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Abstract:

• The accuracy of a binary diagnostic test can easily be assessed by comparing the
sensitivity and specificity with the status of respondents. When the result of a diag-
nostic test is continuous, the assessment of accuracy depends on a specified threshold.
The receiver operating characteristic (ROC) curve, which includes all possible combi-
nations of sensitivity and specificity, provides an appropriate measure for evaluating
the overall accuracy of the diagnostic test. Nevertheless, in practice, a cutoff value is
still required to make easier its clinical usage easier. The determination of a proper
cutoff value depends on how important the practitioner views the specificity and sen-
sitivity. Given particular values of specificity and sensitivity, this paper derives the
optimal cutoff value under two parametric assumptions on the outcomes of the di-
agnostic test. Because the optimal cutoff value does not have a closed form, the
numerical results are tabulated for some parameter settings to find the optimal cutoff
value. Finally, real data are employed to illustrate the use of the proposed method.
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1. INTRODUCTION

A diagnostic test that results in a continuous value is often evaluated using

the receiver operating characteristic (ROC) curve. Let TP, FP, FN and TN

denote the true positive decision, false positive decision, false negative decision

and true negative decision, respectively. The following table provides 4 possible

diagnostic test decisions:

True status
Test result

Positive Negative

Case TP FN
Normal FP TN

Let P [TP] be the probability that a true positive decision is made, and let P [TN],

P [FP] and P [FN] be defined similarly. The true positive rate (TPR) and the true

negative rate (TNR) can be derived from P [TP], P [TN], P [FP] and P [FN] as

TPR =
P [TP]

P [D+]
,(1.1)

TNR =
P [TN]

P [D−]
,(1.2)

where P [D+] = P [TP] + P [FN] denotes the prevalence of a disease and P [D−] =

P [TN] + P [FP] = 1 − P [D+].

A ROC curve is constructed from different values for the TPR and FPR.

The determination of the TPR and FPR requires a cutoff value to classify the

normal and diseased populations when the outcome is continuous. The ROC

curve is then formed using TPRs and FPRs derived from all possible cutoff values.

However, for practical use, the continuous outcome has to be dichotomized such

that the investigator or practitioner can easily use it to discriminate the disease

status. Nevertheless, the ROC curve does not provide direct information on how

to determine such a cutoff value. It is thus important to find an optimal cutoff

value (OCV) such that the probabilities of correct decisions are maximized.

Let SD and SN denote the outcome of the diagnostic measure for the dis-

ease group and the normal group, respectively, and let FD and FN denote the

corresponding distribution functions. The ROC curve can be represented as

ROC(t) = F̄D(F̄−1
N (t)),

where t ∈ (0, 1), F̄D(t) = 1− FD(t) is the survival function of FD(t) and F̄N (t) is
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defined similarly. Because the FPR and TPR are functions of F̄D and F̄N as

FPR(c) = P [SN > c|N ] = 1 − FN (c) = F̄N (c),

TPR(c) = P [SD > c|D] = 1 − FD(c) = F̄D(c),

for a given cutoff c ∈ (−∞,∞), the ROC curve can be represented in terms of

the TPR and FPR.

To derive the OCV, an additional objective function is required. Three

objectives have been discussed in the literature to find the OCV (Akobeng [1];

Kumar [5]). The first objective function is defined as the distance from the ROC

curve to the point (0,1), that is,

C1(c) =
√

(1 − TPR(c))2 + (FPR(c))2(1.3)

and the OCV is the point at which C1(c) has the minimum. The second objective

function proposed by Youden [9] is the vertical distance from the line of equality

to the point on the ROC curve, which is

C2(c) = TPR(c) + TNR(c) − 1,(1.4)

and the OCV is the point that maximizes C2. C2(c) is known as the Youden

index. An alternative and equivalent representation of C2(c) is

|TPR(c) − (1 − TNR(c))|

expressed by Lee [6] and Krzanowski and Hand [4]. The third objective function

is a weighted function of the probability of four diagnostic decisions, defined by

Metz [8] as

(1.5) C3(c) = C0 + CTPP [TP] + CTNP [TN] + CFPP [FP] + CFNP [FN],

where C0 is the overhead cost, CTP represents the average cost of the medical

consequences of a true positive decision, and the remainder of the costs are defined

similarly. Based on (1.1) and (1.2), expression (1.5) can be rewritten as

C3(c) ={C0 + CFP × P [D−] + CFN × P [D+]}(1.6)

+ {[CFN − CTP] × P [D+]} × TPR(c)

+ {[CTN − CFP] × P [D−]} × TNR(c)

In particular, the first term on the right-hand side of (1.6) includes only the three

costs and the prevalence, which do not depend on the decision of a diagnostic test.

