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Abstract:

• Suppose independent random samples are taken from k (≥ 2) exponential populations
with a common and unknown location parameter “µ” and possibly different unknown
scale parameters σ1, σ2, ..., σk respectively. The estimation of θ = (θ1, θ2, ..., θk); where
θi is the quantile of the ith population, has been considered with respect to either a
sum of squared error loss functions or sum of quadratic losses. Estimators based on
maximum likelihood estimators (MLEs) and uniformly minimum variance unbiased
estimators (UMVUEs) for each component θi have been obtained. An admissible class
of estimators has been obtained. Improvement over an estimator based on UMVUEs
is obtained by an application of the Brewster–Zidek technique. Further, classes of
equivariant estimators are derived under affine and location groups of transformations
and some inadmissibility results are proved. Finally, a numerical comparison of risk
performance of all proposed estimators has been done and the recommendations are
made for the use of these estimators.
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1. INTRODUCTION

Let (Xi1, Xi2, ..., Xini
); i= 1, 2 be independent random samples taken from

two exponential populations with a common unknown location parameter µ and

possibly different scale parameters σ1, σ2 respectively. The probability density

function of the random variable Xij is given by

f(xij |µ, σi) =
1

σi
exp

{

−
(xij − µ

σi

)}

, xij > µ, −∞ < µ <∞ , σi > 0 ;

j = 1, 2, ..., ni ; i = 1, 2 .

The pth quantile of the ith population is denoted by θi = µ+ ησi, where η =

− log(1 − p) > 0; 0 < p < 1. We are interested in estimating the quantile vector

θ = (θ1, θ2). The loss function is taken to be either the sum of the squared errors

L1(α, d) =
2

∑

i=1

(di − θi)
2(1.1)

or, the sum of the quadratic losses

L2(α, d) =
2

∑

i=1

(

di − θi
σi

)2

,(1.2)

where α = (µ, σ1, σ2) and d = (d1, d2) be an estimate of θ.

When parameters of same nature are thought to be equal, it is then cus-

tomary to pool samples for inference purposes on that common parameter. This

is also known as meta-analysis, and has received considerable attention from the

researchers lately. For example, the problem of estimation of a common mean of

two or more normal populations has been extensively studied by several authors

in the recent past. The problem is popularly known as common mean problem

and arises in the study of recovery of inter-block information in balanced incom-

plete block designs (BIBDs). For a complete bibliography and some recent results

on estimation of a common mean of several normal populations one may refer to

Pal and Sinha [15], Kumar [10], Mitra and Sinha [12], Pal et al. [13] and Tripathy

and Kumar [20] and the references cited therein.

The problem of estimating a common location parameter µ of several ex-

ponential populations when the scale parameters are unknown has been studied

by several authors in the recent past. The parameter µ is also referred to as the

“minimum guarantee time” in the study of reliability. This problem was probably

first considered by Ghosh and Razmpour [5]. They have obtained the maximum

likelihood estimator (MLE), a modified maximum likelihood estimator (MMLE)

and the uniformly minimum variance unbiased estimator (UMVUE). They have

also compared numerically the risk values of all these estimators with respect
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to the squared error loss function whereas the MLE and the MMLE have been

compared asymptotically in terms of their bias and mean squared errors (MSEs).

Pal and Sinha [14] considered this problem from a decision theoretic point of

view. They proposed a class of improved estimators which are better than the

MLE in terms of MSE as well as Pitman measure of closeness (PMC). However,

these improved estimators are different from the MMLE and the UMVUE. Jin

and Pal [9] obtained a wide class of estimators which dominate the MLE under

a class of convex loss functions. Jin and Crouse [7] proposed a larger class of

estimators for µ which includes the MMLE and the UMVUE for special choices

of their constants (see Equation (3.1) in [7]). They obtained estimators which

dominate the MLE using a class of convex loss functions.

For this particular model, the problem of estimation of quantiles is impor-

tant and also interesting for its practical applications. Quantiles of exponential

populations are very much useful in the study of reliability, life testing, and sur-

vival analysis. For some applications of quantiles of exponential populations we

refer to Epstein and Sobel [3] and Saleh [18]. Estimation of quantiles θ1=µ+ησ1,

of an exponential population was probably first considered by Rukhin and Straw-

derman [17] using a decision theoretic approach. They proved that the best affine

equivariant estimator (BAEE) for the quantile θ1 is inadmissible when either

0 ≤ η < 1
n

or η > 1 + 1
n

where n ≥ 2 is the sample size. Rukhin [16] proved its

admissibility when 1
n
≤ η ≤ 1 + 1

n
. He also obtained a class of minimax estima-

tors for η > 1 + 1
n
. This class contains some generalized Bayes estimators. One

of these generalized Bayes estimators is shown to be admissible within a class of

scale equivariant estimators.

For the model studied in this paper, Sharma and Kumar [19] and Kumar

and Sharma [11] considered estimation of the quantiles θ1 = µ+ ησ1 of the first

population when the other k − 1 (k ≥ 2) populations are available. They show

that the MLE, the UMVUE and the BAEE based on the first sample alone can

be improved by using other k − 1 samples. They have also obtained a general

inadmissibility result for the class of affine equivariant estimators for 0 ≤ η < 1
n
.

