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the logarithm of the ratio of the maximized likelihood (RML) as test statistic, its
asymptotic distribution is found under both normal and Gumbel distributions, which
can be used to compute the probability of correct selection (PCS). Finally, Monte
Carlo (MC) simulations are performed to examine how the asymptotic results work
for finite sample sizes.
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1. INTRODUCTION

In engineering practice, risk criteria and economic considerations are im-

portant parts of a project design. These criteria are crucial, for example, in the

design of an urban sewer network, the sizing of a hydraulic structure, or the con-

ception of a storage capacity system. The adequate knowledge of design events

(e.g., design flood magnitudes) is often helpful for the proper sizing of a project

to avoid the high initial investments associated with the oversizing of the project

and the large future failure costs resulting from its undersizing.

To estimate these design events, statistical frequency analysis of hydrolog-

ical data is often used; it consists of fitting a probability distribution to a set

of recorded hydrological values (e.g., annual maximum flood series) and obtain-

ing estimated results concerning the underlying population. Estimates are often

needed for such quantities as the magnitude of an extreme event (quantile) xT ,

corresponding to a return period T . Evidently, the reliability of the estimates

depends largely on the quality of the data as well as the length of the period of

record.

The aim of this paper is to discriminate between normal and Gumbel dis-

tributions. These two distributions are widely applied in engineering and often

used as a model for hydrologic data sets. Some of its recent application areas

include flood frequency analysis, network and software reliability engineering,

nuclear engineering and epidemic modeling.

There are many practical applications where Gumbel and normal distribu-

tions are similar in appearance and the two distributions cannot be distinguished

from one another. Normal and Gumbel distributions belong to the location scale

family. Discriminating between any two general probability distribution func-

tions from the location scale family was widely investigated in the literature.

See, for instance, [1], [2], [4], [5], [6], [7], [15] and [9] who studied the discrimi-

nation problem in general between the two models. Besides, [16], [19] and [22]

studied the discrimination problem between lognormal and gamma distributions.

[3] and [10] studied the discrimination problem between Weibull and gamma dis-

tributions. Recently, Gupta and Kundu considered the discrimination problem

between Weibull and generalized exponential distributions, between gamma and

generalized exponential distributions and between lognormal and generalized ex-

ponential distributions (see, [12], [13], [18]).

Among the discrimination problems, the one for Weibull and lognormal

distributions is particularly important and has received much attention; this is

because the two distributions are the most popular ones for analyzing the lifetime

of electronic products. [8] adopted the ratio of maximized likelihood (RML) in
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discriminating between the two distributions for complete data and provided the

percentile points for some sample sizes by simulation. Recently, [17] considered

the discrimination problem for complete data using the RML procedure.

In the present work, to discriminate between normal and Gumbel distri-

butions, we consider the ratio of maximized likelihood (RML) as test statistic.

Based on the result of [21], the asymptotic distribution of the logarithm of the

RML is found under both normal and Gumbel distributions, which can be used to

compute the probability of correct selection (PCS). For small sample size, maxi-

mum likelihood estimators (MLE) of Gumbel parameters are biased; henceforth,

we will use a correction for the bias introduced by [11] and [14].

The rest of the paper is organized as follows. Section 2 is dedicated to

the mathematical notations that we use in this paper. In Section 3 we describe

the logarithm of RML as test statistic, their asymptotic distributions under both

normal and Gumbel distributions are obtained. Monte Carlo simulations are

presented in Section 4 to examine how the asymptotic results work for finite

samples. Finally, we conclude the paper in Section 5.

2. NOTATION

To facilitate the analysis that follows, we use the following notations. A

normal distribution with mean µ and variance σ2, denoted by N(µ, σ2), has a

probability density function (pdf) given by

fN (x, µ, σ2) =
1

σ
√

2π
exp−(x − µ)2

2σ2
, x ∈ R.

The maximum likelihood estimators of µ and σ2 are respectively given by

(2.1) µ̂ =
1

n

n∑

i=1

Xi := X̄ and σ̂2 =
1

n

n∑

i=1

(Xi − X̄)2.

