ; t, θ̂, ψn), Z1(ε̂k; t, θ̂, ψn)〉ω, 1 ≤ j ≤ k ≤ n, and

take mjk = mkj .

4. For some large integer B, repeat the following steps for every b ∈
{1, ..., B}:
(a) Generate n IID variables ξ1, ..., ξn with mean 0 and variance 1.

(b) Calculate T ∗b
2,n,w(θ̂) = 1

n

∑

j,k ξjξkmjk (or T ∗b
2,n,ω(θ̂)= 1

n

∑

j,k(ξj − ξ̄)
· (ξk − ξ̄)mjk, as noted in Remark 3.6).

5. Approximate the p-value by p̂ = 1
B

∑B
b=1 I{T ∗b

2,n,ω(θ̂) > Tn,ω(θ̂)obs}.

4. PARAMETER ESTIMATORS

The maximum likelihood estimator (MLE) satisfies Assumption (A.1) for

observable random variables. In our case, the errors are not observable. It seems

reasonable to replace the errors by the residuals in the likelihood and then maxi-

mize in θ the resulting function. Specifically, assume that the CDF F (x; θ) has

a Radon–Nikodym derivative f(x; θ) with respect to some σ-finite measure over

(R,B), where B is the class of Borel sets of R. To estimate θ we treat the residuals

as it they were the true errors and consider

θ̂ML = arg max
θ∈Θ

n
∑

j=1

log f(ε̂j ; θ).

Theorem 3.1 in Heuchenne and Van Keilegom [6] shows that (under certain con-

ditions) θ̂ML satisfies (A.1) with ψ(ε; θ) = ψML(ε; θ) given by

(4.1) ψML(ε; θ) = ρ(ε; θ) + ερ1(θ) +
ε2 − 1

2
ρ2(θ),
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where ρ1(θ) = Eθ{ρ′(ε; θ)}, ρ2(θ) = Eθ{ερ′(ε; θ)}, ρ(ε; θ) = −A(θ)−1∇ log f(ε; θ),

A(θ) = (Ars(θ)) and

Ars(θ) = Eθ

(

∂

∂θr
log f(ε; θ)

∂

∂θs
log f(ε; θ)

)

, 1 ≤ s, r ≤ p.

In view of (4.1), a natural choice for ψn(ε; θ) is ψn(ε; θ) = ψn,ML(ε; θ) with

ψn,ML(ε; θ) = ρn(ε; θ) + ερ̂1(θ) +
ε2 − 1

2
ρ̂2(θ),

where

ρn(ε; θ) = −Ân(θ)−1∇ log f(ε; θ),

ρ̂1(θ) =
1

n

n
∑

j=1

ρ′n(ε̂j ; θ),

ρ̂2(θ) =
1

n

n
∑

j=1

ε̂jρ
′
n(ε̂j ; θ),

ρ′n(ε; θ) = −Ân(θ)−1 ∂

∂ε
∇ log f(ε; θ),

Ân(θ) = (Ân,rs(θ)),

Ân,rs(θ) =
1

n

n
∑

j=1

∂

∂θr
log f(ε̂j ; θ)

∂

∂θs
log f(ε̂j ; θ), 1 ≤ s, r ≤ p.

The next theorem shows that ψn,ML(ε; θ) satisfies (3.2). Let AF (θ) =

(AF,rs(θ)), with AF,rs(θ)=E
(

∂
∂θr

log f(ε; θ) ∂
∂θs

log f(ε; θ)
)

, 1≤ s, r≤ p, ρ1,F (θ)

= E{ρ′F (ε; θ)}, ρ2,F (θ) = E{ερ′F (ε; θ)} and ρF (ε; θ) = −AF (θ)−1∇ log f(ε; θ).

Theorem 4.1. Suppose that ‖θ̂− θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being

the true parameter value if H0 is true, and that assumptions (A.3)–(A.6), (A.9)

hold, then ψn,ML(ε; θ) satisfies

1

n

n
∑

j=1

‖ψn,ML(ε̂j ; θ̂) − ψ1(εj ; θ1)‖2 P−→ 0,

with ψ1(ε; θ) = ρF (ε; θ) + ερ1,F (θ) + ε2−1
2 ρ2,F (θ).

Clearly, ψ1(εj ; θ) in Theorem 4.1 satisfies ψ1(εj ; θ1) = ψML(ε; θ1) when H0

is true.

Remark 4.1. If model (1.1) is homoscedastic then the expressions for

ψML(ε; θ) and ψn,ML(ε; θ) simplify to ψML(ε; θ)= ρ(ε; θ)+ερ1(θ) and ψn,ML(ε; θ)

= ρn(ε; θ) + ερ̂1(θ), respectively.
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Another estimator that is commonly used is the method of moment esti-

mator (MME). Although these estimators are not usually optimal, they are fre-

quently used because their calculation is less time consuming than that of MLEs.

MMEs satisfy Assumption (A.1) for observable random variables. As noticed

before, in our setting the errors are not observable. Next, we study if (A.1) still

holds when the errors are replaced by the residuals. Assume that, under the null

hypothesis, θ0 = g(µ0), for some known function g = (g1, ..., gp)
T , gr : R

k−1 → R,

1 ≤ r ≤ p, µ0 = (µ0,2, ..., µ0,k)
T and µ0,s = Eθ0

(εs), ∀s. The first moment has

not been included because, by construction, it is known and equal to 0. In

heteroscedastic models the second order moment is also known (thus in this case

µ0 = (µ0,3, ..., µ0,k)
T ), but it is not in homoscedastic models (thus in this case µ0 =

(µ0,2, ..., µ0,k)
T ). Nevertheless, we will work with µ0 = (µ0,2, ..., µ0,k)

T , by implic-

itly understanding that in heteroscedastic models g(µ0,2, ..., µ0,k)= g(µ0,3, ..., µ0,k).

Let θ̂MM = g(µ̂), with µ̂ = (µ̂2, ..., µ̂k)
T , µ̂s = 1

n

∑n
j=1 ε̂

s
j , ∀s. The next theo-

rem states that, under certain conditions, assumption (A.1) holds for θ̂MM . Let

∇gr(x) =
(

∂
∂x2

gr(x), ...,
∂

∂xk
gr(x)

)T
, 1 ≤ r ≤ p, and let ∇g(x) be the p× (k− 1)-

matrix with rows ∇g1(x)T , ...,∇gp(x)
T , for any x = (x2, ..., xk)

T ∈ R
k−1.

