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Abstract:

• A nonparametric reliability estimator based on multistage ranked set sampling is
developed. It is shown that the estimator is unbiased and its efficiency relative to
the simple random sampling rival is increasing in the number of stages. Numerical
experiments are used to illustrate the theoretical findings. The suggested procedure
is applied on a sport data set.
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1. INTRODUCTION

Ranked set sampling (RSS) is a data collection technique which is advan-

tageous in settings where precise measurement is difficult (i.e. time-consuming,

expensive or destructive), but small sets of units can be accurately ranked without

actual quantification. The ranking of the units is usually done by using expert

opinion, concomitant variable, or a combination of them, and need not to be

exact.

The RSS method was introduced by McIntyre (1952) for estimating average

yields in agriculture. In this setup, precise measurement entails harvesting the

crops, and thus is expensive. An expert, however, can accurately rank the yields

in a small set of adjacent fields by visual inspection. There has been a surge of

research on RSS in the last two decades. The RSS has been applied in a variety

of areas such as forestry, environmental science and medicine. For a book-length

treatment of RSS and its applications, see Chen et al. (2004).

The RSS design can be elucidated as follows:

1. Draw m random samples, each of size m, from the target population.

2. Apply judgement ordering, by any cheap method, on the elements of

the ith (i = 1, ..., m) sample and identify the ith smallest unit.

3. Actually measure the m identified units in step 2.

4. Repeat steps 1–3, p times (cycles), if necessary, to obtain a ranked set

sample of size M = p m.

Let Xik be the ith judgement order statistic from the kth cycle. Then, the

resulting ranked set sample is denoted by {Xik : i = 1, ..., m ; k = 1, ..., p}. The

design parameter m is called set size.

A ranked set sample contains more information than a simple random sam-

ple of comparable size because it contains not only information carried by quan-

tified observations but also information provided by the judgment ranking mech-

anism. Thus, statistical procedures based on RSS tend to be superior to their

simple random sampling (SRS) analogs.

The success of RSS hinges on accuracy of the ranking process. To reduce

possible errors, the set size m should be kept small in the basic version of RSS. Al-

Saleh and Al-Kadiri (2000) suggested double RSS (DRSS) that increases efficiency

of the RSS mean estimator, given a fixed m. Al-Saleh and Al-Omari (2002)

generalized DRSS to multistage RSS (MSRSS), and showed that further gain

in efficiency can be achieved in estimating the population mean. Al-Saleh and

Samuh (2008) investigated the distribution function and the median estimation
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based on MSRSS.

The MSRSS scheme can be summarized as follows:

1. Randomly identify mr+1 units from the population of interest, where r

is the number of stages.

2. Allot the mr+1 units randomly into mr−1 sets of m2 units each.

3. For each set in step 2, apply steps 1–2 of RSS procedure explained

above, to get a (judgement) ranked set of size m. This step gives mr−1

(judgement) ranked sets, each of size m.

4. Without actual measuring of the ranked sets, apply step 3 on the mr−1

ranked set to gain mr−2 second stage (judgement) ranked sets, of size

m each.

5. Repeat step 3, without any actual measurement, until an rth stage

(judgement) ranked set of size m is acquired.

6. Actually measure the m identified units in step 5.

7. Repeat steps 1–6, p times (cycles), if necessary, to obtain an rth stage

ranked set sample of size M = p m.

Similar to our previous notation, {X(r)
ik : i = 1, ..., m ; k = 1, ..., p} denotes the rth

stage ranked set sample. Clearly, the especial case of MSRSS with r = 1 corre-

sponds to RSS. Also, DRSS is obtained by setting r = 2.

The estimation of system reliability has drawn much attention in the sta-

tistical literature. Reliability of a component with strength X which is subjected

to stress Y is quantified by θ = P (X > Y ). This approach is known as the stress-

strength model. The estimation of θ has been extensively investigated in the

literature when X and Y are independent random variables, and belong to the

same family of distributions. A comprehensive account of this topic appear in

Kotz et al. (2003). In this article, we study reliability estimation in MSRSS setup.