A Gumbel distribution with location parameter α and scale parameter β, denoted

by G(α, β), has a pdf given by

fG(x, α, β) =
1

β
exp

[
−x − α

β
− exp−x − α

β

]
, x ∈ R,

and the maximum likelihood estimators of its parameters satisfy the following

equations

β̂ = X̄ −

n∑

i=1

Xi exp−Xi

β̂
n∑

i=1

exp−Xi

β̂

and α̂ = −β̂ ln

[
1

n

n∑

i=1

exp−Xi

β̂

]
.(2.2)
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These estimators, obtained as numerical solutions to the above equations, are

known to be biased when the sample size is small. [11] proposed a correction for

that bias:

β̂∗
c =

β̂

1 − 0.8/n
and α̂∗

c = −β̂c ln

[
1

n

n∑

i=1

exp−Xi

β̂c

]
− 0.7

β̂c

n
.

Using a rather theoretical analysis, [14] made more accurate corrections leading

to the following estimators:

β̂c = β̂

(
1 +

0.7716

n

)
and α̂c = −β̂c ln

[
1

n

n∑

i=1

exp−Xi

β̂c

]
− 0.3698

β̂c

n
.

It is to be noted that in instances when a non-negative random variable is needed,

it is the discrimination between the lognormal and the Weibull distributions that

might be of interest, but in such a case the results of the present study remain ap-

plicable because the normal and the lognormal (also the Gumbel and the Weibull

distributions) are linked by a simple logarithmic transformation. The discrimi-

nation between lognormal and Weibull has been proposed by [17].

3. THE TEST STATISTIC AND ITS ASYMPTOTIC DISTRIBU-

TION

Assume that the random sample X1,...,Xn is known to come from either a

normal distribution, X ∼ N(µ, σ2), or a Gumbel distribution, X ∼ G(α, β). The

log-likelihood ratio statistic, T , is defined as the logarithm of the ratio of two

maximized likelihood functions:

T = ln

(
LN (µ̂, σ̂2)

LG(α̂, β̂)

)

where LN (µ, σ2) and LG(α, β) the likelihood functions under a normal distribu-

tion and a Gumbel distribution, respectively. The decision rule for discriminating

between the normal and the Gumbel distributions is to choose the normal if T > 0,

and to reject the normal in favor of the Gumbel, otherwise. Because both of these

two distributions are of the location scale type, one important property of the T

statistic is that it is independent of the parameters from both distributions (see,

[8]).

Let us look at the expressions of T in terms of the corresponding MLEs.
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Note that

T = lnLN (µ̂, σ̂2) − lnLG(α̂, β̂)

=

[
−n ln σ̂ − n ln

√
2π − 1

2σ̂2

n∑

i=1

(Xi − µ̂)2

]

−
[
−n ln β̂ −

n∑

i=1

[
Xi − α̂

β̂
+ exp−Xi − α̂

β̂

]]

= −n ln σ̂ − n ln
√

2π − 1

2σ̂2

n∑

i=1

(Xi − µ̂)2 + n ln β̂

+
1

β̂

n∑

i=1

Xi −
nα̂

β̂
+

n∑

i=1

exp−Xi

β̂
exp

α̂

β̂
.(3.1)

Using (2.2), we get

(3.2) n exp
−α̂

β̂
=

n∑

i=1

exp−Xi

β̂
.

If we replace the MLE finding in the equations (2.1) and the last equation (3.2)

in (3.1), we obtain

T = −n ln
σ̂

β̂
+ n

µ̂ − α̂

β̂
+

n

2
(1 − ln 2π).

We denote Tc, the new test statistic which introduces a correction for bias of

maximum likelihood estimators proposed by [14]. Therefore, Tc can be written

as:

Tc = −n ln
σ̂

β̂c

+ n
µ̂ − α̂c

β̂c

+
n

2
(1 − ln 2π).

Note that T and Tc are asymptotically equivalent, then we state the following

lemma:

Lemma 3.1. The test statistics T and Tc have the same asymptotic dis-

tribution.

Proof: We have
Tc

n
= − ln

σ̂

β̂c

+
µ̂ − α̂c

β̂c

+
1

2
(1 − ln 2π) and

(3.3) − ln
σ̂

β̂c

= − ln
σ̂

β̂
+ ln

(
1 +

0.7716

n

)
= − ln

σ̂

β̂
+ o(1).

In addition, β̂c = β̂ + o(1) and α̂c = α̂ + op(1) lead to

(3.4)
µ̂ − α̂c

β̂c

=
µ̂ − α̂

β̂
+ op(1).
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From (3.3) and (3.4) we obtain Tc

n
= T

n
+ op(1). Then Tc

n
and T

n
have the same

limit distribution, thus for ǫ > 0 and n sufficiently large, we have

∣∣∣∣P
[
Tc

n
<

t

n

]
− P

[
T

n
<

t

n

]∣∣∣∣ < ǫ.