Theorem 4.2. Suppose that assumptions (A.3)–(A.6) hold, that g is con-

tinuously differentiable at µ0, that µ0,2k <∞ and that H0 is true, then

√
n(θ̂MM − θ0) =

1√
n

n
∑

j=1

ψMM (εj ;µ0) + op(1),

where ψMM (ε;µ0)=∇g(µ0)v, v= (v2, ..., vk)
T , vs = εs −µ0,s −µ0,s−1ε−µ0,s

ε2−1
2 ,

2 ≤ s ≤ k.

In the light of the result in Theorem 4.2, to approximate ψMM (ε;µ) we

could replace the population moments by their empirical counterparts based on

the residuals. The next theorem shows that this approximation for ψMM (ε; θ)

satisfies (3.2). Let µF,s = E(εs) and µF = (µF,2, ..., µF,k)
T .

Theorem 4.3. Suppose that assumptions (A.3)–(A.6), (A.10) hold and

that µF,2k <∞, then

1

n

n
∑

j=1

‖ψMM (ε̂j ; µ̂) − ψMM (εj ;µF )‖2 P−→ 0.

Clearly, ψMM (εj ;µF ) = ψMM (εj ;µ0) when H0 is true.

Remark 4.2. If model (1.1) is homoscedastic then the expressions for

ψMM (ε;µ) simplifies to ψMM (ε;µ0) = ∇g(µ0)v, v = (v2, ..., vk)
T , vs = εs −µ0,s −

µ0,s−1ε, 2 ≤ s ≤ k.
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5. FINITE SAMPLE PERFORMANCE

With the aim of studying the finite sample performance of the proposed

procedure, two simulation experiments were carried out: first, a homoscedastic

regression model was considered, and then a heteroscedastic regression model.

The main goal of these experiments is to compare the approximations provided

by the asymptotic null distribution (when the null hypothesis is simple), the

PB (as described in [11]) and the WB proposed in this paper, in three senses:

closeness of the approximation under the null, the power for fixed alternatives of

the resulting test and the consumed time (for the PB and the WB). This section

reports and summarizes the numerical results obtained. All computations were

performed using programs written in the R language [20].

In both models the hypotheses H0 : ε ∼ N(0, θ), that corresponds to test-

ing that the error distribution is normal with CF exp(−0.5θt2), and H0 : ε ∼
L(0, θ), that corresponds to testing that the error distribution is Laplace with

CF 1
1+θt2

, were studied. As in Hušková and Meintanis [11], and following the

recommendations in Epps and Pulley [8], the weight functions considered were:

ω(t; θ) = exp(−λθt2), when testing normality, and ω(t; θ) = (1 + θt2)4 exp(−λt2),
when testing for the Laplace distribution. For the homoscedastic model two cases

were considered: θ known and θ unknown. In this second case, the parameter

was estimated by a MME. Specifically, θ̂ = 1
n

∑n
j=1 ε̂

2
j , for testing normality, and

θ̂ = 1
2n

∑n
j=1 ε̂

2
j , for the Laplace distribution. To estimate the regression function

and the conditional variance, the Epanechnikov kernel K(u) = 0.75 × (1 − u2)

was employed.

As for the choice of the bandwidth, in a recent review about GOF problems

in nonparametric regression, González-Manteiga and Crujeiras [9] say that the

bandwidth selection for tests based on smoothing is a “really tough problem”

and “it is far from being solved” (see also the discussions of Sperlich [21] and

de Uña-Álvarez [3] to the mentioned article). Because of this reason, to choose

h, we proceeded as in the simulation study in Pardo-Fernández et al. [18]: we

took h = c× na, where c and a are real constants and n is the sample size; to

determine c, a and λ some preliminary simulations were performed with the

purpose of finding values giving type I error close to the nominal. For all tried

combinations of c ∈ (1, 1.8), a ∈ (−0.50, −0.25) and λ ∈ (0.03, 0.54) good results

were obtained for the WB. Here we only report the results for c = 1.2, a = −0.375

and λ = 0.04.

The error distribution were generated from: the normal distribution (de-

noted as N in the tables), the Laplace distribution (denoted as LP ), the logistic

distribution (denoted as LG), the Gumbel distribution (denoted as G), the beta

distribution with parameters a = 1 and b = 0.5 (denoted as β), the chi-squared
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distribution with 3 degrees of freedom (denoted as χ2
3) and the Student t distribu-

tion with 5 degrees of freedom (denoted as t5). All aforementioned distributions

were conveniently centered and scaled to have mean 0 and variance 1.

To approximate the p-value, 1000 replications were generated for both the

PB and the WB. For the WB, the raw multipliers and the centered multipliers

were considered, denoted by WB1 and WB2 in the tables, respectively. The

multipliers were generated from a univariate standard normal distribution. As

for the asymptotic distribution (when the null hypothesis is simple, denoted as

A in the tables), it is rather difficult to calculate because it coincides with that

of
∑

j≥1 λjχ
2
1,j , where χ2

1,1, χ
2
1,2, ... are independent chi-squared variables with

one degree of freedom, the set {λj , j ≥ 1} are the non-null eigenvalues of the

integral equation
∫

C(t, s)Gj(t)dt = λjGj(s), with corresponding eigenfunctions

{Gj(·), j ≥ 1}, C(t, s) is the covariance kernel of Z1(ε; t) (see Remarks 3.2 and

3.3 for the expression of Z1(ε; t)), and determining the eigenvalues of an integral

equation is tricky. Because of this reason, we approximated it by generating

10,000 samples of size 1000 obeying H0 and calculated the test statistic at each

sample, obtaining 10,000 values. The empirical CDF of these 10,000 values was

taken as an approximation to the asymptotic null distribution.

1000 samples with size n = 25 were generated from each distribution and

the fractions of p-values less than or equal to 0.05 and 0.1 were calculated. The

experiment was repeated for n = 50, 100.