Because the determination of the OCV is not related to this term, it is neglected

in the following discussion. Thus, in terms of (1.6), the best cutoff value is the

one that minimizes C3. The critical value occurs at

∂TPR(c)

∂TNR(c)
= −(CTN − CFP) × P [D−]

(CFN − CTP) × P [D+]
,
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which is the slope of a line of isoutility or the tangent line in the ROC space.

Metz [8] concluded that the OCV on a ROC curve must be tangent to the highest

line of isoutility that intersects with the ROC curve.

The OCV derived from the first and second objective functions is deter-

mined empirically (Kumar [5]). Under the binormal model and assuming that

the slope of the tangent line to the ROC curve equals η, an explicit form for

the OCV under C3(c) is derived and is referred to as P252 in Halperm et al. [3].

However, the third objective function uses not only the cost for each decision but

also the prevalence of the disease. The latter can possibly be obtained empirically

using the existing data, whereas the cost of the medical consequences is difficult

to obtain. Thus, it is rarely used in the medical literature (Kumar [5]).

For a practitioner, sensitivity and specificity, which correspond to the TPR

and TNR, are commonly used measures, and the importance of these two mea-

sures depends on the purpose of the diagnostic test. Thus, rather than the equal

weight setting for the TPR and TNR as in (1.3) and (1.4), in this paper, we

suggest using a more general objective function,

C(c) =α × TPR(c) + β × TNR(c),(1.7)

where 0 < α, β < 1 and α + β = 1, to derive the OCV. The weight α can be

regarded as the relative cost for an additional cost of classifying a TP compared to

an additional cost of classifying a TN. Assuming the location and scale parametric

assumption, the OCV can be then obtained under C(c). In particular, when

α = 0, the objective function in (1.7) is the usual criterion for finding the OCV

by minimizing the FPR or maximizing the specificity. Conversely, when β = 0,

the objective function is the usual criterion for finding the OCV by maximizing

the sensitivity. Section 2 describes the basic definition of the ROC curve and

the derivation for the OCV. Section 3 presents the numerical results. Sections 4

and 5 provide a real application and discussions, respectively.

2. METHOD

Assume that FD and FN belong to a location and scale family. In other

words, both distributions can be expressed by a standard form, say F , with

different location and scale parameters. Let (µD, γD) and (µN , γN ) denote the

parameters for FD and FN , respectively. The FPR and TPR can be represented

in terms of F as

TPR(c) = P
[SD − µD

γD
>

c − µD

γD

]

= F
(µD − c

γD

)

(2.1)

FPR(c) = P
[SN − µN

γN
>

c − µN

γN

]

= F
(µN − c

γN

)

.(2.2)
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Let tp denote the critical value of F , i.e., 1 − F (tp) = p. Given FPR(c), the

following relationship is obtained:

tFPR = F−1
N (FPR(c)) = −c − µN

γN
,

and

(2.3) c = µN − γN × tFPR.

Additionally, given TPR(c), we have

tTPR = F−1
D (TPR(c)) = −c − µD

γD
,

and

(2.4) c = µD − γD × tTPR.

Given FPR and TPR, (2.3) and (2.4) provide the relationship between two critical

values as

tTPR =
µD − µN

γD
+

γN

γD
tFPR = a + btFPR,(2.5)

where a = (µD −µN )/γD and b = γN/γD. From (2.5), a linear relationship exists

between two critical values of FD and FN , where a is the intercept and b is the

slope. Given FPR(c), the ROC curve can be represented as

ROC(c) = P [SD > c] = F
(µD − c

γD

)

.(2.6)

Substituting the value of c defined in (2.3) into (2.6) yields

ROC(c) = P [SD > c] = F
(µD − µN + γN × tFPR

γD

)

= F (a + btFPR).

Under the location and scale family as defined in (2.1), (2.2) and (2.5),

(1.7) becomes

C(c) = αF
(

a + b
(µN − c

γN

))

+ βF
(c − µN

γN

)

.