Immediately |P [Tc < t] − P [T < t]| < ǫ, for ǫ > 0 and n is sufficiently large. Fi-

nally, if lim
n→+∞

P [T < t] exists, then lim
n→+∞

P [Tc < t] = lim
n→+∞

P [T < t].

3.1. Asymptotic distribution of Tc under the normal distribution

Suppose data are coming from a normal distribution N(µ, σ2). Based on

[18], the following theorem can be stated:

Theorem 3.1. Assume that the sample X1,...,Xn follows N(µ, σ2), then

the test statistic Tc is asymptotically normally distributed with mean EN (T ) and

variance V arN (T ).

Proof: The proof of this theorem is based on the Lemma 3.1, the following

Lemma 3.2 and the Central Limit Theorem (CLT).

Lemma 3.2. Denote T̃ = ln

(
LN (µ, σ2)

LG(α̃, β̃)

)
, where α̃ and β̃ are given by

the following equation and may depend on µ and σ,

EN [ln fG(X, α̃, β̃)] = max
α,β

EN [ln fG(X, α, β)],

then α̂ → α̃ a.s, β̂ → β̃ a.s and
T−EN (T )

√
n

is asymptotically equivalent to
T̃−EN (T̃ )

√
n

.

The proof of this lemma is similar to that of Theorem 1 presented by White

in [21], then the proof of Theorem 3.1 is established by proving that T̃−EN (T̃ )
√

n
is

asymptotically normal based on the central limit theorem. As for the needed

quantities α̃ and β̃ in Lemma 3.2, EN (T ) and variance V arN (T ) in Theorem 3.1,

they are derived by first referring to Lemma 3.2 and performing the following

calculation:

EN [ln fG(X, α, β)] = − lnβ − EN

(
X − α

β

)
− EN

(
exp

(
−X − α

β

))

= − lnβ − µ − α

β
− exp

(
−µ − α

β
+

σ2

2β2

)
.
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We maximize with respect to α and β, we get α̃ = µ− σ
2 and β̃ = σ. By the second

point of Lemma 3.2, EN (T ) and V arN (T ) are calculated.

EN (T ) ≃ EN

[
ln

(
LN (µ, σ2)

LG(α̃, β̃)

)]

= nEN [ln fN (X, µ, σ2) − ln fG(X, α̃, β̃)]

= nEN [ln fN (X, µ, σ2)] − nEN [ln fG(X, α̃, β̃)]

= nEN

[
− lnσ − ln

√
2π − 1

2

(
X − µ

σ

)2
]

−nEN

[
− ln β̃ − X − α̃

β̃
− exp−X − α̃

β̃

]

= n

(
− lnσ − ln

√
2π − 1

2
− (− lnσ − 3

2
)

)

= n
(
1 − ln

√
2π
)

,

for n sufficiently large, we obtain

lim
n→+∞

EN (T )

n
= 0.081016.

In addition, V arN [ln fN (X, µ, σ2)] = V arN

[
− 1

2σ2

(
X − µ)2

)]
= 1

2 and taking into

account that e−
1

2

∫
z2e−zφ(z)dz = 2 and e−

1

2

∫
ze−zφ(z)dz = −1 where φ(.) is the

standard normal probability density function, then we have

V arN

[
ln fG(X, α̃, β̃)

]
= V arN

[
−X − α̃

β̃
− exp−X − α̃

β̃

]

= V arN

(
X − µ

σ

)
+ V arN

[
e−

1

2 exp

(
−X − µ

σ

)]

+2e−
1

2 CovN

[
X − µ

σ
; exp−X − µ

σ

]

= e − 2

and

CovN

[
ln fN (X, µ, σ2), ln fG(X, α̃, β̃)

]

=
1

2
CovN

[(
X − µ

σ

)2

,
X − µ

σ

]

+
1

2
e−

1

2 CovN

[(
X − µ

σ

)2

, exp

(
−X − µ

σ

)]

=
1

2
,
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thus,

V arN (T )

n
≃ V arN [ln fN (X, µ, σ2) + V arN [ln fG(X, α̃, β̃)]

−2CovN [ln fN (X, µ, σ2); ln fG(X, α̃, β̃)]

≃ e − 5

2
.