In Section 2, a nonparametric estimator is proposed and its properties are

investigated in theory. Section 3 is given to a Monte Carlo analysis of the finite

sample behavior of the estimator. A sport data set is analyzed in Section 4. The

paper is concluded with a summary in Section 5.

2. ESTIMATION USING MSRSS

Let X1, ..., Xm and Y1, ..., Yn be independent random samples from two

populations with density functions f and g, respectively. The corresponding

distribution functions are denoted by F and G. The standard nonparametric
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estimator of θ is

θ̂ =
1

mn

m∑

i=1

n∑

j=1

I(Xi > Yj),

where I(.) is the indicator function.

To construct an estimator under MSRSS, one needs two ranked set samples

of sizes m and n from f and g. It is assumed that the samples are drawn using

a single cycle. The results in the general setup are then easily followed. If X
(r)
i ,

i = 1, ..., m, and Y
(s)
j , j = 1, ..., n, are the two multistage ranked set samples, then

θ̂r,s =
1

mn

m∑

i=1

n∑

j=1

I(X
(r)
i > Y

(s)
j )

is a natural estimator of θ. The especial case of r = s = 1 was treated by Sengupta

and Mukhuti (2008).

Let f
(r)
i and F

(r)
i be the density and distribution function of X

(r)
i , respec-

tively. The notation g
(s)
j and G

(s)
j will be used for similar functions associated

with Y
(s)
j . Suppose the ith order statistic of an (r − 1)th stage ranked set sam-

ple of size m from f , say Z
(r−1)
1 , ..., Z

(r−1)
m , is denoted by Z

(r−1)
(i) . Under the

assumption of no error in judgment ranking, we have X
(r)
i

d
= Z

(r−1)
(i) .

In our mathematical development, the two identities

1

m

m∑

i=1

f
(r)
i (x) = f(x)

and

1

n

n∑

j=1

g
(s)
j (y) = g(y),

observed by Al-Saleh and Al-Omari (2002), are repeatedly used. The above

identities can be expressed in terms of distribution functions, as well.

It is straightforward to see that θ̂ is unbiased. The unbiasedness of θ̂r,s is

verified in the following proposition.

Proposition 2.1. θ̂r,s is an unbiased estimator of θ.
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Proof:

E

{
m∑

i=1

n∑

j=1

I(X
(r)
i > Y

(s)
j )

}
=

m∑

i=1

n∑

j=1

P (X
(r)
i > Y

(s)
j )

=
m∑

i=1

n∑

j=1

∫
P (X

(r)
i > y)g

(s)
j (y) dy

= n
m∑

i=1

∫
P (X

(r)
i > y)g(y) dy

= n
m∑

i=1

P (X
(r)
i > Y )

= n
m∑

i=1

∫
P (x > Y )f

(r)
i (x) dx

= mn

∫
P (x > Y )f(x) dx

= mnP (X > Y ).

We now derive variance expressions of the two estimators.

Proposition 2.2. The variances of θ̂ and θ̂r,s are given by

m2n2V ar(θ̂) = m(m − 1)n(n − 1)θ2 + nm(m − 1)E

{
F̄ (Y )

}2

+ mn(n − 1)E

{
G(X)

}2

+ mnθ − m2n2θ2,(2.1)

and

m2n2V ar(θ̂r,s) = E

{
m2
[ n∑

j=1

F̄ (Y
(s)
j )

]2
−

m∑

i=1

[ n∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
}

+ mE

{
n2
[
G(X)

]2
−

n∑

j=1

[
G

(s)
j (X)

]2
}

+ mnθ − m2n2θ2.(2.2)

Proof: It is easy to show that

m2n2E(θ̂2) = E(A1 + A2 + A3 + A4),(2.3)
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where

E(A1) = E

{
m∑

i6=i′=1

n∑

j 6=j′=1

I(Xi > Yj)I(Xi′ > Yj′)

}

= m(m − 1)n(n − 1)θ2,(2.4)

E(A2) = E

{
n∑

j=1

m∑

i6=i′=1

I(Xi > Yj)I(Xi′ > Yj)

}

=
n∑

j=1

m∑

i6=i′=1

EE

{
I(Xi > Yj)I(Xi′ > Yj)