The OCV can then be determined by finding the critical value of dC
dc

= 0, where

dC(c)

dc
= αf

(

a + b
(µN − c

γN

))

×
(

− b

γN

)

+ βf
(c − µN

γN

)

×
( 1

γN

)

(2.7)

and f(·) is the density function of F (·). The following theorem discusses two lo-

cation and scale families. The proof for Theorem 2.1 is provided in the Appendix,

and the proof for Theorem 2.2 is similar.
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Theorem 2.1. Assume that F (·) = Φ(·) is a standard normal distribution

function. To be consistent with the conventional notation, the scale parameters

are denoted by σD and σN . Then,

1. When b = 1, we obtain

OCV = µN +
a

2
σN − σN

a
log
(1 − β

β

)

.(2.8)

2. When b 6= 1, we obtain

OCV =
T ±

√

T 2 − 2(1 − b2)R/σ2
N

(1 − b2)/σ2
N

,(2.9)

where

R =
µ2

N − (aσN + bµN )2

2σ2
N

+ log(
αb

β
),(2.10)

T =
µN − abσN − b2µN

σ2
N

,(2.11)

and R and T have to satisfy the condition T 2 − 2(1 − b2)R/σ2
N > 0.

Theorem 2.2. Assume that F (·) is a standard logistic distribution func-

tion, i.e.,

F (x) = [1 + exp(−x)]−1 .

Then,

1. When b = 1, we obtain a closed form for the OCV as

OCV = −σD log(q),(2.12)

where

q =
(α − β) ±

√

αβ(exp(a) + exp(−a) − 2)
[

β exp
(

− µN

γN

)

− α exp
(

− µD

γN

)]

exp
(

µD+µN

γN

) .(2.13)

2. When b 6= 1, the OCV is found numerically by solving the following

nonlinear equation

β

γN
exp

(µN

γN

)

k
−

1

γN

(

exp
(bµN + aγN

γN

)

k
−

1

γD + 1
)2

=
αb

γN
exp

((bµN + aγN

σN

)

k
−

1

γD

(

exp
(µN

γN

)

k
−

1

γN + 1
)2

,(2.14)

where k = ec.
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2.1. Relationship between the objective function and cutoff values

As c increases, the TPR decreases and the TNR increases. Because we

assume that a case has a higher test value, the relative change in the TPR with

respect to c is more rapid than that in the TNR. Furthermore, as expected,

increasing µD means a smaller overlapping area in the densities for the normal

and diseased populations and results in an increase in the TPR. When µD is

fixed, the influence of σD on the TPR depends on c. When c is closer to µD,

increasing σD reduces the TPR.

To understand how the parametric assumption influences the relationship

between the objective function and the OCV, the basic features for the binormal

and bilogistic models are discussed in the following. The common feature is that

both distributions are symmetric about the location parameter. Nevertheless,

the scale parameter in the normal distribution is the standard deviation, whereas

the scale parameter in the logistic distribution is equal to the standard deviation

times
√

3/π. Finally, the kurtosis of the normal distribution equals 3, whereas

that of the logistic distribution equals 4.2.

Assuming that µN = 0 and σN = 1, Figures 1(a)–1(b) display the normal

and logistic density functions for the normal and diseased populations when b = 1,

and Figures 2(a)–2(d) display the situations when b 6= 1, where the solid line

represents the normal distribution and the dashed line represents the logistic

distribution and the left curve is for the control population and the right curve

is for the diseased population. Under the same settings of µD and σD, the tail

probability for the logistic distribution is slightly larger than that for the normal

distribution. Furthermore, the mode of the logistic distribution is higher than

that of the normal distribution because it has a larger kurtosis. These distinct

features influence the TPR and TNR as shown in Table 1. Furthermore, due to

a more concentrated feature for the logistic distribution, under the considered

situation, the TNR of the logistic distribution is slightly larger than that of the

normal distribution when c is closer to the µN , whereas for larger c, the TNR

of the logistic distribution is slightly smaller. Thus, under the assumption that

µN < µD, to have a higher TPR, the cutoff value for the logistic distribution is

smaller than that for the normal distribution. In contrast, when investigating the

TNR, the cutoff values for the logistic distribution might not be smaller.

