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de València, C/ Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
pitroig72@gmail.com

José Maŕıa Bellido
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Abstract:

• Many ecological processes are measured as proportions and are spatially sampled.
In all these cases the standard procedure has long been the transformation of propor-
tional data with the arcsine square root or logit transformation, without considering
the spatial correlation in any way. This paper presents a robust regression model to
analyse this kind of data using a beta regression and including a spatially correlated
term within the Bayesian framework. As a practical example, we apply the proposed
approach to a spatio-temporally sampled fishery discard dataset.
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1. INTRODUCTION

Many ecological processes are spatially sampled and measured as propor-

tions; one example is, sea-grass coverage in a area. The traditional approach in

ecology has been to, first transform proportional data to approximate normality,

and then analyse them using Gaussian linear models, such as analysis of variance

or linear regression.

A very common transformation is the arcsine square root transformation.

This transformation can be useful to stabilise variances and normalise the data

but there are several reasons why it should be avoided. Firstly, model parameters

cannot be easily interpreted in terms of the original response [Warton and Hui,

2011, Ferrari and Cribari-Neto, 2004]. Secondly, the efficacy of the arcsine trans-

formation in normalising proportional data is heavily dependent on the sample

size, and does not perform well at extreme ends of the distribution [Warton and

Hui, 2011, Wilson and Hardy, 2002]. Thirdly, measures of proportions typically

display asymmetry, and hence inference based on the normality assumption can

be misleading [Ferrari and Cribari-Neto, 2004].

An alternative that is becoming more prevalent in ecological analyses is the

logistic regression, an analytical method designed to deal with binomial propor-

tional data [Steel et al., 1997, Wilson and Hardy, 2002, Warton and Hui, 2011],

i.e. proportions measured as x out of n. The logistic regression provides a more

biologically and ecologically interpretative analysis and is not sensitive to sample

size. Nonetheless, such binomial data is prone to overdispersion, resulting in an

incorrect quantification of the uncertainty when applying the proposed binomial

generalised linear model (GLM). In these cases, the inclusion of a random in-

tercept term using generalised linear mixed models (GLMMs) may improve the

assessment of uncertainty [Wilson and Hardy, 2002].

When data are non-binomial, that is, observations do not follow the x

out of n pattern, the logistic regression is no longer applicable. As an alterna-

tive approach, Warton and Hui [2011] suggested the logit transformation of the

data, which overcomes the problems of interpretability and range of the confi-

dence/credible intervals using the arcsine square root transformation. However,

any transformation of the data (yt) implies that regression parameters are only

interpretable in terms of the transformed mean of yt and not the mean of the

original data.

The beta distribution is a well known distribution that satisfies the char-

acteristics of proportions, bounded to the [0, 1] interval with asymmetric shapes.

It has long been used in a wide range of applications involving proportions and

probabilities [Gupta and Nadarajah, 2004]. However, only recently has it been
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applied to linear regression modelling [Ferrari and Cribari-Neto, 2004, Smithson

and Verkuilen, 2006, Liu and Kong, 2015] and time-series analysis [Da-Silva and

Migon, 2016], allowing bounded estimates and intervals with model parameters

that are directly interpretable in terms of the mean of the response.

Aside from the likelihood function, it is well known that changes in ecologi-

cal processes in time and space are driven by a set of factors and interactions. Un-

derstanding these drivers is very often the ultimate goal among scientists seeking

to manage natural resources effectively. However, the immeasurable complexity

of ecological spatial processes often means that the spatial variability of the data

exceed the variability explained by the explanatory variables. This phenomenon

usually results in spatially autocorrelated model residuals that can yield incorrect

results and a restricted predictive capacity of the models [Fortin and Dale, 2009,

Legendre et al., 2002].