∣∣∣Yj

}

=
n∑

j=1

m∑

i6=i′=1

E

{
F̄ (Y )

}2

= nm(m − 1)E

{
F̄ (Y )

}2

,(2.5)

E(A3) = E

{
m∑

i=1

n∑

j 6=j′=1

I(Xi > Yj)I(Xi > Yj′)

}

=
m∑

i=1

n∑

j 6=j′=1

EE

{
I(Xi > Yj)I(Xi > Yj′)

∣∣∣Xi

}

=
m∑

i=1

n∑

j 6=j′=1

E

{
G(X)

}2

= mn(n − 1)E

{
G(X)

}2

,(2.6)

and

E(A4) = E

{
m∑

i=1

n∑

j=1

I(Xi > Yj)

}
= mnθ.(2.7)

From (2.3)–(2.7) and unbiasedness of θ̂, the proof of the first part is complete.

Similarly,

m2n2E(θ̂2
r,s) = E(B1 + B2 + B3),(2.8)
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where

E(B1) = E

{
m∑

i6=i′=1

n∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′

> Y
(s)
j′

)

+

n∑

j=1

m∑

i6=i′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

}

=
m∑

i6=i′=1

n∑

j 6=j′=1

EE

{
I(X

(r)
i > Y

(s)
j )

∣∣∣Y (s)
j

}
EE

{
I(X

(r)
i′ > Y

(s)
j′ )

∣∣∣Y (s)
j′

}

+
n∑

j=1

m∑

i6=i′=1

EE

{
I(X

(r)
i > Y

(s)
j )I(X

(r)
i′

> Y
(s)
j )

∣∣∣Y (s)
j

}

= E

{
m∑

i6=i′=1

n∑

j 6=j′=1

[
F̄

(r)
i (Y

(s)
j )

][
F̄

(r)
i′

(Y
(s)
j′

)
]

+

n∑

j=1

m∑

i6=i′=1

[
F̄

(r)
i (Y

(s)
j )

][
F̄

(r)
i′ (Y

(s)
j )

]}

= E

{[ m∑

i=1

n∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
−

m∑

i=1

n∑

j=1

[
F̄

(r)
i (Y

(s)
j )

]2

−
m∑

i=1

n∑

j 6=j′=1

[
F̄

(r)
i (Y

(s)
j )

][
F̄

(r)
i (Y

(s)
j′

)
]}

= E

{
m2
[ n∑

j=1

F̄ (Y
(s)
j )

]2
−

m∑

i=1

[ n∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
}

,(2.9)

E(B2) = E

{
m∑

i=1

n∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′

)

}

= m

n∑

j 6=j′=1

E

{
I(X > Y

(s)
j )I(X > Y

(s)
j′ )

}

= m
n∑

j 6=j′=1

EE

{
I(X > Y

(s)
j )I(X > Y

(s)
j′ )

∣∣∣X
}

= m
n∑

j 6=j′=1

E

{[
G

(s)
j (X)

][
G

(s)
j′

(X)
]}

= mE

{
n2
[
G(X)

]2
−

n∑

j=1

[
G

(s)
j (X)

]2
}

,(2.10)

and

E(B3) = E

{
m∑

i=1

n∑

j=1

I(X
(r)
i > Y

(s)
j )

}
= mnθ.(2.11)
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Now the second part follows from (2.8)–(2.11) and unbiasedness of θ̂r,s.

The variances of θ̂ and θ̂r,s are compared in the next proposition.

Proposition 2.3. For any m, n ≥ 2 and r, s ≥ 1, V ar(θ̂r,s) ≤ V ar(θ̂).