The proposed objective function is a weighted function of the TPR and TNR.

Figures 3(a)–3(b) show the relationship between the objective function C and the

cutoff value c for various βs assuming that µN = 0, σN = 1 and µD = 1, σD = 1.

For the binormal assumption, Figure 3(a) shows that when β = 0.5 and OCV=0.5,

we obtain C(OCV) = 0.6915. When β = 0.7, that is, the specificity is more

important than the sensitivity, we obtain OCV=1.3473 and C(OCV) = 0.7470.
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(a) µD = 0.5 and σD = 1. (b) µD = 1 and σD = 1.

Figure 1: The probability density functions for normal distribution and logistic dis-
tributions for µN = 0, σN = 1 and b = 1, where the solid line represents
the normal curve and the dashed line represents the logistic curve.

(a) µD = 0.5 and σD = 1.5. (b) µD = 1.3 and σD = 1.5.

(c) µD = 0.5 and σD = 0.3. (d) µD = 1 and σD = 0.3.

Figure 2: The probability density functions for the normal distribution and logistic
distribution for µN = 0, σN = 1 and b 6= 1, where the solid line represents
the normal curve and the dashed line represents the logistic curve.
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Table 1: TPR and TNR under c = 0.5, 1.5, 2 for the binormal model
and bilogistic model assuming µN = 0 and σN = 1.

µD σD c
Normal distribution Logistic distribution

TPR TNR TPR TNR

0.5 1
0.5 0.5000 0.6915 0.5000 0.7124

2 0.0668 0.9772 0.0618 0.9741

1 1
0.5 0.6915 0.6915 0.7124 0.7124

2 0.1587 0.9772 0.1402 0.9741

0.5 1.5
0.5 0.5000 0.6915 0.5000 0.7124

1.5 0.2525 0.9331 0.2298 0.9382

1 1.5
0.5 0.6306 0.6915 0.6467 0.7124

1.5 0.3694 0.9332 0.3533 0.9382

0.5 0.3
0.5 0.5000 0.6915 0.5000 0.7124

1.5 0.0004 0.9332 0.0024 0.9382

1 0.3
0.5 0.9522 0.6915 0.9536 0.7124

1.5 0.0478 0.9332 0.0464 0.9382

Conversely, when β = 0.3, that is, the sensitivity is more important than the

specificity, we obtain OCV=-0.3473 and C(OCV) = 0.7470. Figure 3(b) shows

a similar pattern for when the bilogistic model is considered, but C(OCV) is

slightly larger and the OCV is moving towards small values. This result arises

from a larger kurtosis for the logistic distribution.

(a) Binormal model. (b) Bilogistic model.

Figure 3: Relationship between cutoff values and C under the binormal
model and bilogistic model under various combinations of (α, β),
where ◦ indicates the point at (OCV, C(OCV)).
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2.2. Special cases

Depending on the purpose of the test, the investigator might be more in-

terested in the specificity as long as the sensitivity reaches a specific limit, or

vice versa. That is, an investigator might want to have a diagnostic test in which

the sensitivity is at least larger than a pre-specified value L, where 0 < L < 1.

Then, the OCV is obtained by maximizing the specificity under the constraint

that the sensitivity is larger than L, i.e., TPR ≥ L. Likewise, the OCV can be

obtained by maximizing the sensitivity under the constraint that the specificity

is larger than L, i.e., TNR ≥ L. The following derives the boundary for the TPR

and TNR under the binormal and bilogistic models. The following proofs can be

obtained in a straightforward manner.

Theorem 2.3. Assume that F (·) is a standard normal distribution func-

tion and that L > 0 is a pre-specified constant. Then,

1. When L ≤ TPR, upper bounds of c and the TNR are

c ≤ µD − σNΦ−1(L),

TNR ≤ Φ
(µD − µN − σNΦ−1(L)

σN

)

.

Thus, the OCV equals µD − σNΦ−1(L).

2. When L ≤ TNR, a lower bound of c and an upper bound of the TNR

are given as

c ≥ µN − σNΦ−1(1 − L),

TNR ≤ Φ
(µD − µN + σNΦ−1(1 − L)

σN

)

.

Thus, the OCV equals µN − σNΦ−1(1 − L).