5.1. Homoscedastic model

The reported results correspond to the model

Yj = Xj +X2
j + εj , 1 ≤ j ≤ n,

where Xj follows the uniform (0, 1) distribution. We first considered that θ is

known. Since the model is homoscedastic and the null hypothesis is simple, the

simplifications in Remark 3.3 can be applied. Table 1 displays the results obtained

for the type I error and the power for testing normality and Table 2 for testing

GOF to the Laplace distribution. Looking at these tables it can be concluded

that, in terms of type I error, both the PB and the WB behave very close to the

nominal levels, while the asymptotic approximation is a bit conservative, specially

for testing GOF for the Laplace distribution. As for the power, the test based on

the WB approximation seems to be a bit more powerful than one based on the PB.

In most cases (all but alternatives β and χ2
3 in Table 2) the WB approximation

is also more powerful than one based on the asymptotic approximation.

Tables 3 and 4 show the results when θ is assumed to be unknown. In this

case, the simplifications in Remark 3.1 can be applied. Looking at these tables it
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can be concluded that, in terms of the type I error, as before, both the PB and

the WB behave very close to the nominal levels. As for the power, for n = 25, 50

in some cases the WB is more powerful than the PB, but in others cases the

opposite is observed; for n = 100 the test based on the WB approximation seems

to be a bit more powerful than one based on the PB.

Table 1: (Homoscedastic model, simple null hypothesis) Percentage of rejections
for the normality null hypothesis at the significance levels 5% (upper entry)
and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
3.60 6.10 4.10 6.40 4.00 5.00 4.12 4.84 5.20 4.74 4.12 4.74
8.20 11.50 10.20 12.30 9.00 10.04 9.24 10.48 10.20 9.64 9.34 10.40

LP
25.50 36.10 57.80 64.80 45.40 56.30 86.60 88.30 76.60 77.70 98.90 99.00
35.90 48.70 70.60 74.70 57.40 68.50 90.40 91.00 83.60 83.20 99.60 99.70

LG
10.30 57.60 56.40 63.10 12.70 88.10 87.30 89.30 17.80 99.90 100.00 100.00
18.10 70.40 72.00 76.00 20.60 93.20 94.30 95.10 27.80 99.90 100.00 100.00

G
18.40 33.50 45.80 52.00 36.70 61.80 87.30 89.30 71.70 90.70 100.00 100.00
30.60 46.30 62.80 67.70 49.80 74.40 94.30 95.10 81.80 96.70 100.00 100.00

β
54.10 37.50 76.20 83.10 87.50 61.20 98.40 99.00 99.70 85.30 100.00 100.00
65.20 49.40 87.60 89.60 92.70 69.90 99.60 98.80 99.90 90.70 100.00 100.00

χ2

3

48.60 44.20 76.50 82.50 84.60 73.40 98.40 98.60 99.90 94.50 100.00 100.00
61.30 57.30 87.80 89.60 92.70 83.10 99.10 99.30 99.90 97.00 100.00 100.00

t5
15.50 44.50 49.10 55.00 24.50 74.00 87.30 89.20 39.30 97.50 99.90 99.90
25.00 59.50 63.00 67.90 35.40 84.70 93.70 94.90 51.10 99.50 100.00 100.00

Table 2: (Homoscedastic model, simple null hypothesis) Percentage of rejections
for the Laplace null hypothesis at the significance levels 5% (upper entry)
and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
3.70 22.60 17.20 19.10 4.20 42.60 38.10 39.30 8.30 69.70 68.60 69.20
8.40 30.90 25.00 27.20 9.10 51.80 48.10 50.20 14.60 77.60 78.10 78.20

LP
2.70 4.70 3.60 4.20 3.80 4.80 3.80 3.80 3.90 5.50 4.40 4.50
7.30 9.40 7.70 8.90 8.20 10.60 8.00 9.20 8.90 9.20 9.00 9.10

LG
4.20 25.60 18.90 20.60 4.70 40.60 36.90 37.50 5.90 69.90 70.00 70.70
7.50 35.00 28.50 31.20 9.30 48.80 46.60 47.50 11.90 78.30 78.30 79.00

G
6.00 23.30 17.70 18.80 11.60 41.60 36.60 38.20 27.10 67.10 68.20 68.90

10.90 31.70 25.90 28.20 20.70 50.60 47.50 48.60 40.40 77.10 77.10 77.80

β
35.50 12.80 13.40 15.30 78.60 19.30 30.90 32.60 99.30 36.20 66.00 66.60
48.80 19.20 21.80 24.30 86.20 27.70 43.20 44.50 99.60 46.60 74.00 75.60

χ2

3

17.50 20.00 16.00 17.80 44.40 34.00 32.60 33.80 92.30 61.50 65.60 66.50
27.20 27.60 24.00 25.70 59.10 44.00 43.70 44.60 96.90 72.00 76.20 76.70

t5
3.20 21.50 16.20 18.10 5.40 39.30 35.00 36.70 8.70 71.60 70.80 71.40
8.00 31.10 24.60 27.10 10.00 49.60 45.90 48.00 14.10 79.80 80.10 80.70
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Table 3: (Homoscedastic model, composite null hypothesis) Percentage of rejections
for the normality null hypothesis at significance levels 5% (upper entry)
and 10% (lower entry).

n = 25 n = 50 n = 100

PB WB1 WB2 PB WB1 WB2 PB WB1 WB2

N
6.50 5.60 7.30 5.20 4.80 5.60 5.40 5.10 5.20

10.70 10.90 14.50 10.00 9.90 11.10 9.20 9.20 9.60

LP
29.90 15.30 21.50 33.60 40.40 43.50 38.30 80.50 81.60
40.50 26.20 30.60 44.10 56.30 58.70 54.70 90.40 91.00

LG
30.30 44.10 50.50 47.80 86.60 89.00 94.90 99.90 99.90
40.30 60.60 65.80 63.90 93.80 94.60 98.50 99.99 99.99

G
29.10 18.50 21.50 35.70 42.50 43.50 51.80 80.50 83.60
43.50 29.20 30.60 51.30 58.30 59.70 66.10 90.40 95.90

β
18.00 16.40 20.40 23.30 39.40 42.70 67.30 80.80 82.10
25.40 27.10 30.50 32.80 55.30 56.60 72.10 89.70 91.60