Then

lim
n→+∞

V arN (T )

n
= 0.218282.

Finally, lim
n→+∞

EN (T )
n

and lim
n→+∞

V arN (T )
n

are independent of µ and σ, then the

asymptotic distribution of T is independent of µ and σ. Then from Theorem 3.1,

the test statistic Tc is asymptotically normally distributed with mean 0.081016×n

and variance 0.218282 × n.

3.2. Asymptotic distribution of Tc under the Gumbel distribution

Now we turn to the case where the sample comes from a Gumbel distribu-

tion G(α, β). As before, based on Kundu, Gupta, and Manglick [18], the following

theorem can be stated:

Theorem 3.2. We suppose that the sample X1,...,Xn follows G(α, β),

then the test statistic Tc is asymptotically normally distributed with mean EG(T )

and variance V arG(T ).

Once again, the proof of this theorem is straightforward from the central

limit theorem and the following lemma.

Lemma 3.3. Denote T̃
′

= ln

(
LN (µ̃, σ̃2)

LG(α, β)

)
, where µ̃ and σ̃ are given by

the following equation and may depend on α and β:

EN [ln fG(X, µ̃, σ̃2)] = max
µ,σ

EN [ln fG(X, µ, σ2)]

then µ̂ → µ̃ a.s, σ̂ → σ̃ a.s and
T−EG(T )

√
n

is asymptotically equivalent to
T̃

′

−EG(T̃
′

)
√

n
.

It is now possible to evaluate µ̃ and σ̃ by referring to Lemma 3.3 and

performing the following calculation:

EG[ln fN (X, µ, σ2)] = EG

[
−1

2
ln 2π − lnσ − (X − µ)2

2σ2

]
.
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Since X follows G(α, β), it is immediate that EG(X) = α + βγ and V arG(X) =
π2

6
β2, where γ ≃ 0.5772...(the Euler constant). Therefore,

EG[ln fN (X, µ, σ2)] = −1

2
ln 2π − lnσ − 1

2σ2
EG(X2 − 2µX + µ2)

= −1

2
ln 2π − lnσ

− 1

2σ2

[
π2β2

6
+ (α + βγ)2 − 2µ(α + βγ) + µ2

]
.

Maximizing with respect to µ and σ yields µ̃ = α + βγ and σ̃ = π√
6
β. The quan-

tities EG(T ) and V arG(T ) can be derived using again Lemma 3.3,

EG(T ) ≃ nEG

[
ln fN (X, µ̃, σ̃2) − ln fG(X, α, β)

]

≃ nEG

[
− ln σ̃ − ln

√
2π − 1

2

(
X − µ̃

σ̃

)2
]

+nEG

[
lnβ +

X − α

β
+ exp−X − α

β

]

≃ nEG


− ln

πβ√
6
− 1

2
ln 2π − 1

2


X − (α + βγ)

πβ√
6




2


+nEG

[
lnβ +

X − α

β
+ exp−X − α

β

]

≃ n

(
−3

2
lnπ +

1

2
ln 3

)

+nEG


−

3

π2

(
X − α

β
− γ

)2

+
X − α

β
+ e

−X − α

β




we put Z =
X − α

β
, then Z follows G(0, 1) and we obtain

EG(T ) ≃ −3n

2
lnπ +

n

2
ln 3 + nEG

[
− 3

π2
(Z − γ)2 + Z + exp−Z

]

≃ −3n

2
lnπ +

n

2
ln 3 − 3n

π2
EG[(Z − γ)2] + EG[Z] + EG[exp−Z]

≃ n

(
−3

2
lnπ +

1

2
ln 3 − 3

π2

π2

6
+ γ + 1

)

for n sufficiently large, we obtain

lim
n→+∞

EG(T )

n
= −0.090573.
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Similarly,

V arG(T )

n
≃ V arG

[
ln fN (X, µ̃, σ̃2) − ln fG(X, α, β)

]

≃ V arG

[
− ln σ̃ − ln

√
2π − 1

2

(
X − µ̃

σ̃

)2

+ lnβ +
X − α

β

+ exp−X − α

β

]

≃ V arG

[
− 3

π2

(
X − α

β
− γ

)2

+
X − α

β
+ exp−X − α

β

]

≃ V arG

[
− 3

π2
(Z − γ)2 + Z + exp−Z

]
,

then

lim
n→+∞

V arG(T )

n
= 0.283408.