Theorem 2.4. Assume that F (·) is a bilogistic distribution function and

that L > 0 is a pre-specified constant. Then,

1. When L ≤ TPR, upper bounds of c and the TNR are

c ≤ µD − γN log(
L

1 − L
),

TNR ≤ 1

1 + exp
(

µN−µD+γN log
(

L
1−L

)

γN

)

.

Thus, the OCV equals µD − γN log( L
1−L

).
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2. When L ≤ TNR, a lower bound of c and an upper bound of the TNR

are given as

c ≥ µN − γN log
(1 − L

L

)

,

TNR ≤
exp(

µD−µN+γN log( 1−L
L

)

γN
)

1 + exp
(

µD−µN+γN log( 1−L
L

)

σN

)
.

Thus, the OCV equals µN − γN log
(

1−L
L

)

.

3. NUMERICAL RESULTS

Based on the objective function defined in (1.6), Section 2 derives the OCV

under the binormal and bilogistic models. When the binormal model is assumed,

the OCV can be obtained explicitly, whereas under the bilogistic model, the OCV

can be obtained explicitly only when b=1. The following discusses the OCV, TPR,

and TNR under various settings for β and the location and scale parameters.

For simplicity, the standard normal distribution is assumed for the control

population, i.e., µN = 0 and σN = 1. Because the formula for determining the

OCV varies with b, the following discussion considers b = 1 and b 6= 1 separately.

For each scenario, the parameter setting is classified into two situations. The first

scenario considers different values of µD given σD. The second scenario considers

different values of σD given µD. Furthermore, the settings for µD and σD are

discussed according to the effect size ES = µD/σD. Additionally, µD is assumed

to be larger than µN . Moreover, because β = 0 and β = 1 correspond to special

cases discussed in Section 2.2, the numerical results only consider 0.1 ≤ β ≤ 0.9.

Similar results for the bilogistic model are given in the Supplement.

3.1. Situation I when σD is fixed and µD is varied

The first situation discusses the numerical results when σD is fixed and

ES is varied. For ES < 1, µD equals 0.5, 0.7 and 0.9, whereas for 1 < ES, µD

equals 1.5, 2 and 2.5. Figures 4(a)–4(b) display the relationship between TPR

and TNR with respect to β when µD is varied and σD = 1. When β increases,

the investigator is more interested in the TNR. As expected, the TNR increases

while the TPR decreases. Increasing µD means that the difference in the testing

result between two groups becomes more evident. Furthermore, for a fixed β
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and σD, the OCV is a function of µD, as given in (2.8). Thus, as µD increases,

the OCV increases, which corresponds to an increase in the TNR and a decrease

in the TPR. Furthermore, due to a symmetric property, the OCV is located at

TPR=TNR when β = 0.5. Table 2 presents the OCV, TPR and TPR for each

scenario.

(a) ES < 1. (b) 1 < ES.

Figure 4: TNR and TPR at the OCV for various combinations of µD,
β and ES under the binormal model and b = 1.

Table 2: Numerical results for TNR, TPR and OCV under the binormal model
with various µDs and σD = 1.

ES µD σD Measures
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OCV −4.1444 −2.5226 −1.4446 −0.5609 0.2500 1.0609 1.9446 3.0226 4.6444
0.5 0.5 1 TPR 1.0000 0.9987 0.9741 0.8556 0.5987 0.2874 0.0743 0.0058 0.0000

TNR 0.0000 0.0058 0.0743 0.2874 0.5987 0.8556 0.9741 0.9987 1.0000

OCV −2.7889 −1.6304 −0.8604 −0.2292 0.3500 0.9292 1.5604 2.3304 3.4889
0.7 0.7 1 TPR 0.9998 0.9901 0.9407 0.8236 0.6368 0.4093 0.1948 0.0515 0.0026

TNR 0.0026 0.0515 0.1948 0.4093 0.6368 0.8236 0.9407 0.9901 0.9998

OCV −1.9914 −1.0903 −0.4914 −0.0005 0.4500 0.9005 1.3914 1.9903 2.8914
0.9 0.9 1 TPR 0.9981 0.9767 0.9180 0.8161 0.6736 0.4998 0.3116 0.1378 0.0232