χ2

3

37.30 51.40 53.80 58.90 77.30 80.70 83.10 89.90 91.30
48.50 63.20 64.20 67.80 85.40 87.20 91.50 97.70 98.80

t5
40.40 14.50 21.50 52.90 38.90 42.40 76.80 82.30 83.10
58.70 28.70 31.40 69.20 53.70 56.00 88.20 89.50 90.30

Table 4: (Homoscedastic model, composite null hypothesis) Percentage of rejections
for the Laplace null hypothesis at significance levels 5% (upper entry)
and 10% (lower entry).

n = 25 n = 50 n = 100

PB WB1 WB2 PB WB1 WB2 PB WB1 WB2

N
53.20 56.90 58.80 62.80 64.40 66.20 69.30 71.40 77.20
66.30 68.20 71.10 74.50 75.40 76.60 80.60 80.90 81.20

LP
4.30 3.80 4.50 4.60 4.60 4.40 5.00 4.70 4.90
9.20 8.30 9.20 10.30 9.30 10.40 9.50 9.80 9.50

LG
52.40 48.20 50.50 60.40 58.50 60.20 74.60 77.50 78.50
65.30 62.00 65.70 72.10 71.70 73.90 90.80 93.20 93.70

G
52.20 47.20 50.30 50.40 51.10 58.70 63.80 65.50 66.90
64.30 60.70 64.60 62.20 61.50 73.20 80.40 82.30 83.10

β
50.50 57.00 62.90 55.80 60.60 65.60 76.40 83.50 87.70
63.60 71.50 76.50 72.30 74.20 77.30 87.70 95.60 98.80

χ2

3

37.50 67.30 70.60 41.40 78.50 80.10 43.50 88.00 88.40
51.50 79.60 82.30 54.10 91.30 93.20 59.60 97.30 98.30

t5
33.30 42.20 44.60 38.10 44.80 44.80 44.10 51.20 52.00
46.40 52.80 56.70 52.30 56.40 58.90 60.90 65.00 65.80

5.2. Heteroscedastic model

The reported results correspond to the model

Yj = Xj +X2
j + (Xj + 0.5)εj , 1 ≤ j ≤ n,
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whereXj follows the uniform (0, 1) distribution. Since the model is heteroscedastic

and the null hypothesis is simple, the simplifications in Remark 3.2 can be applied.

Table 5 displays the results obtained for the type I error and the power for testing

normality and Table 6 for testing GOF to the Laplace distribution. Similar

conclusions to those given for Tables 1 and 2 can be also expressed in this case.

Table 5: (Heteroscedastic model) Percentage of rejections for the normality null
hypothesis at the significance levels 5% (upper entry) and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
4.50 6.00 5.40 6.50 4.90 5.36 4.82 5.92 4.90 5.32 5.08 5.74

10.30 10.80 10.20 12.50 10.50 10.70 10.12 11.74 9.40 10.30 10.64 11.24

LP
16.40 43.00 60.00 64.30 34.20 60.00 87.10 88.50 65.00 75.60 99.50 99.50
23.40 54.00 70.40 73.70 44.50 71.40 92.10 92.80 73.80 82.30 99.80 99.80

LG
7.40 57.60 56.40 63.10 8.50 91.90 94.70 95.20 12.60 99.80 100.00 100.00

12.10 70.40 72.00 76.00 15.00 95.90 97.40 98.10 20.20 99.90 100.00 100.00

G
19.40 39.10 56.40 63.10 36.90 68.10 94.70 95.20 67.20 93.60 100.00 100.00
29.90 55.00 72.00 76.00 49.90 80.30 97.40 98.10 76.10 97.60 100.00 100.00

β
43.00 16.10 57.60 63.30 86.20 77.00 99.80 99.80 99.90 95.20 100.00 100.00
56.20 26.10 70.00 74.70 92.30 86.20 100.00 100.00 100.00 97.60 100.00 100.00

χ2

3

50.90 41.60 85.50 89.10 83.00 71.30 99.70 99.70 99.20 95.70 100.00 100.00
61.80 54.80 92.50 93.90 91.00 83.10 99.90 99.90 99.70 98.80 100.00 100.00

t5
9.20 51.00 59.10 65.40 15.90 80.20 92.90 94.30 27.90 99.00 100.00 100.00

16.20 65.70 71.60 76.50 23.40 89.30 97.70 98.00 36.80 99.90 100.00 100.00

Table 6: (Heteroscedastic model) Percentage of rejections for the Laplace null
hypothesis at the significance levels 5% (upper entry) and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
2.00 31.80 25.00 27.10 2.60 55.30 51.20 52.50 2.80 86.10 85.70 86.20
4.90 40.30 34.70 37.10 7.40 64.80 61.80 62.90 7.80 90.50 91.20 91.40

LP
2.10 4.60 3.70 4.60 3.00 5.70 4.00 4.40 3.60 4.40 4.00 4.40
6.80 10.00 8.00 9.60 7.30 11.50 9.20 10.20 7.80 9.10 8.40 9.00

LG
2.10 33.80 27.10 29.30 2.30 54.80 50.80 52.30 3.10 85.00 84.40 84.70
6.30 43.80 37.60 40.20 6.80 64.40 61.60 62.50 7.00 89.30 89.60 89.90

G
2.10 31.30 23.50 25.50 2.80 53.90 50.20 51.50 3.00 85.30 85.10 85.60
6.70 41.10 34.40 37.10 6.80 65.10 62.70 63.70 7.50 91.10 91.10 91.50

β
3.00 19.20 18.40 21.00 6.00 33.50 43.20 45.90 27.60 56.70 81.20 81.50
8.00 27.40 29.10 31.70 14.60 43.70 55.30 56.80 39.60 68.50 87.30 87.80

χ2

3

2.70 22.30 18.60 20.80 3.40 43.10 42.90 44.50 5.60 78.40 81.30 81.90
7.10 30.80 27.30 30.10 7.60 54.50 54.10 56.60 12.70 84.10 87.30 87.70

t5
2.90 30.60 22.80 24.50 3.90 56.80 53.20 53.90 4.60 84.30 83.90 84.30
6.30 41.50 33.70 38.00 6.50 66.70 64.30 65.20 9.40 90.20 90.40 90.70
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5.3. Time consumed

Table 7 compares the PB and the WB (with raw and centered multipliers)

in terms of the required CPU time. This table shows the CPU time consumed

in seconds to get a p-value for testing GOF for the normal and the Laplace

distributions in the homoscedastic (for both single and composite null hypothesis)

and the heteroscedastic models with sample sizes n = 25, 50, 100, 200. Looking

at this table it becomes evident that the WB is more efficient than the PB,

in terms of the required computing time, specially for larger sample sizes. The

difference in time when using the raw and the centered multipliers is rather small.