Proof: Using equations (2.1) and (2.2), it can be shown

m2n2
[
V ar(θ̂) − V ar(θ̂r,s)

]
= C1 + C2 + C3,

where

C1 = E

{
m∑

i=1

[ n∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
− m

[ n∑

j=1

F̄ (Y
(s)
j )

]2
}

= E

{
m∑

i=1

( n∑

j=1

[
F̄

(r)
i (Y

(s)
j ) − F̄ (Y

(s)
j )

])2
}

,

C2 = mn(n − 1)E

{
G(X)

}2

− mE

{
n2
[
G(X)

]2
−

n∑

j=1

[
G

(s)
j (X)

]2
}

= mE

{
n∑

j=1

[
G

(s)
j (X)

]2
− n

[
G(X)

]2
}

= mE

{
n∑

j=1

[
G

(s)
j (X) − G(X)

]2
}

,

and

C3 = m(m − 1)n(n − 1)θ2 + nm(m − 1)E

{
F̄ (Y )

}2

− m(m − 1)E

{[ n∑

j=1

F̄ (Y
(s)
j )

]2
}

= m(m − 1)

[
(1 − 1

n
)

(
n∑

j=1

E

{
F̄ (Y

(s)
j )

})2

−
n∑

j 6=j′=1

E

{
F̄ (Y

(s)
j )

}
E

{
F̄ (Y

(s)
j′

)

}]

= m(m − 1)

[
n∑

j=1

E2

{
F̄ (Y

(s)
j )

}
− 1

n

(
n∑

j=1

E

{
F̄ (Y

(s)
j )

})2]

= m(m − 1)
n∑

j=1

E2

{
F̄ (Y

(s)
j ) − F̄ (Y )

}
.

Clearly, Ci ≥ 0, i = 1, 2, 3, as was asserted.
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As mentioned earlier, increasing the number of stages leads to improvement

in the context of mean and distribution function estimation based on MSRSS.

So, it is natural to observe similar trend in the case of reliability estimation. The

next result attends to this problem.

Proposition 2.4. For fixed m and n, V ar(θ̂r,s) is decreasing in r and s.

Proof: It suffices to show that V ar(θ̂r,s) ≤ V ar(θ̂r−1,s) and V ar(θ̂r,s) ≤
V ar(θ̂r,s−1). From the beginning of proof for the second part of Proposition 2.2,

one can write

m2n2E(θ̂2
r,s) = E

{
m∑

i6=i′=1

n∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j′ )

+
m∑

i=1

n∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′

)

+
n∑

j=1

m∑

i6=i′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′

> Y
(s)
j )

+
m∑

i=1

n∑

j=1

I(X
(r)
i > Y

(s)
j )

}
.(2.12)

We now establish some equalities and inequalities regarding the four expectation

terms on the right-hand side of the above equation. Let W
(r−1)
(i) be the ith order

statistic of an (r − 1)th stage ranked set sample of size m from f . As to the first

term, we have

E

{
I(X

(r)
i > Y

(s)
j )I(X

(r)
i′

> Y
(s)
j′

)

}

= EE

{
I(X

(r)
i > Y

(s)
j )I(X

(r)
i′

> Y
(s)
j′

)
∣∣∣Y (s)

j , Y
(s)
j′

}

= E

[
E

{
I(X

(r)
i > Y

(s)
j )

∣∣∣Y (s)
j , Y

(s)
j′

}

× E

{
I(X

(r)
i′ > Y

(s)
j′ )

∣∣∣Y (s)
j , Y

(s)
j′

}]

= E

[
E

{
I(W

(r−1)
(i) > Y

(s)
j )

∣∣∣Y (s)
j , Y

(s)
j′

}

× E

{
I(W

(r−1)
(i′) > Y

(s)
j′

)
∣∣∣Y (s)

j , Y
(s)
j′

}]

≤ EE

{
I(W

(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j′

)
∣∣∣Y (s)

j , Y
(s)
j′

}

= E

{
I(W

(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j′

)

}
,(2.13)



Reliability Estimation in Multistage Ranked Set Sampling 575

where the inequality holds owing to the positive covariance between any pair of

order statistics in a sample (see Lehmann (1966)).