Since both lim
n→+∞

EG(T )
n

and lim
n→+∞

V arG(T )
n

do not depend on α and β, the asymp-

totic distribution of T is independent of α and β. Then from Theorem 3.2, the

test statistic Tc is asymptotically normally distributed with mean −0.090573× n

and variance 0.283408 × n.

4. PCS AND MC SIMULATION

It is assumed that the data have been generated from one of the two dis-

tributions: N(µ, σ2) or G(α, β). Then the discrimination procedure based on a

random sample X = X1, ..., Xn is as follows.

Choose normal distribution if Tc > 0 and Gumbel distribution if Tc < 0.

If the data were originally coming from N(µ, σ2), the PCSN can be written as

follows: PCSN = P (Tc > 0| data follow a normal distribution). Similarly, if the

data were originally coming from G(α, β), the PCSN can be written as follows:

PCSG = P (Tc < 0| data follow Gumbel distribution). Since for normal distribu-

tion

PCSN = P [Tc > 0] ≃ Φ

(
EN (T )√
V arN (T )

)

= Φ

(
0.081016 × n√
0.218282 × n

)

= Φ(0.1734
√

n)
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where Φ is the distribution function of the standard normal distribution. In the

same manner, we have for Gumbel distribution

PCSG = P [Tc < 0] = 1 − P [Tc > 0]

≃ 1 − Φ

(
EG(T )√
V arG(T )

)

= 1 − Φ

(−0.090573 × n√
0.283408 × n

)

= Φ

(
0.090573 × n√
0.283408 × n

)

= Φ(0.1701
√

n).

We use Monte-Carlo simulations to examine how the asymptotic results

work for small sizes. All computations are performed using the statistical freeware

R [20]. We compute the PCS based on simulations and those based on the

asymptotic normality results. Since the distribution of Tc is independent of the

location and scale parameters, we take the location and scale parameters to be

zero and one respectively in all cases. We consider different sample sizes, namely

n = 20, 30, 40, 50, 60 and 100. First we consider the case when the data comes

from normal distribution. In this case we generate a random sample of size n

from N(0, 1), we compute Tc and check whether Tc is positive or negative. We

replicate the process 10 000 times and obtain an estimate of PCS. Similarly, we

obtain the results when the data comes from Gumbel distribution. The results

are reported in Table 1.

Table 1: PCS’s based on Monte Carlo simulations (MC) with 10 000
replications and those based on the asymptotic results (AR)
when the data come from the normal (Gumbel) distribution
respectively.

Sample size (n) MC Asymptotic results

10 0.62 (0.70) 0.71 (0.70)
20 0.75 (0.79) 0.78 (0.77)
30 0.81 (0.84) 0.84 (0.82)
40 0.86 (0.88) 0.86 (0.85)
50 0.90 (0.91) 0.89 (0.88)
60 0.91 (0.92) 0.91 (0.90)
70 0.93 (0.94) 0.93 (0.92)
80 0.94 (0.95) 0.94 (0.94)
90 0.95 (0.96) 0.95 (0.95)

100 0.96 (0.97) 0.96 (0.95)
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The comparison between the MC simulation and the asymptotic results

shows that the asymptotic approximation works quite well even for small samples.

Results also reveal that it is easy to discriminate between normal and Gumbel

distributions even for a small sample as 20. For example, the comparison of the

results of Table 1 with those of Kundu and Manglick [17] shows that the selection

between the normal and Gumbel distributions gives an asymptotic approximation

more accurate even for a small sample size when the data comes from Gumbel

distribution. Table 1 shows that the minimum sample size needed to choose

between normal and Gumbel distributions is less than 50; it is also clear that the

power of the test varies between 0.62 and 0.96 as the sample size varies between

10 and 100.

5. CONCLUSION

The normal and Gumbel distributions are often considered as competing

models when the variable of interest takes values from −∞ to +∞. In this work

we consider the statistic based on the RML and obtain asymptotic distributions

of the test statistics under null hypothesis. Using MC simulations we compare the

probability of correct selection with these asymptotic result and it is observed that

even when the sample size is as small as 20, these asymptotic results work quite

well for a wide range of the parameter space. Therefore, these asymptotic results

can be used to estimate the PCS. Our method can be used for discriminating

between any two members of the different location and scale families.
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