A good solution to improve model fit and prediction is to introduce spatial

terms in our models. Spatial terms are based on the principle that close obser-

vations have more in common than distant observations [Tobler, 1970]. Conse-

quently, by applying a distance-based function, these terms are capable of improv-

ing fine scale predictions and identifying hidden spatial hot and/or cold spots that

may be important for management purposes. In addition, from a management

perspective it is crucial to address the uncertainty associated with our predic-

tions and estimates. In this respect, the Bayesian hierarchical approach is able

to accommodate complex systems and obtain a proper uncertainty assessment by

relying on quite straightforward probability rules [Clark, 2005].

The reminder of this article goes as follows. First, we summarise the charac-

teristics of the hierarchical spatial beta regression. Then, we introduce the princi-

ples of the Integrated Nested Laplace Approximation (INLA from now on) using

the Stochastic Partial Differential Equations (SPDE) approach (http://www.r-

inla.org) [Rue et al., 2009] as an effective way to deal with spatially sampled

proportional data. As an example, we apply this approach to a fishery dis-

cards database to identify discard proportion high-density areas in the Western

Mediterranean Sea. Finally, we end up with some conclusions.

2. HIERARCHICAL SPATIAL BETA REGRESSION

Traditionally the beta distribution is denoted by two scaling parameters

Be(a, b). In order to apply regression it is necessary to reparametrize its density

distribution in terms of its mean µ = a
a+b and a dispersion φ = a + b, so that:

π(y) =
Γ(φ)

γ(µφ)γ(φ(1 − µ))
yµφ−1(1 − y)(1−µ)φ−1 , 0 < y < 1 ,(2.1)
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where Γ is the gamma function, E(y) = µ and V ar(y) = µ(1−µ)
1+φ . Note that here,

as opposed to the Gaussian distribution, the variance depends on the mean, which

translates into maximum variance at the centre of the distribution and minimum

at the edges, to support the truncated nature of the beta distribution.

It is also important to note that the probability density (2.1) does not

provide a satisfactory description of the data at both ends of the distribution,

zero and one. An ad hoc solution may be to add a small error value to the

observations to satisfy this criterion [Warton and Hui, 2011]; otherwise zero and

one inflated models are required [Liu and Kong, 2015].

Following the Be(µ, φ) reparametrisation, a given set of observations

y1, ..., yn, that represent proportions, can be related to a set of covariates and

functions using a similar approach to the generalised linear model:

Logit(µi) = ηi(2.2)

ηi = α +

nβ∑

j=1

βjzji +

nk∑

k=1

fk(uki) + vi

where ηi enters the likelihood through a logit link, α is the intercept of the model,

βj are the fixed effects of the model, fk() denote any smooth effects (including

spatial dependence effects) and vi are unstructured error terms (random vari-

ables).

At the time of writing, a handful of R packages allow beta regression:

betareg [Grün et al., 2011], mgcv [Wood, 2011] and gamlss [Stasinopoulos and

Rigby, 2007] in the frequentist field and Bayesianbetareg [Marin et al., 2014],

zoib Liu and Kong [2015] and R-INLA (the implementation of INLA in R [Martins

et al., 2013]) in the Bayesian counterpart. zoib allows zero/one inflated beta

regression but only R-INLA allows a wide range of flexible hierarchical models to

be fitted at a user-friendly and computationally efficient environment, as we will

show in the following Section.

Indeed, Bayesian hierarchical methods are becoming very popular in many

fields due to the complexity of the relationships involved in natural systems

[Clark, 2005]. Modelling these relationships often requires specifying sub-models

inside the additive predictor that allow a suspected hidden or latent effect to be

inferred that characterise these relationships.

A good example may be the use of spatial latent fields that apply distance-

based functions to model the spatial dependence of the data. In these cases, the

main intensity of the process is driven by a set of covariates Xβ, also called large-

scale variation, to which a spatial term is added based on a correlation function

fw() that describe the unobserved small-scale variation. Consequently, we end up

with a spatial correlation model, which depends on its own hyperparameters, as
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part of a broader model that characterises the intensity of the process; in other

words, we have a hierarchical model with a spatial latent variable.