Similarly, it follows that

E

{
I(X

(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

}

= EE

{
I(X

(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

∣∣∣Y (s)
j

}

= E

[
E

{
I(X

(r)
i > Y

(s)
j )

∣∣∣Y (s)
j

}

× E

{
I(X

(r)
i′

> Y
(s)
j )

∣∣∣Y (s)
j

}]

= E

[
E

{
I(W

(r−1)
(i) > Y

(s)
j )

∣∣∣Y (s)
j

}

× E

{
I(W

(r−1)
(i′) > Y

(s)
j )

∣∣∣Y (s)
j

}]

≤ EE

{
I(W

(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j )

∣∣∣Y (s)
j

}

= E

{
I(W

(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j )

}
.(2.14)

In addition,

E

{
I(X

(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′ )

}

= EE

{
I(X

(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′ )

∣∣∣Y (s)
j , Y

(s)
j′

}

= EE

{
I(W

(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i) > Y

(s)
j′

)
∣∣∣Y (s)

j , Y
(s)
j′

}

= E

{
I(W

(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i) > Y

(s)
j′

)

}
,(2.15)

and

E

{
I(X

(r)
i > Y

(s)
j )

}
= EE

{
I(X

(r)
i > Y

(s)
j )

∣∣∣Y (s)
j

}

= EE

{
I(W

(r−1)
(i) > Y

(s)
j )

∣∣∣Y (s)
j

}

= E

{
I(W

(r−1)
(i) > Y

(s)
j )

}
.(2.16)
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Putting (2.12)–(2.16) together, we get

m2n2E(θ̂2
r,s) ≤ E

{
m∑

i6=i′=1

n∑

j 6=j′=1

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j′

)

+
m∑

i=1

n∑

j 6=j′=1

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i) > Y

(s)
j′ )

+
n∑

j=1

m∑

i6=i′=1

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j )

+
m∑

i=1

n∑

j=1

I(W
(r−1)
(i) > Y

(s)
j )

}
= m2n2E(θ̂2

r−1,s).

This implies that V ar(θ̂r,s) ≤ V ar(θ̂r−1,s) because θ̂r,s is unbiased for any r, s ≥ 1.

A similar argument proves the second part.

The above theoretical development assumes perfect rankings. It is possible

to obtain some results in the imperfect ranking situation. Suppose the ranking

mechanism is such that

1

m

m∑

i=1

f̃
(r)
i (x) = f(x)

and

1

n

n∑

j=1

g̃
(s)
j (y) = g(y),

where f̃
(r)
i and g̃

(s)
j are the density functions of the multistage judgment order

statistics drawn from the two populations. Then one can simply verify that

Propositions 2.1 and 2.3 still hold. However, it may not be an easy job to prove

Proposition 2.4 in this setup. In the next section, effect of the ranking errors is

assessed using Monte Carlo simulations.

3. NUMERICAL RESULTS

This section reports results of simulation studies carried out to compare the

performances of θ̂ and θ̂r,s. It is assumed that both populations follow normal,

exponential or uniform distribution. Suppose X and Y − µ are standard normal

random variables. Then, it is simply shown that

θ = Φ

(−µ√
2

)
,
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where Φ(.) is the distribution function of X. Similarly, for standard exponential

random variables X and Y/α, we have

θ =
1

1 + α
.

Finally, let X and Y/β be uniformly distributed on the unit interval. Then, it

follows that

θ =

{
1 − β/2 0 < β < 1
1/(2β) β ≥ 1

.

Under each parent distribution, three values were assigned to the associated pa-

rameter so as to produce θ = 0.25, 0.5, 0.75 which are referred to as cases A,

B and C, respectively. The appropriate parameter values are given in Table 1.

Also, sample sizes (m, n) ∈ {(3, 3), (4, 4), (5, 5)} and stage numbers (r, s) ∈ {(1, 1),

(2, 2), (2, 4), (3, 3), (4, 4), (4, 6), (5, 5)} were selected.

Table 1: Parameter values corresponding to case A, B and C.