Jin and Crouse [8] considered the problem of estimating the quantile θi = µ+ ησi
of the ith population. They established an identity for the exponential dis-

tributions, and using it, compared the risk functions of the UMVUE and the

MLE. They also proposed a class of estimators which dominate the MLE and the

UMVUE.

It is interesting to note that all the above work relates to estimating ei-

ther the common location parameter µ or a component θi of the vector θ of

quantiles. From a theoretical as well as a practical viewpoint, it is important to

consider the problem of simultaneous estimation of θ. For example, suppose an

electronic item is produced by several manufacturers and lifetimes of these follow

exponential distributions. It is very likely that the average lives of items from dif-

ferent manufacturers will be different due to quality specifications used by them.
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However, due to competition in the market, they will maintain a common min-

imum guarantee time. Then the problem of simultaneous estimation of average

lives is a special case of the problem of simultaneous estimation of the vector of

quantiles. One may refer to Ghosh and Auer [4], Berger [1] and Gupta [6] for

some results on the simultaneous estimation of parameters.

In this paper, we consider the general problem of estimating the vector of

quantiles of several exponential populations with a common location but different

scale parameters. In Section 2, some basic estimators of the quantile vector are

proposed based on the MLE, the MMLE and the UMVUE of each component.

In Section 3, we consider classes of affine and location equivariant estimators and

prove some inadmissibility results. In Section 4, we extend some of these results to

k (≥ 2) exponential populations. A detailed numerical comparison of risk values

for several proposed estimators has been done by using Monte-Carlo simulations

in Section 5. Also recommendations are made for using these estimators. Certain

proofs have been given in the Appendix.

2. SOME BASIC RESULTS & IMPROVEMENT OVER UMVUE

In this section we derive some baseline estimators for the quantile vector θ

and obtain an estimator which dominates the UMVUE using a result of Brewster

and Zidek (Brewster and Zidek [2]).

2.1. Some Basic Estimators

Suppose (Xi1, Xi2, ..., Xini
); i=1, 2 are independent random samples taken

from two exponential populations Ex(µ, σ1) and Ex(µ, σ2) having the probability

density functions,

f(xij) =
1

σi
exp

{

−
(xij − µ

σi

)}

, xij > µ, −∞ < µ <∞ , σi > 0 ,

j = 1, 2, ..., ni ; i = 1, 2 ,

respectively. We are interested in estimating the quantile vector θ = (θ1, θ2),

where θi = µ+ ησi denotes the quantile of the ith population, i = 1, 2. The loss

function is taken to be either the sum of the squared errors (1.1) or the sum of

the quadratic losses (1.2).

Let us denote Xi = min(Xi1, Xi2, ..., Xini
) and Yi = 1

ni

∑ni

j=1Xij ; i = 1, 2.

Further define Z = min(X1, X2), T1 = Y1 − Z, and T2 = Y2 − Z. Here Y1 and Y2

are the means of the first and the second samples respectively. Then (Z, T1, T2)



400 Manas Ranjan Tripathy and Somesh Kumar

is a complete sufficient statistic. The random variables Z and T = (T1, T2) are

independently distributed. The probability density function of Z is given by

fZ(z) = a exp
(

−a(z − µ)
)

, z > µ , −∞ < µ <∞ ,

where a = n1

σ1
+ n2

σ2
. The joint probability density function of T1 and T2 can be

obtained from Ghosh and Razmpour [5] by using a simple transformation, and is

given by

fT (t) =
nn1

1 nn2

2

σn1

1 σn2

2 a

[

tn1−1
1 tn2−2

2

Γn1 Γ(n2−1)
+

tn1−2
1 tn2−1

2

Γn2 Γ(n1−1)

]

exp(−n1t1/σ1 − n2 t2/σ2) ,

t1, t2 > 0 .

The MLE of µ and σi are µ̂ = Z, and σ̂i = Ti, i = 1, 2 respectively. Thus

collecting the MLEs for each component we obtain the estimator for quantile

vector θ as

δML =
(

Z + ηT1, Z + ηT2

)

,

and we call it the MLE of θ. Further noticing E(Z) = µ+ a−1, the MLE δML of

θ can be modified and we call this a modified MLE for the vector θ and is given

by

δMM =
(

Z − â−1 + ηT1, Z − â−1 + ηT2

)

,

where â = n1

T1
+ n2

T2
.

Next we collect the UMVUEs of θi for each component and form an esti-

mator for the quantile vector θ. It is easy to see that E(Tj) = σj − a−1; j = 1, 2

and E
[(

∑2
i=1(ni−1)T−1

i

)−1]
= a−1. Using these results and the fact that (Z, T )

is a complete sufficient statistic, we get the uniformly minimum variance unbi-

ased estimator for each component θi as Z + (η − 1)T ∗ + ηTi, where we denote

T ∗ =
(
∑2

i=1(ni − 1)T−1
i

)−1
. Now collecting the UMVUEs for each component

θi, we form an estimator for the quantile vector θ, denoted as δMV and is given

by

δMV =
(

Z + ηT1 + (η−1)T ∗, Z + ηT2 + (η−1)T ∗
)

.