A popular point-referenced spatial model, the geostatistical model, has the

characteristic that the spatial covariance function fw() is continuous over the

range of the spatial effect. Based on this function, it is customary to assume a

Gaussian latent field W ∼ N(0, Q(κτ)) with covariance matrix Q that depends

on two hyperparameters, in the case of R-INLA, κ and τ . These hyperparame-

ters determine the range and the variance of the spatial latent field. When we

include this in the additive predictor of a beta distributed process Y , we obtain

a hierarchical model with at least three stages:

• First stage: Y |β, W ∼ Be(Xβ + W, ρ)

where Y are conditionally independent given W .

• Second stage: W |κ, τ ∼ N(0, Q(κτ))

where W is a Gaussian latent spatial model.

• Third stage: priors on (β, ρ, κ, τ).

A common problem with this kind of hierarchical model is that there is no

closed expression for the marginal posterior distributions of the parameters and

hyperparameters, so numerical approximations are needed. The typical approach

to approximate these posteriors is to use MCMC simulation methods. Unfortu-

nately, MCMC can get very computationally inefficient when applied to complex

models such as spatial models.

3. THE INLA APPROACH FOR GEOSTATISTICAL MODELS

Performing inference and prediction under a geostatistical Gaussian field

W entail the so-called “big n problem” [Banerjee et al., 2003]. This problem is

related to the dense covariance matrix Q, which traduces into very high MCMC

computational costs. In this vein, the stochastic partial differential equations

(SPDE) approach in R-INLA allows reducing the required number of computations

from O(n3) [Stein et al., 2004] to O(n3/2) [Cameletti et al., 2013] in the two

dimensional spatial domain. In what follows, we first present the INLA method

followed by the SPDE approach.

The INLA algorithm, proposed by Rue et al. [2009], is a numerical approx-

imation method to perform Bayesian inference. The most remarkable feature of

INLA, as opposed to MCMC, is that it allows the posterior distributions of latent

Gaussian models to be accurately approximated through Laplace approximations

[Laplace, 1986, Tierney and Kadane, 1986], even for complex models without be-

coming computationally prohibitive. INLA exploits the fact that latent Gaussian
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models admit conditional independence properties [Rue and Held, 2005], which

allows expressing them as computationally efficient Gaussian Markov random

fields (GMRFs) with a sparse precision matrix [Rue and Held, 2005].

The estimation of the latent components, collected in a set of parameters

θ = {β, W } and hyperparameters Ω = {ρ, κ, τ} in R-INLA, is computed in three

steps. First, the posterior marginal distribution of the hyperparameters is ap-

proximated by using the Laplace integration method

p(Ω|Y ) ≈ p(Y |θ,Ω)p(θ|Ω)p(Ω)

p̃(θ|Ω, Y )

∣∣∣∣
θ=θ

∗(Ω)

= p̃(Ω|Y ),(3.1)

where p̃(θ|Ω, Y ) is the Gaussian approximation, given by the Laplace method, of

p(θ|Ω, Y ) and θ∗(Ω) is the mode for a given Ω.

Then, R-INLA approximates p(θi|Ω, Y ) by using again the Laplace integra-

tion method

p(θi|Ω, Y ) ≈ p(θ|Ω, Y )

p̃(θ−i|θi,Ω, Y )

∣∣∣∣
θ−i=θ

∗

−i(θi,Ω)

= p̃(θi|Ω, Y ),(3.2)

where p̃(θ−i|θi,Ω, Y ) is the Laplace Gaussian approximation to p(θ−i|θi,Ω, Y )

and θ∗

−i(θi,Ω) is its mode. This strategy can be very computationally expensive

since p̃(θ−i|θi,Ω, Y ) has to be recomputed for each value of θ and Ω. See section

3.2 in Rue et al. [2009] for a more detailed text on the different approximation

approaches available in R-INLA.