Table 7: CPU time consumed for the calculation of one p-value in seconds
for testing normality and Laplace distribution for the homoscedastic
model and composite null hypothesis (upper entry), the hetero-
scedastic model (middle entry) and the homoscedastic model and
single null hypothesis (lower entry).

n
Normal distribution Laplace distribution

PB/WB1 WB1 WB2 PB/WB1 WB1 WB2

2.72 0.71 0.74 3.49 1.00 1.01
25 7.45 0.33 0.35 7.17 0.54 0.60

4.42 0.31 0.34 5.34 0.50 0.55

5.61 0.71 0.70 7.51 1.08 1.09
50 30.88 0.17 0.22 38.15 0.26 0.25

15.63 0.19 0.19 23.68 0.28 0.25

12.15 0.84 0.86 23.40 1.11 1.12
100 52.80 0.25 0.27 74.33 0.42 0.45

30.64 0.25 0.26 64.56 0.37 0.39

27.56 1.25 1.27 76.37 1.54 1.58
200 66.19 0.59 0.62 127.80 0.83 0.83

41.14 0.56 0.58 117.51 0.78 0.76

The gain in computational efficiency of the WB over the PB stems from the

fact that one does not have to re-estimate the parameters at each iteration, which

slows down the process considerably. Note that in the WB the parameter θ, the

regression function m(.) and the conditional variance function σ(·) are estimated

only one time. For the WB approximation, once the set {mjk, 1 ≤ j ≤ k ≤ n} is

computed, the WB replicates T ∗1
2,n,ω(θ̂), ..., T ∗B

2,n,ω(θ̂) can be calculated very rapidly.
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6. CONCLUSIONS

This paper proposes a WB approximation for the null distribution of a

test statistic for testing GOF to the error distribution in nonparametric mod-

els. It provides a consistent estimator. The WB and the PB share this property.

Nevertheless, from a computational point of view, the WB approximation is more

efficient, in the sense of requiring less computation time. The numerical examples

support these attributes. In addition, in cases were the asymptotic null distribu-

tion does not depend on unknown quantities, the simulations carried out declare

that, for small to moderate sample sizes, the WB provides a better fit than the

asymptotic distribution.

To derive the results in this paper we considered certain estimators for

the regression function and the conditional variance function. In addition, we

assumed that the covariate was univariate. The results could be extended by

considering other estimators (such as other local polynomial estimators) as well

as covariates with higher dimension. The null distribution of other test statistics

(for example, those based on the empirical CDF) could be similarly approximated.

7. APPENDIX

7.1. Assumptions

(A.2) The weight function ω satisfies

(7.1) ω(t) = ω(−t), ∀t,
ω(t) ≥ 0, ∀t, and

∫

t4ω(t)dt <∞.

There is no restriction in assuming that the weight function ω(t) satisfies (7.1)

because otherwise by defining ω1(t) = 0.5{ω(t)+ω(−t)}, which satisfies (7.1), we

have that Tn,ω(θ̂) = Tn,ω1
(θ̂).

(A.3) ε1, ..., εn are IID with E(ε4j ) <∞ and ε1, ..., εn and X1, ..., Xn are

independent.

Recall that by construction we have that E(εj) = 0 and Var(εj) = 1.

(A.4) (i) X has a compact support S.

(ii) fX , m and σ are twice continuously differentiable on S.

(iii) infx∈S fX(x) > 0 and infx∈S σ(x) > 0.
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(A.5) nh4
n → 0, nh2

n/ lnn→ ∞.

(A.6) K is a twice continuously differentiable symmetric pdf with com-

pact support.

Assumptions (A.4)–(A.6) are mainly needed to guarantee the uniform con-

sistency of the kernel estimators f̂X(·), m̂(·) and σ̂(·) for fX(·), m(·) and σ(·),
respectively.

(A.7) The first partial derivatives R′(t; θ), I ′(t; θ), R(r)(t; θ), I(r)(t; θ),

1 ≤ r ≤ p, exist and are continuous functions ∀t ∈ R, ∀θ in an

open neighborhood of θ1. In addition, R′(t; θ), I ′(t; θ), R(r)(t; θ),

I(r)(t; θ), tR
′(t; θ), tI ′(t; θ), tR(r)(t; θ), tI(r)(t; θ), 1 ≤ r ≤ p, are

bounded by functions in L2(ω), ∀θ in an open neighborhood of θ1.

The following assumption will be used for the maximum likelihood estima-

tor of the parameter.

(A.9) The following functions exist ∀θ in an open neighborhood of θ1:

ur(x; θ) = ∂
∂θr

log f(x; θ) ,

u1,r(x; θ) = ∂2

∂x∂θr
log f(x; θ) , u0,r,s(x; θ) = ∂2

∂θr∂θs
log f(x; θ) ,

u2,r(x; θ) = ∂3

∂x2∂θr
log f(x; θ) , u1,r,s(x; θ) = ∂3

∂x∂θr∂θs
log f(x; θ) ,

and satisfy

|u1,r(a1 + a2x; θ)| ≤ b1,r(x), with xb1,r(x), b1,r(x) ∈ L2(F ) ,

|u0,r,s(a1 + a2x; θ)| ≤ b0,r,s(x) ∈ L2(F ) ,

|u2,r(a1 + a2x; θ)| ≤ b2,r(x) ∈ L2(F ) ,

|u1,r,s(a1 + a2x; θ)| ≤ b1,r,s(x) ∈ L2(F ) ,

∀a1, a2, θ such that |a1|, |a2−1|, |θ−θ1|≤δ, for some small δ, 1≤r,s≤p.
In addition, the following expectations exist:

E
{

ur(ε; θ1)us(ε; θ1)
}

,

E
{

εu1,r(ε; θ1)
}

,

1 ≤ r, s ≤ p.