TNR 0.0232 0.1378 0.3116 0.4998 0.6736 0.8161 0.9180 0.9767 0.9981

OCV −0.7148 −0.1742 0.1851 0.4797 0.7500 1.0203 1.3149 1.6742 2.2148
1.5 1.5 1 TPR 0.9866 0.9530 0.9057 0.8462 0.7734 0.6843 0.5734 0.4309 0.2374

TNR 0.2374 0.4309 0.5734 0.6843 0.7734 0.8462 0.9057 0.9530 0.9866

OCV −0.0986 0.3069 0.5764 0.7973 1.0000 1.2027 1.4236 1.6931 2.0986
2 2 1 TPR 0.9821 0.9548 0.9227 0.8855 0.8413 0.7874 0.7178 0.6205 0.4607

TNR 0.4607 0.6205 0.7178 0.7874 0.8413 0.8855 0.9227 0.9548 0.9821

OCV 0.3711 0.6955 0.9111 1.0878 1.2500 1.4122 1.5889 1.8045 2.1289
2.5 2.5 1 TPR 0.9834 0.9644 0.9440 0.9211 0.8944 0.8617 0.8189 0.7566 0.6447

TNR 0.6447 0.7566 0.8189 0.8617 0.8944 0.9211 0.9440 0.9644 0.9834
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Figures 5(a)–5(d) display the TPR and TNR at the OCV when β is varied

and σD 6= 1. The pattern for the TPR and TNR with respect to β is no longer

symmetric. Similar to σD = 1, as β increases, the TPR decreases and the TNR

increases. However, the relationship between the TPR and TNR depends on σD,

ES and β. When ES < 1 and σD = 0.5, the TPR is always larger than the TNR

regardless of β. This is because σD = 0.5 means that the result obtained from the

diseased group is more homogeneous, and the diagnostic test has a higher ability

to detect a case even if ES < 1. However, when ES < 1 and σD = 1.5, the TPR

is larger than the TNR only if β < 0.4. Furthermore, when ES > 1, the TPR is

larger than the TNR only for some βs.

(a) ES < 1 & σD = 0.5. (b) 1 < ES & σD = 0.5.

(c) ES < 1 & σD = 1.5. (d) 1 < ES & σD = 1.5.

Figure 5: TNR and TPR at the OCV when µD, σD, β and ES are varied,
b 6= 1 and the binormal model are assumed.
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3.2. Situation II when σD is varied and µD is fixed

Situation II provides numerical results for OCV, TPR and TNR when µD =

0.5 and σD is varied. When µD = 0.5, ES < 1 means that σD is larger than

σN = 1, which means that it is easier to conclude a FN. Figure 6(a) shows the

relationship between the TPR and TNR at the OCV with respect to β when σD

is varied and ES < 1. The pattern of change for the TPR with respect to σD

is related to β. When β increases, TPR expectedly decreases because β is the

weight for the TNR. Nevertheless, when 0.5 < β, the TPR becomes very small

and slightly increases as σD increases. In addition, the TNR is large as long as

0.6 < β, as listed in Figure 6(a).

When µD = 0.5, 1 < ES means that σD is smaller than σN = 1, which

indicates that it is easier to conclude a TP. Figure 6(b) displays the relationship

between the TPR and TNR with respect to β when σD is varied and 1 < ES.

Expectedly, as σD increases, the TPR decreases regardless of β. Unlike ES < 1,

the relationship between the TNR and σD depends on β. When β < 0.6, the

TNR decreases as σD increases, whereas when 0.6 < β, the TNR increases as σD

increases.

(a) ES < 1. (b) 1 < ES.

Figure 6: TNR and TPR at the OCV for various combinations of σD,
β and ES under the binormal model and µD = 0.5.

As β increases, the TNR is more important and results in a larger OCV.

Table 3 demonstrates this trend. The impact of σD on the OCV is related to ES.

When ES < 1, as σD increases, the OCV increases. Nevertheless, when ES > 1,

the trend reverses.
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Table 3: The relationship among OCV, TNR and TPR when the binormal
model is assumed, µD = 0.5 and σD is varied.