Finally, R-INLA approximates the marginal posterior distributions based on

the previous two steps

p(θi|Y ) ≈
∫

p̃(θi|Ω, Y )p̃(Ω|Y )dΩ,(3.3)

where the integral can be numerically solved through a finite weighted sum ap-

plied in certain integration points and then interpolating in between. For a more

detailed text on the selection of integration points see section 3.1(c) in Rue et al.

[2009].

As mentioned above, INLA exploits the good computational properties of

GMRFs to perform fast Bayesian inference. Nevertheless, continuous GFs (like

the ones involved in geostatistical models) are continuously indexed, thus, in

principle, not applicable in INLA. In this regard, Lindgren et al. [2011] provided

a clever approximation of a GF with Matérn covariance function (3.4) to a GMRF

using a fractional stochastic partial differential equation.

Lindgren et al. [2011]’s approximation of a GF requires that its covariance

function is of the Matérn family. Following Lindgren et al. [2011]’s notation, the

Matérn covariance function for an stationary and isotropic GF is

C(d) =
σ2

2ν−1Γ(ν)
(κ||si − sj ||)νKν(κ||si − sj ||),(3.4)
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where κ is a scaling parameter that determines the effective range r of the spatial

effect.

The approximation by Lindgren et al. [2011] fall on the fact that a GF z(s)

with Matérn covariance function is a solution to the linear fractional SPDE

(κ2 − ∆)α/2z(τs) = W(s), s ∈ R
d, α = ν + d/2, κ > 0, ν > 0,(3.5)

where ∆ is the Laplacian, d is the dimension of the GF z(s), ν is the smoothness

parameter of the Matérn function and W is the Gaussian spatial white noise

process.

Finally, the solution to the SPDE can be approximated using the Finite

Element Method [Zienkiewicz et al., 1977] through a deterministic basis function

representation defined on a triangulation of the domain D (see Figure 1 for the

triangulation used in the case study of the following Section). The triangulation,

so-called mesh, of the study area is based on Delaunay triangulations [Delaunay,

1934], which, as opposed to a regular grid, allows a flexible partition of the region

into triangles that can satisfy different types of constraints to better accommodate

different characteristics of the study area.

Figure 1: Triangulation of the study area. The outer ring of
sparse triangles allows us avoid having a border
effect inside the study area.

4. APPLICATION TO TRAWL DISCARD PROPORTIONS

The modelling approach proposed to tackle spatially sampled proportions

was applied to a trawl fishery discard database in the Spanish Mediterranean.

Fishery discards, i.e. the part of the catch that is thrown back to the sea dead,
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constitute an unnecessary biomass loss from the marine systems. A repeatedly

proposed discard mitigation measure is the spatial management of fishery re-

sources [Kelleher, 2005, Bellido et al., 2011, Pennino et al., 2014]. In this regard,

spatial beta regression is specially important to the fishery discards framework

since it allows the spatial assessment of discard proportions, which allows assess-

ing the economic benefit of a fishing operation against its ecological impact due

to the discard portion of the catch.

4.1. Data

Trawl discard data were collected according to European Comission [2009]

regulation, which establishes a métier-based discard sampling programme. Specif-

ically this study was based on bottom trawl data for the south-eastern part of

the Spanish Mediterranean Sea (Figure 2) [see Pennino et al., 2014, for a more

detailed description of the métiers].

Figure 2: Map of the study area with bathymetric contours in meters.
Black dots represent the centroids of the 391 sampled hauls
and size plotted according to the observed discard proportion.

The database, provided by the Instituto Español de Oceanograf́ıa (IEO,

Spanish Oceanographic Institute), contains a total of 391 hauls collected between

2009 and 2012, including catch and discard data disaggregated by species. The

characteristics of each fishing operation (date, geolocation and depth) were also

extracted directly from this database.
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A discard proportion response variable of regulated species was created as

the fraction of discarded biomass of the total catch. Unlike total discards, discard

proportions represent benefit versus loss, and are therefore a better indicator to

assess whether or not discards are disproportionate to the catch.