The following assumption will be used for the method of moment estimator

of the parameter, which assumes that under the null hypothesis, θ0 = g(µ0), for

some known function g = (g1, ..., gp)
T , gr : R

k−1 → R, 1 ≤ r ≤ p:

(A.10) gr is twice continuously differentiable at a neighborhood of µF ,

1 ≤ r ≤ p.
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7.2. Proofs

We now sketch the proofs of the results stated in the previous sections, as

well as some preliminary results. Along this section M denotes a generic positive

constant taking many different values.

Lemma 7.1. Suppose that assumptions (A.3)–(A.6) hold, then

(a) 1
n

∑n
j=1(εj − ε̂j)

2 = op(1).

(b) 1
n

∑n
j=1(ε̂

2
j − ε2j )

2 = op(1).

(c) 1
n

∑n
j=1(ε̂

2
j − 1)2 = Op(1).

(d) 1
n

∑n
j=1 ε̂

2
j = Op(1).

Proof: First, observe that under the considered assumptions (see, for

example, Masry [16])

sup
x∈S

|m̂(x) −m(x)| = op(n
−1/4),(7.2)

sup
x∈S

|σ̂(x) − σ(x)| = op(n
−1/4).(7.3)

The difference between the residuals and the errors can be written as follows

(7.4) ε̂j − εj = εj

(

σ(Xj) − σ̂(Xj)

σ̂(Xj)

)

+

(

m(Xj) − m̂(Xj)

σ̂(Xj)

)

.

The results in (a)–(d) follow from (7.2)–(7.4).

Lemma 7.2. If ‖θ̂ − θ1‖ = op(1) and (A.7) holds, then

(a) ‖t{R′(t; θ̂) −R′(t; θ1)}‖2
ω = op(1),

‖t{I ′(t; θ̂) − I ′(t; θ1)}‖2
ω = op(1).

(b)
∫

‖∇R(t; θ̂) −∇R(t; θ1)‖2ω(t)dt = op(1),
∫

‖∇I(t; θ̂) −∇I(t; θ1)‖2ω(t)dt = op(1).

(c) ‖R(t; θ̂) −R(t; θ1)‖2
ω = op(1),

‖I(t; θ̂) − I(t; θ1)‖2
ω = op(1).

(d) ‖t{R(t; θ̂) −R(t; θ1)}‖2
ω = op(1),

‖t{I(t; θ̂) − I(t; θ1)}‖2
ω = op(1).

Proof: (a) From (A.7) tR′(t; θ) ∈ L2(ω), ∀θ in a neighborhood of θ1. Since

θ̂
P→ θ1, the integral

∫

{R′(t; θ̂)−R′(t; θ1)}2t2ω(t)dt is finite with probability tend-

ing to 1. Thus, ∀ǫ > 0,∃M = M(ǫ) > 0 such that

(7.5)

∫

R\[−M,M ]
{R′(t; θ̂) −R′(t; θ1)}2t2ω(t)dt < ǫ,
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with probability tending to 1. tR′(t; θ) is a uniformly continuous function in

[−M,M ] ×Bδ(θ1) = C, where Bδ(θ1) = {θ : ‖θ − θ1‖ ≤ δ}. Thus, ∀ǫ > 0, ∃ ρ =

ρ(ǫ) > 0 such that ∀(ta, θa), (tb, θb) ∈ C satisfying ‖(ta, θa)− (tb, θb)‖ < ρ, we have

|t1R′(ta; θa) − t2R
′(tb; θb)| < ǫ/ι, with ι =

∫

ω(t)dt. As a consequence

(7.6)

∫ M

−M
{R′(t; θ̂) −R′(t; θ1)}2t2ω(t)dt < ǫ,

with probability tending to 1. As ǫ is arbitrary, the result in (a) for the real part

follows from (7.5) and (7.6). The proof for the imaginary part is parallel.

(b) The proof of this part is quite similar to that of part (a).

Parts (c) and (d) can be proven by applying the mean value theorem.

Proof of Theorem 2.1: W ∗ can be expressed as W ∗ = W1 +W2 + 2W3,

whereW 2
3 ≤W1W2,W1 = ‖ 1√

n

∑n
j=1 Z0(εj ; t, θ1)ξj‖2

ω,W2 = ‖ 1√
n

∑n
j=1{Z0(ε̂j ; t, θ̂)

− Z0(εj ; t, θ1)}ξj‖2
ω. From the results in [4],

sup
x

|P∗ {W1 ≤ x} − P {W0 ≤ x}| a.s.−→ 0.

Thus, to show the result it suffices to see that W2 = op∗(1) in probability. With

this aim, observe that W2 can be expressed as W2 =
∑4

j=1 Sj +
∑

j 6=k Sjk, with

S2
jk ≤ SjSk, 1 ≤ j, k ≤ 4. In the proof of Theorem 3.1 it is given the expression

of Sj and it is also proven that Sj = op∗(1) in probability, 1 ≤ j ≤ 4. This proves

the result.

Proof of Theorem 3.1: T ∗
2,n,ω(θ̂) can be expressed as T ∗

2,n,ω(θ̂) = D1 +

D2 +2D3, where D1 = ‖ 1√
n

∑n
j=1 Z2(εj ; t, θ1)ξj‖2

ω, D2 = ‖ 1√
n

∑n
j=1{Z2(ε̂j ; t, θ̂)−

Z2(εj ; t, θ1)}ξj‖2
ω, D2

3 ≤ D1D2. From the results in [4],

sup
x

|P∗ {D1 ≤ x} − P {T2 ≤ x}| a.s.−→ 0.