Parameter A B C

µ 0.95387 0 −0.95387
α 3 1 1/3
β 2 1 1/2

We assume that the ranking the variables of interest X and Y are done

based on concomitant variables X and Y which are related according to equations

X = ρ1

(
X − µx

σx

)
+
√

1 − ρ2
1Z1

and

Y = ρ2

(
Y − µy

σy

)
+
√

1 − ρ2
2Z2,

where ρi ∈ [0, 1] (i = 1, 2), and Z1 (Z2) is a standard normal random variable inde-

pendent from X (Y ). Moreover, Z1 and Z2 are independent. The quality of rank-

ings are controlled by the parameter ρi’s. It is easy to see that Corr(X,X ) = ρ1

and Corr(Y,Y) = ρ2. The chosen values of (ρ1, ρ2) are (1, 1) for perfect rankings

of X and Y , (1, 0.8) for perfect ranking of X and fairly accurate ranking of Y ,

and (0.8, 0.8) for fairly accurate rankings of X and Y .

For each combination of distribution, sample sizes and correlations, 5,000

pairs of samples were generated in SRS and MSRSS (with the aforesaid stage

numbers). The two estimators were computed from each pair of samples, and

their variances were determined. The relative efficiency (RE) is defined as the

ratio of V̂ ar(θ̂) to V̂ ar(θ̂r,s). The RE values larger than one indicate that θ̂r,s is

more efficient than θ̂. Tables 2–4 display the results.
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Table 2: Estimated REs for different sample sizes and stage numbers
under normal distribution.

(ρ1, ρ2) = (1, 1) (ρ1, ρ2) = (1, 0.8) (ρ1, ρ2) = (0.8, 0.8)
(m, n) (r, s)

A B C A B C A B C

(1,1) 1.719 1.860 1.737 1.613 1.546 1.408 1.425 1.402 1.262
(2,2) 2.281 2.547 2.255 1.963 1.778 1.482 1.582 1.469 1.311
(2,4) 2.623 3.284 2.599 2.127 1.906 1.460 1.654 1.563 1.284

(3,3) (3,3) 2.662 3.323 2.724 2.391 1.996 1.527 1.766 1.584 1.355
(4,4) 3.078 4.034 3.052 2.535 2.149 1.697 1.880 1.685 1.410
(4,6) 3.295 4.325 3.155 2.468 2.223 1.664 1.778 1.692 1.470
(5,5) 3.291 4.435 3.304 2.641 2.224 1.634 1.834 1.652 1.423

(1,1) 2.141 2.334 2.118 1.847 1.721 1.493 1.526 1.461 1.302
(2,2) 3.006 3.760 2.959 2.421 2.152 1.703 1.755 1.678 1.442
(2,4) 3.626 4.559 3.534 2.598 2.275 1.766 1.910 1.738 1.502

(4,4) (3,3) 3.911 5.064 3.952 2.757 2.401 1.787 1.934 1.790 1.517
(4,4) 4.440 6.059 4.389 3.125 2.669 1.948 2.046 1.818 1.596
(4,6) 4.698 6.641 4.638 3.128 2.677 1.881 2.067 1.892 1.510
(5,5) 4.625 6.685 4.666 3.259 2.793 2.038 2.019 1.877 1.594

(1,1) 2.458 2.813 2.501 2.083 1.840 1.591 1.645 1.551 1.368
(2,2) 3.904 4.994 3.948 2.674 2.325 1.879 1.860 1.749 1.530
(2,4) 4.902 6.412 4.825 3.145 2.683 1.944 2.102 1.886 1.604

(5,5) (3,3) 5.061 6.916 5.019 3.258 2.741 1.942 2.067 1.882 1.536
(4,4) 6.071 8.783 6.079 3.415 2.925 2.080 2.156 2.014 1.680
(4,6) 6.435 9.502 6.405 3.379 2.942 2.054 2.111 1.978 1.589
(5,5) 6.627 10.050 6.726 3.768 3.162 2.166 2.261 2.042 1.641

Table 3: Estimated REs for different sample sizes and stage numbers
under exponential distribution.