4.2. Modelling trawl discard proportions

The analysis of trawl discard proportions included the total catch of each

fishing haul, the mean bathymetry of the haul, a geostatistical term and a vessel

effect as predictors (Table 1). Therefore, assuming that the discard proportion

Yi at location i follows a beta distribution, the final model can be expressed as:

Yi ∼ Be(µi, φi), i = 1, ..., n

logit(µi) = βcci + di + Wi

βc ∼ N(0, 0.001)

∆2dj = dj − 2dj+1 + dj+2 ∼ N(0, ρd), j = 1, ..., m

logρD ∼ LogGamma(0.5, 0.00005)(4.1)

W ∼ N(0,Q(κ, τ))

2logκ ∼ N(µκ, ρκ)

logτ ∼ N(µτ , ρτ )

where the mean of discard proportions enters the model through the logit link, i

indexes the location of each haul and j indexes different depths (dj , representing

the different values of bathimetry starting at d1 = 40 metres till dm=30 = 720

metres). In the last two rows µ stands for the mean of the normal distributions

while ρ denotes its corresponding precision.

Table 1: List of covariates included in the analysis and the effect assigned to them.

Variable Description Unit Effect

Total catch Total catch of the haul Kilograms Linear

Location Geolocation UTM Geostatistical

Depth Mean depth of the haul Meters Non-linear effect

Vessel Sampled vessel ID — Random noise effect

Based on the work by Rochet and Trenkel [2005], who found that discard

proportions are not fully proportional to the catch, the total catch of each haul

C = (c1, ..., cn) was introduced as a linear effect with vague normal prior distri-

butions as implemented by default in R-INLA. The exploratory analysis revealed

non-linear relationships between depth and the discard proportion, so a second

order random walk (RW2) latent model was applied based on constant depth
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increments dj . These RW2 models, which perform as Bayesian smoothing splines

[Fahrmeir and Lang, 2001], can be expressed as a computationally efficient GMRF

[Rue and Held, 2005], and are therefore applicable in INLA. The smoothing of

the bathymetric effect was selected visually by subsequently changing its prior

distribution while models were scaled to have a generalized variance equal to one

[Sørbye and Rue, 2014].

The two dimensional geostatistical latent model W , introduced to identify

fine-scale hot-spots, depends on two hyperparameters κ and τ that define the

variance and the range of the spatial effect. Specifically, and with the smoothing

parameter of the Matérn (3.4) fixed (ν = 1), the range of the spatial terms is

approximately
√

8/κ and the variance 1/(4πκ2τ2). The priors for κ and τ are

specified over the logτ and 2logκ. Default R-INLA prior distributions were used,

where µκ is specified so that the range of the field is 20% of the longest distance

in the field and µτ is chosen so that the mean variance of the field is one. The

rest of the prior distributions in use are described in (4.1).

4.3. Results

Figure 3 shows the posterior mean and the standard deviation of the spatial

component, which represents the intrinsic spatial variability of the data without

the rest of the independent variables. This effect highlights (in blue), high discard

proportion areas or hot-spots. Similarly, two cold-spots were found (in red), one in

the coastal shallow waters in front of the lagoon and another in the mid-northern

part of the 150–300 meter strata. These hot-spots characterise the areas where

more discards are expected as compared to other areas with similar environmental

conditions. As a consequence, a marine spatial planning framework could consider

these areas for protection so that discarded/wasted biomass is minimised.

(a) Mean (b) Standard deviation

Figure 3: Posterior predictive mean and standard deviation maps of the
spatial component of discard proportions.
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As expected, the total catch of the haul had a positive effect on the expected

discard proportions (posterior mean = 0.038; 95% CI = [0.0027, 0.0049]), i.e. the

discard proportion increases with total catch increments. The bathymetric effect

showed a negative relationship of discard proportions to depth, suggesting that

the highest discard proportions are located in shallow waters and decrease with

depth (Figure 4).