ES µD σD Measures
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OCV — — — −0.5684 0.4400 1.1730 1.8288 2.5112 3.3878
0.45 0.5 1.1 TPR — — — 0.8343 0.5218 0.2703 0.1135 0.0337 0.0043

TNR — — — 0.2849 0.6700 0.8796 0.9663 0.9940 0.9996

OCV — — — −0.2929 0.7493 1.3147 1.7900 2.2693 2.8720
0.38 0.5 1.3 TPR — — — 0.7290 0.4239 0.2654 0.1605 0.0868 0.0340

TNR — — — 0.3848 0.7732 0.9057 0.9633 0.9884 0.9980

OCV — — — 0.2000 0.9490 1.4109 1.8068 2.2097 2.7192
0.33 0.5 1.5 TPR — — — 0.5793 0.3824 0.2718 0.1918 0.1272 0.0695

TNR — — — 0.5793 0.8287 0.9209 0.9646 0.9864 0.9967

OCV −0.2872 −0.1851 −0.1085 −0.0384 0.0344 0.1192 0.2368 — —
1.67 0.5 0.3 TPR 0.9957 0.9888 0.9787 0.9636 0.9397 0.8978 0.8098 — —

TNR 0.3870 0.4266 0.4568 0.4847 0.5137 0.5474 0.5936 — —

OCV −0.5196 −0.3711 −0.2583 −0.1532 −0.0417 0.0940 0.3072 — —
1.25 0.5 0.4 TPR 0.9946 0.9853 0.9710 0.9488 0.9122 0.8450 0.6851 — —

TNR 0.3017 0.3553 0.3981 0.4391 0.4833 0.5374 0.6207 — —

OCV −0.7609 −0.5570 −0.4001 −0.2518 −0.0904 0.1163 0.5753 — —
1 0.5 0.5 TPR 0.9942 0.9827 0.9641 0.9336 0.8812 0.7786 0.4401 — —

TNR 0.2234 0.2888 0.3445 0.4006 0.4640 0.5463 0.7175 — —

— Numerical data are not available.

4. CASE STUDY

Early detection may improve the survival of patients with lung cancer.

Chian et al. (2015) investigated peripheral blood mononuclear cell (PBMC)-

derived gene expression signatures for their potential in the early detection of

non-small cell lung cancer (NSCLC). PBMCs were obtained from 187 patients

with NSCLC and from 310 non-cancer controls based on an age- and gender-

matched case-control study. Controlling for gender, age and smoking status,

15 NSCLC-associated molecular markers were used to construct a risk score to

distinguish subjects with lung cancer from controls. Detailed markers and the

model construction are presented in Chian et al. (2016).

From the preventive perspective in health management, a higher sensitivity

is preferred such that the disease can be detected earlier. Thus, β might be

set to be smaller than 0.5. Nonetheless, cancer-specific clinicians often examine

highly suspicious subjects. Thus, they may wish to have a higher specificity

test. Figure 7 presents the histograms of the risk scores for the case and control

groups for the PBMC data. The bilogistic model appears to be appropriate for

these data. The maximum likelihood estimators of µ and γ are obtained for

each group. The corresponding estimates of µ and γ for the case are 1.9911 and

1.5782 and those for the control are −2.3620 and 0.9739. Based on these es-

timates, the logistic density curves are plotted on top of the histogram in Figure 7.
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(a) Case. (b) Control.

Figure 7: Histograms for risk scores for case and control groups for PBMC data,
where the solid curve is the logistic density curve.

Under the bilogistic assumption, Table 4 lists the OCVs for β ranging from 0.1

to 0.9 for the risk score derived from the PBMC data. Figure 8 presents the cor-

responding TPR and TNR. For instance, when β = 0.4, the OCV equals −0.634.

The test would expect to have equal chances at approximately 0.85 to identify a

true positive or a true negative. Nevertheless, when β = 0.6, the test would have

a higher chance to find a true negative.

Table 4: OCV for the PBMC data.

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OCV −2.864 −1.565 −1.027 −0.634 −0.291 0.044 0.409 0.861 1.581

Figure 8: TPR and TNR under various βs for the PBMC data.
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5. DISCUSSION AND CONCLUSION

The determination of the cutoff value is practically important. Because the

ROC curve includes two important measures, TPR and TNR, to obtain the opti-

mal operating point (OOP) or OCV, an additional objective function is required.

One of two existing criteria can be regarded as the special case of the proposed

criterion. The objective function C3 requires information about the cost for the

incorrect decision, which cannot be easily obtained. Furthermore, the OCV for

this criterion is determined by setting the slope of the tangent line to the ROC

curve to a pre-specified value (Halperm [3]). Because the slope is a function of

the prevalence of the disease and costs, it is difficult to explain clinically (Kumar

[5]).