Thus, to show the result it suffices to see that D2 = op∗(1) in probability. With

this aim, observe that D2 can be expressed as

D2 =
10

∑

j=1

Sj +
∑

k<j

Sjk,

with S2
jk ≤ SjSk, 1 ≤ j, k ≤ 10,

S1 = ‖ 1√
n

∑n
j=1{cos(tεj) − cos(tε̂j)}ξj‖2

ω,

S2 = ‖ 1√
n

∑n
j=1{sin(tεj) − sin(tε̂j)}ξj‖2

ω,

S3 = ‖ 1√
n
{R(t; θ̂) −R(t; θ1)}

(

∑n
j=1 ξj

)

‖2
ω,
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S4 = ‖ 1√
n
{I(t; θ̂) − I(t; θ1)}

(

∑n
j=1 ξj

)

‖2
ω,

S5 = ‖ t√
n

∑n
j=1{ε̂jR(t; θ̂) − εjR(t; θ1)}ξj‖2

ω,

S6 = ‖ t√
n

∑n
j=1{ε̂jI(t; θ̂) − εjI(t; θ1)}ξj‖2

ω,

S7 = ‖ t
2
√

n

∑n
j=1{(ε̂2j − 1)R′(t; θ̂) − (ε2j − 1)R′(t; θ1)}ξj‖2

ω,

S8 = ‖ t
2
√

n

∑n
j=1{(ε̂2j − 1)I ′(t; θ̂) − (ε2j − 1)I ′(t; θ1)}ξj‖2

ω,

S9 = ‖ 1√
n

∑n
j=1{ψT

n (ε̂j ; θ̂)∇R(t; θ̂) − ψT
1 (εj ; θ)∇R(t; θ1)}ξj‖2

ω,

S10 = ‖ 1√
n

∑n
j=1{ψT

n (ε̂j ; θ̂)∇I(t; θ̂) − ψT
1 (εj ; θ)∇I(t; θ1)}ξj‖2

ω.

We will show that Sj = op∗(1) in probability, 1 ≤ j ≤ 10. By the mean value

theorem,

S1 =
1

n

n
∑

j,k=1

ξjξk(εj − ε̂j)(εk − ε̂k)

∫

t2 sin(t
∼
εj) sin(t

∼
εk)ω(t)dt,

where
∼
εj= αjεj + (1 − αj)ε̂j , for some αj ∈ (0, 1). Then, from Lemma 7.1 (a),

E∗(S1) ≤
1

n

n
∑

j=1

(εj − ε̂j)
2

∫

t2ω(t)dt = op(1),

which implies S1 = op∗(1) in probability. Analogously, S2 = op∗(1) in probability.

Since S3 =
(

1√
n

∑n
j=1 ξj

)2
‖R(t; θ̂) −R(t; θ1)‖2

ω, the central limit theorem

and Lemma 7.2 (c) imply that S3 = op∗(1) in probability. Analogously, S4 =

op∗(1) in probability.

Observe that S5 = S51 + S52 + 2S53, with S2
53 ≤ S51S52,

S51 = 1
n

∑n
j,k=1(ε̂j − εj)(ε̂k − εk)ξjξk‖tR(t; θ̂)‖2

ω,

S52 = 1
n

∑n
j,k=1 εjεkξjξk‖t{R(t; θ̂) −R(t; θ1)}‖2

ω.

From Lemma 7.1 (a) and Assumption (A.2), it follows that E∗(S51) = op(1) and

thus S51 = op∗(1), in probability. From Lemma 7.2 (d), it follows that E∗(S52) =

op(1) and thus S52 = op∗(1), in probability. Therefore, S5 = op∗(1), in probability.

Analogously, S6 = op∗(1), in probability.

Observe that S7 = S71 + S72 + 2S73, with S2
73 ≤ S71S72,

S71 = 1
4

1
n

∑n
j,k=1(ε̂

2
j − 1)(ε̂2k − 1)ξjξk‖t{R′(t; θ̂) −R′(t; θ1)}‖2

ω,

S72 = 1
4

1
n

∑n
j,k=1(ε̂

2
j − ε2j )(ε̂

2
k − ε2k)ξjξk‖tR′(t; θ1)‖2

ω.

From Lemma 7.1 (c) and Lemma 7.2 (a), it follows that E∗(S71) = op(1) and thus

S71 = op∗(1), in probability.
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From Lemma 7.1 (b) and (A.7), it follows that E∗(S72) = op(1) and thus

S72 = op∗(1), in probability. Therefore, S7 = op∗(1), in probability. Analogously,

S8 = op∗(1), in probability.

Observe that S9 = S91 + S92 + 2S93, with S2
93 ≤ S91S92,

S91 = ‖ 1√
n

∑n
j=1{ψn(ε̂j ; θ̂) − ψ1(εj ; θ1)}T∇R(t; θ̂)ξj‖2

ω,

S92 = ‖ 1√
n

∑n
j=1 ψ1(εj ; θ1)

T {∇R(t; θ̂) −∇R(t; θ1)}ξj‖2
ω.

From (3.2) and (A.7), it follows that E∗(S91) = op(1) and thus S91 = op∗(1), in

probability. From (A.1) and Lemma 7.2 (b), it follows that E∗(S92) = op(1) and

thus S92 = op∗(1), in probability. Therefore, S9 = op∗(1), in probability. Analo-

gously, S10 = op∗(1), in probability. This completes the proof.

Proof of Corollary 3.2: From Theorem 3.1 it follows that T ∗
2,n,ω(θ̂) =

Op∗(1) in probability. From Theorem 2 in [11],
Tn,ω(θ)

n
P−→ κ > 0. These two

facts imply the result.

Lemma 7.3. Suppose that ‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, and that

assumptions (A.3)–(A.6), (A.9) hold, then

(a) 1
n

∑n
j=1 ‖∇ log f(ε̂j ; θ̂) −∇ log f(εj ; θ1)‖2 = op(1).

(b) Ân,rs(θ̂) = AF,rs(θ1) + op(1), 1 ≤ r, s ≤ p.

(c) ρ̂1(θ̂) = ρ1,F (θ1) + op(1).

(d) ρ̂2(θ̂) = ρ2,F (θ1) + op(1).