Figure 4: Marginal effect of the bathymetry in the linear predictor.
The continuous line represents the mean effect and dashed
lines their 95% credible intervals.

Finally, no vessel effects was identified in the study area suggesting that

discard proportions are reasonably homogeneous across vessels.

5. CONCLUSIONS

In this paper, we use a Bayesian hierarchical spatial beta model to analyse

spatially sampled proportion data. To this end, we use a simple reparametrisation

of the beta distribution to apply regression on the mean of the process. The

Bayesian approach allows a straightforward quantification of uncertainty, which

is important for decision making, while the hierarchical structure allows a more

natural model specification, especially when including complex latent models such

as geostatistical terms.
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Beta regression overcomes all the drawbacks of the traditional data trans-

formations [Warton and Hui, 2011, Ferrari and Cribari-Neto, 2004]. First, it

allows a direct interpretation of model parameters in terms of the original data;

second, the analysis is not sensitive to the sample size; and lastly, posterior distri-

butions are expected to concentrate well within the bounded range of proportions.

It is only when observations on the extremes of the distribution are present, i.e.

0 and 1, that the beta distribution does not provide a satisfactory description of

the data. A possible solution to this problem is to add some small value to the

proportion, which introduces minimal bias while still satisfying the above crite-

ria [Warton and Hui, 2011]; otherwise, zero and/or one inflated models may be

required [Ospina and Ferrari, 2012], now available in the zoib package [Liu and

Kong, 2015] for R.

The incorporation of spatial random effects in beta regression models can

be very useful in a wide range of disciplines. For example mapping plant coverage

in ecology; mapping budget allocation in econometrics; mapping the percentage

of retirees in sociology, mapping sex-ratios in species, etc. Furthermore, combin-

ing the Bayesian spatial hierarchical modelling approach [Banerjee et al., 2003]

and the temporal extension of Da-Silva and Migon [2016], the beta regression

framework can be extended to the spatio-temporal domain. Consequently, it is

possible to tackle problems such as the evolution of plant epidemics [Stein et al.,

1994], the spatio-temporal evolution of temperature [Hengl et al., 2012] or the

understanding of the spatial dynamism of species over time, as in Paradinas et

al. [2015]. It must be taken into account that the computational burden of these

models can be even more demanding than in the purely spatial domain, making

R-INLA and its SPDE module two almost necessary tools to deal with them.

The Bayesian analysis of fisheries distribution is a very important field of

research in marine ecology [Muñoz et al., 2013, Quiroz et al., 2015]. The case

study presented here applies spatial beta regression to identify fishery discard

hot-spots based on discard proportions, which, as opposed to total discard units,

assess the biomass benefit against the amount of wasted biomass that constitute

discards. Our results have identified at least one high discard proportion hot-

spot in the study area. Under a marine spatial planning framework that seeks

to minimise the ecological impact of the fishing activity, the characterisation of

hot-spots could be specially useful for policy makers, as it would allow them to

protect those hot-spots as areas of special interest.

To conclude, we would like to mention that the geostatistical beta regres-

sion approach proposed here to analyse proportions is not only applicable to

non-binomial proportional data but also to binomial proportional data, i.e. pro-

portions measured as x out of n. In fact, applying beta regression in these cases

may be an easier and more natural approach to avoid the usual problem of overdis-

persion in logistic regression than that proposed in Wilson and Hardy [2002] using

GLMMs.
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[21] Muñoz, F.; Pennino, M.G.; Conesa, D.; López-Qúılez, A. and Bellido,
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208–217.

[26] Rochet, M.J. and Trenkel, V.M. (2005). Factors for the variability of dis-
cards: assumptions and field evidence, Canadian Journal of Fisheries and Aquatic
Sciences, 62(1), 224–235.
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