(ρ1, ρ2) = (1, 1) (ρ1, ρ2) = (1, 0.8) (ρ1, ρ2) = (0.8, 0.8)
(m, n) (r, s)

A B C A B C A B C

(1,1) 1.699 1.894 1.727 1.570 1.559 1.372 1.247 1.312 1.264
(2,2) 2.310 2.724 2.279 1.798 1.853 1.544 1.267 1.421 1.323
(2,4) 2.762 3.141 2.479 1.972 1.948 1.553 1.352 1.450 1.350

(3,3) (3,3) 2.733 3.420 2.667 2.067 2.120 1.643 1.313 1.504 1.379
(4,4) 3.074 3.996 3.138 2.331 2.179 1.673 1.344 1.471 1.380
(4,6) 3.418 4.262 3.191 2.296 2.214 1.667 1.428 1.548 1.394
(5,5) 3.347 4.358 3.364 2.472 2.430 1.735 1.402 1.624 1.425

(1,1) 2.145 2.322 2.065 1.806 1.733 1.434 1.326 1.385 1.267
(2,2) 3.102 3.811 3.101 2.371 2.152 1.711 1.407 1.536 1.396
(2,4) 3.973 4.597 3.494 2.644 2.485 1.750 1.471 1.661 1.442

(4,4) (3,3) 3.832 5.034 3.880 2.589 2.476 1.810 1.393 1.557 1.443
(4,4) 4.507 6.178 4.567 3.063 2.774 1.943 1.423 1.624 1.554
(4,6) 5.282 7.028 4.795 2.991 2.789 1.983 1.469 1.673 1.601
(5,5) 4.903 7.039 5.043 3.185 2.764 1.869 1.490 1.640 1.471

(1,1) 2.486 2.756 2.454 1.974 1.871 1.532 1.303 1.416 1.338
(2,2) 3.961 4.954 4.081 2.896 2.606 1.829 1.513 1.712 1.518
(2,4) 5.338 6.308 4.510 2.979 2.604 1.742 1.490 1.622 1.411

(5,5) (3,3) 5.468 7.232 5.453 3.347 2.765 1.780 1.545 1.716 1.466
(4,4) 6.069 8.652 6.104 3.604 2.848 1.881 1.600 1.722 1.520
(4,6) 7.227 9.814 6.458 3.607 3.057 1.960 1.541 1.747 1.545
(5,5) 7.156 10.408 7.145 4.048 3.162 1.996 1.645 1.811 1.570
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Table 4: Estimated REs for different sample sizes and stage numbers
under uniform distribution.

(ρ1, ρ2) = (1, 1) (ρ1, ρ2) = (1, 0.8) (ρ1, ρ2) = (0.8, 0.8)
(m, n) (r, s)

A B C A B C A B C

(1,1) 1.718 1.813 1.684 1.638 1.665 1.429 1.401 1.489 1.371
(2,2) 2.369 2.656 2.301 2.182 2.160 1.749 1.645 1.755 1.647
(2,4) 2.973 3.210 2.529 2.117 2.344 1.914 1.592 1.846 1.725

(3,3) (3,3) 2.927 3.370 2.866 2.429 2.341 1.848 1.725 1.795 1.707
(4,4) 3.272 3.913 3.350 2.869 2.678 1.926 1.808 1.984 1.713
(4,6) 3.788 4.311 3.463 2.720 2.592 1.922 1.688 1.907 1.691
(5,5) 3.625 4.348 3.690 2.942 2.764 2.045 1.793 1.994 1.817

(1,1) 2.024 2.298 2.030 1.903 1.916 1.653 1.422 1.613 1.524
(2,2) 3.142 3.726 3.283 2.763 2.593 2.004 1.766 1.915 1.796
(2,4) 4.435 4.670 3.410 2.839 2.808 2.199 1.734 2.037 1.993

(4,4) (3,3) 4.209 5.158 4.263 3.377 2.900 2.019 1.853 2.040 1.792
(4,4) 4.832 5.916 4.810 4.204 3.368 2.216 2.068 2.209 1.906
(4,6) 5.515 6.499 5.035 3.824 3.462 2.383 1.935 2.220 2.055
(5,5) 5.351 6.774 5.462 4.097 3.378 2.281 1.958 2.240 1.959

(1,1) 2.375 2.806 2.328 2.317 2.196 1.722 1.649 1.805 1.577
(2,2) 4.166 5.092 4.147 3.350 2.908 2.052 1.874 2.072 1.840
(2,4) 6.162 6.384 4.527 3.504 3.238 2.251 1.910 2.189 1.928