The OCV is often obtained empirically (Kumar [5]). This paper derives

the closed form for the OCV under the location and scale family. The binormal

model is the most commonly used parametric assumption for the ROC curve.

Under such an assumption, this paper provides exact formulas for the OCV.

Furthermore, numerical results are presented under various scenarios. When

b = 1, the TPR and TNR are related to the weight (β). In particular, increasing

β means increasing the TNR. Nevertheless, when b 6= 1, regardless of β, the TNR

might not be higher than 0.5. In particular, when the binomial model is violated,

this paper provides another parametric choice, the bilogistic model. However,

there is no closed form for the OCV. This paper provides a nonlinear equation

for determining the OCV. In addition to discussing the OCV for the bilogistic

model, the difference between these two parametric models is also addressed. The

result of this paper can provide guidance for practitioners to choose the OCV.

Rather than choosing the OCV based on the sensitivity and specificity,

Linnet et al. [7] suggested using the likelihood ratio

LR(c) =
f(µD−c

γD
)

f(µN−c
γN

)
(5.1)

as an alternative for interpreting the test result. If (5.1) exceeds 1, then the

relative frequency of the distribution of diseased individuals exceeds that of the

normal individuals. In other words, given the index test result c, a respondent is

more likely to have the disease. Their result can also be extended to the location

and scale family.
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APPENDIX: Proof of Theorem 2.1

Assume that F is the standard normal distribution function. To be con-

sistent with the conventional notation, γD and γN are replaced by σD and σN ,

respectively. Therefore, (2.7) becomes

∂C(c)

∂c
=

−αb√
2πσN

exp
(

−
[a + b(µN−c)

σN
]2

2

)

+
β√

2πbσN

exp
(

− b2
(

c − µN

)2

2σ2
N

)

(A.1)

and set ∂C(c)
∂c

= 0 to obtain the OCV. An explicit formula for OCV can be deter-

mined and is dependent on b.

When b = 1, i.e., σ2
N = σ2

D, the objective function and the corresponding

derivative with respect to c are

C = αΦ
(

a +
µN − c

σD

)

+ βΦ(
c − µN

σD
)(A.2)

and

∂C

∂c
=

−α√
2πσD

exp

(

−1

2

[

a +
µN − c

σD

]2
)

+
β√

2πσD

exp

(

−1

2

(c − µN

σD

)2
)

.(A.3)

Let ∂C
∂c

= 0. We have

−αb exp

(

− [aσD + µN − c]2

2σ2
N

)

+ β exp

(

−(c − µN )2

2σ2
D

)

= 0,

which implies

log
(α

β

)

− [aσD + (µN − c)]2

2σ2
D

+
(c − µN )2

2σ2
D

= 0.(A.4)

After simplifying the preceding equation, we obtain

2(µD − µN )c + µ2
N − µ2

D

2σ2
D

+ log(
α

β
) = 0

and the OCV as given in (2.8).

When b 6= 1, the objective function and the corresponding derivative with

respect to c are

C = αΦ
(

a + b(
µN − c

σN
)
)

+ βΦ
(c − µN

σN

)

and

∂C

∂c
=

−αb√
2πσN

exp

(

−1

2

[

a + b

(

µN − c

σN

)]2
)

+
β√

2πσN

exp

(

−1

2

[

c − µN

σN

]2
)

.
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Let ∂C
∂c

= 0. We obtain

−αb exp

(

− [aσN + b(µN − c)]2

2σ2
N

)

+ β exp

[

−(c − µN )2

2σ2
N

]

= 0,

which implies

log(
αb

β
) − [aσN + b(µN − c)]2

2σ2
N

+
(c − µN )2

2σ2
N

= 0.(A.5)

Rearranging (A.5), we obtain

(1 − b2)

2σ2
N

c2 − (µN − abσN − b2µN )

σ2
N

c +
µ2

N − (aσN + bµN )2

2σ2
N

+ log(
αb

β
) = 0

and the OCV is equal to

c =
T ±

√

T 2 − 2(1 − b2)R/σ2
N

(1 − b2)/σ2
N

(A.6)

where R and T are defined in (2.10) and (2.11), respectively.
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