Proof: (a) From the mean value theorem and (A.9),

1
n

∑n
j=1

{

∂
∂θr

log f(ε̂j ; θ̂) − ∂
∂θr

log f(εj ; θ1)
}2

= 1
n

∑n
j=1

{

∂2

∂ε∂θr
log f(ε̃j ; θ̃)(ε̂j − εj) +

∑p
s=1

∂2

∂θr∂θs
log f(ε̃j ; θ̃)(θ̂s − θ1s)

}2

≤ Sr,1 + Sr,2 + 2Sr,3,

with S2
r,3 ≤ Sr,1Sr,2, ε̃j = (1 − αj)ε̂j + αjεj , for some αj ∈ (0, 1), 1 ≤ j ≤ n, θ̃ =

(1 − α)θ̂ + αθ1, for some α ∈ (0, 1),

Sr,1 = ‖θ̂ − θ1‖2 1

n

n
∑

j=1

p
∑

s=1

b20,r,s(εj)

and

Sr,2 =
1

n

n
∑

j=1

b21,r(εj)(ε̂j − εj) = op(1).
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From (A.9), (7.2)–(7.4), it follows that Sr,1 = op(1), Sr,2 = op(1), 1 ≤ r ≤ p.

This proves (a).

The proof of parts (b)–(d) follows similar steps to that of part (a).

Proof of Theorem 4.1: Observe that 1
n

∑n
j=1 ‖ψ1n(ε̂j ; θ̂)−ψ(εj ; θ1)‖2 ≤

D1 +D2 +D3 +D4, with D2
4 ≤ ∑

j 6=k DjDk,

D1 =
1

n

n
∑

j=1

‖Ân(θ̂)−1∇ log f(ε̂j ; θ̂) −AF (θ1)
−1∇ log f(εj ; θ1)‖2,

D2 =
1

n

n
∑

j=1

‖ε̂j ρ̂1(θ̂) − εjρF,1(θ1)‖2,

D3 =
1

n

n
∑

j=1

‖
ε̂2j − 1

2
ρ̂2(θ̂) −

ε2j − 1

2
ρF,2(θ1)‖2.

By using the results in Lemmas 7.1 and 7.3 one obtain Dj = op(1), 1 ≤ j ≤ 3,

and hence the result.

Proof of Theorem 4.2: From (7.2)–(7.4),

1√
n

n
∑

j=1

ε̂sj =
1√
n

n
∑

j=1

εsj +
1√
n

n
∑

j=1

εs−1
j

m(Xj) − m̂(Xj)

σ̂(Xj)
(7.7)

+
1√
n

n
∑

j=1

εsj
σ(Xj) − σ̂(Xj)

σ̂(Xj)
+ op(1).

Taking into account the following facts

(m.1) supx∈S

∣

∣

∣

m̂(x)−m(x)
σ̂(x) − m̂(x)−m(x)

σ(x)

∣

∣

∣
= op(n

−1/2),

(m.2) supx∈S

∣

∣

∣
m̂(x) −m(x) − 1

nfX(x)

∑nv

k=1Khn
(x−Xk)σ(Xk)εk

∣

∣

∣

= op(n
−1/2),

it follows that

1√
n

n
∑

j=1

εs−1
j

m(Xj) − m̂(Xj)

σ̂(Xj)
=

=
−1

n
√
n

n
∑

j,k=1

εs−1
j εk

σ(Xk)

fX(Xj)σ(Xj)
Khn

(Xj −Xk) + op(1).

Now, by using projections, we get (see, for example, the proof of Theorem 2 in

[18] for a similar development)

(7.8)
1√
n

n
∑

j=1

εs−1
j

m(Xj) − m̂(Xj)

σ̂(Xj)
= −µF,s−1

1√
n

n
∑

j=1

εj + op(1).
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Next we deal with the third term in the right-hand side of (7.7). Taking into

account the following facts

(s.1) supx∈S

∣

∣

∣

σ̂(x)−σ(x)
σ̂(x) − σ̂(x)−σ(x)

σ(x)

∣

∣

∣
= op(n

−1/2),

(s.2) supx∈S

∣

∣

∣
σ̂(x) − σ(x) − σ̂2(x)−σ2(x)

2σ(x)

∣

∣

∣
= op(n

−1/2),

(s.3) supx∈S

∣

∣

∣
σ̂2(x) − σ2(x) − 1

nfX(x)

∑n
j=1Khn

(Xj − x)

·
[

{Yj −m(x)}2 − σ2(x)
]
∣

∣

∣
= op(n

−1/2),

it follows that
1√
n

n
∑

j=1

εsj
σ(Xj) − σ̂(Xj)

σ̂(Xj)
=

=
1

2n
√
n

n
∑

j,k=1

εsj
1

fX(Xj)σ2(Xj)
Khn

(Xj −Xk)
[

σ2(Xj) − {Yk −m(Xj)}2
]

+ op(1).

Now, by using projections, we get (see, for example, the proof of Lemma 11 in

[19] for a similar development)

(7.9)
1√
n

n
∑

j=1

εsj
σ(Xj) − σ̂(Xj)

σ̂(Xj)
= −µF,s

2

1√
n

n
∑

j=1

(ε2j − 1) + op(1).

The result follows from (7.7)–(7.9).

Proof of Theorem 4.3: Notice that

µ̂s − µF,s =
1

n

n
∑

j=1

(ε̂sj − εsj) +
1

n

n
∑

j=1

(εsj − µF,s).

From (7.2)–(7.4), the first term in the right-hand side of the above equality is

op(1); from the SLLN, the second term in the right-hand side of the above equality

is o(1) a.s. Therefore µ̂s − µF,s = op(1), 2 ≤ s ≤ k. The result follows from this

fact and (A.10).
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[19] Pardo-Fernández, J.C.; Jiménez-Gamero, M.D. and El Ghouch, A.

(2015). Tests for the equality of conditional variance functions in nonparametric
regression, Electronic Journal of Statistics, 9, 1826–1851.

[20] R Core Team (2015). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, URL: http://www.R-project.org/, Vienna,
Austria.

[21] Sperlich, S. (2013). Comments on: An updated review of Goodness-of-Fit tests
for regression models, Test, 22, 419–427.

[22] White, H. (1982). Maximum likelihood estimation of misspecified models,
Econometrica, 50, 1–25.

[23] Zhu, LX. (2005). Lecture Notes in Statistics. Nonparametric Monte Carlo test

and their applications, Springer, Berlin.