(5,5) (3,3) 5.593 6.732 5.547 4.096 3.395 2.235 1.995 2.244 1.894
(4,4) 6.934 8.888 6.965 4.683 3.794 2.365 1.962 2.305 2.011
(4,6) 8.384 9.715 7.319 4.943 3.732 2.452 2.125 2.391 2.077
(5,5) 8.206 10.226 8.064 5.590 4.256 2.535 2.200 2.508 2.144

It is observed that that MSRSS based estimator outperforms its SRS con-

tender in all situations considered. Moreover, for any (m, n), the RE is increasing

in both r and s, when the other factors are fixed. For example, compare entries

for m = n = 3. In general, no comparison can be made between REs in two se-

tups that one stage number is increased, and the other one is decreased. The

efficiency gain could be substantial if the set sizes and stage numbers are large,

e.g. when m = n = r = s = 5, the parent distribution is uniform, and the rank-

ings are perfect. It is to be mentioned that when (ρ1, ρ2) = (1, 1), the REs for

cases A and C are in good agreement (and smaller than that of case B) for all

distributions and sample sizes, particularly when r = s. As expected, the REs

diminish in the presence of ranking errors. The smallest values are obtained for

(ρ1, ρ2) = (0.8, 0.8).

4. APPLICATION TO REAL DATA

The MSRSS can be very efficient if the variable of interest is highly cor-

related to a concomitant variable. In this case, if the second variable can be

measured with negligible cost, then we may use it in judgment ranking process
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(see Stokes (1977) for more details). In doing so, in step 2 of the RSS procedure,

the elements of the ith sample are ordered according to the concomitant variable,

and then study variable is actually measured for unit ranked ith smallest. The

MSRSS case is treated similarly.

In this section, we illustrate the proposed procedure using a data set col-

lected at the Australian Institute of Sport. It is made up of thirteen measured

variables on 102 male and 100 female athletes1. We will consider lean body mass

(LBM) and body mass index (BMI) for each athlete. The LBM is a compo-

nent of body composition, calculated by subtracting body fat weight from total

body weight. Exact measurement of the LBM is done using various technologies

such as dual energy X-ray absorptiometry (DEXA) which is costly. On the other

hand, the BMI is a well-accepted measure of obesity which is easy to calculate

and readily accessible. A BMI value is is simply weight (in kg) divided by square

of height (in m). The correlation coefficient between the two variables is 0.71.

So, the BMI can serve as a concomitant variable.

Let X and Y be the LBM variable for the male and female populations,

respectively. It is of interest to estimate θ = P (X > Y ). For m = n = 4, 50,000

samples were drawn from the two hypothetical populations based on SRS and

MSRSS (with r = s = 1, 2) designs. The sampling is done with replacement to

ensure that the measured units are independent of each other. From each sample,

the corresponding estimator was computed, and its variance was finally deter-

mined. The efficiencies of θ̂1,1 and θ̂2,2 relative to θ̂ are estimated as 1.193 and

1.275, respectively. As expected, the SRS estimator is outperformed by its RSS

and DRSS versions. It is to be noted that the RE values are not much bigger

than unity. This may root in the relatively low correlation of 0.71 between the

variable of interest and the concomitant variable.

5. CONCLUSION

The RSS design is known to be a viable alternate to the usual SRS in situa-

tions that cost-efficiency is of high importance. It employs auxiliary information

to direct attention toward the actual measurement of more representative units in

the population under study. The success of RSS largely depends on the quality of

ranking process. Since judgment ranking on large sets of units is prone to errors,

the set size is chosen small in practice. The MSRSS allows to construct more

efficient procedures by increasing the number of stages rather that the set size.

This article deals with reliability estimation for the stress-strength model

using MSRSS. A nonparametric estimator is presented, and shown to be unbiased

1The data set can be found at http://www.statsci.org/data/oz/ais.html
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with smaller variance as compared with the usual estimator in SRS. It is further

proved that the estimator becomes more efficient by increasing the number of

stages for ranked set samples drawn from the two populations. Results of simula-

tion studies support the mathematical findings. An application to a real data set

clarifies how judgment ranking can be implemented using a concomitant variable.
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