The expressions for the risk functions of δML, δMM and δMV with respect to the

loss (1.2) are obtained as follows:

R(δML, θ) = η2

(

1

n1
+

1

n2

)

+
2 (1 − η) (1 + τ2)

(n1 + n2 τ)2
,

R(δMM , θ) = η2

(

1

n1
+

1

n2

)

+
2 (1 − η) (1 + τ2)

(n1 + n2 τ)2

+

(

1

σ2
1

+
1

σ2
2

)(

2 (η − 1)

a
ES + ES2

)

,

R(δMV , θ) = η2

(

1

n1
+

1

n2

)

+
4 (1 − η) (1 + τ2)

(n1 + n2 τ)2
+ 2(η − 1)2ET ∗2 ,
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where S = 1/â and τ = σ1/σ2 > 0.

In the rest of the paper, when we say UMVUE for the quantile vector θ, we

mean “the collection of the UMVUEs for each component θi and form a vector”

to get the estimator for the quantile vector θ.

2.2. An Estimator Dominating the UMVUE

In this section, we propose an estimator for the quantile vector θ, which

improves upon the UMVUE for the quantile vector θ, with respect to the loss

function (1.1). Let us consider a class of estimators for the quantile vector θ as

D =
{

δ
c
: δ

c
= (δc1 , δc2); c1, c2 ∈ R

}

,

where we denote δcj = Z + ηcj Tj + (η − 1)T ∗; j = 1, 2.

Now for the class of estimators D =
{

δ
c
: δ

c
= (δc1 , δc2); c1, c2 ∈ R

}

, let us

define

c∗ =
(

min
{

max(c1, a1), b1
}

, min
{

max(c2, a2), b2
}

)

(2.1)

and

c∗ =
(

min
{

max(c1, c
+
1 ), d1

}

, min
{

max(c2, c
+
2 ), d2

}

)

(2.2)

where aj =
ηnj(nj−2)+1
ηnj(nj−1) , bj =

nj

nj+1 , dj = max{aj , bj}, c+j = ĉj(λ
+
j ), and λ+

j =
{

(nj + 1)−
√

(nj + 1)2 − 4ηnj
}

/2nj ; j = 1, 2. Next we have the following inad-

missibility result for estimators in the class D.

Theorem 2.1. Let D be the class of estimators for the quantile vector θ,

and define the functions c
∗ and c∗ as in (2.1) and (2.2) respectively. Let the loss

function be (1.1).

(i) The estimator δ
c

is inadmissible and is improved by δ
c
∗ if c 6= c

∗,

when η ≥ 1.

(ii) The estimator δ
c

is inadmissible and is improved by δ
c∗

if c 6= c∗ when

0 < η < 1.

Proof: See Appendix.

Corollary 2.1.

(i) Let η ≥ 1. The class of estimators
{

δ
c
= (δc1 , δc2): aj ≤ cj ≤ bj ; j=1, 2

}

is essentially complete in D.

(ii) Let 0 < η < 1. The class of estimators
{

δ
c

= (δc1 , δc2) : c+j ≤ cj ≤ dj ;

j = 1, 2
}

is essentially complete in D.
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The class of estimators D also contains the UMVUE for the quantile vec-

tor θ when c1 = c2 = 1. Consequently, the UMVUE δMV is inadmissible. The

result we write as a theorem which is immediate. Let p1 = min{ 1
n1
, 1
n2
}, p2 =

max{ 1
n1
, 1
n2
}, q1 = min{n1+1

2n1
, n2+1

2n2
} and q2 = max{n1+1

2n1
, n2+1

2n2
}.

Theorem 2.2. Let the loss function be (1.1).

(i) If η ≥ 1, then the uniformly minimum variance unbiased estimator

δMV for the quantile vector θ is inadmissible and is improved by the

estimator δIMV = (δb1 , δb2). Further the class {δ
c

= (δc1 , δc2) : aj ≤
cj ≤ bj ; j = 1, 2} is essentially complete in D.

(ii) If q2 ≤ η < 1, then the estimator δMV is inadmissible and is improved

by δIMV = (δb1 , δb2). The class of estimators {δ
c

= (δc1 , δc2) : c+j ≤
cj ≤ bj ; j = 1, 2} is essentially complete in D.

(iii) If p2 ≤ η ≤ q1, then the estimator δMV is inadmissible and is im-

proved by δIMV = (δa1
, δa2

). The class of estimators {δ
c

= (δc1 , δc2) :

c+j ≤ cj ≤ aj ; j = 1, 2} is essentially complete in D.

(iv) If 0 ≤ η < p1, then the estimator δMV is admissible in the class D.

The class of estimators {δ
c

= (δc1 , δc2) : c+j ≤ cj ≤ aj ; j = 1, 2} is es-

sentially complete in D.

(v) Let p1 < η < p2. If 1
n1
< η < 1

n2
, then the estimator δMV is inadmis-

sible and is improved by either (δa1
, δc2) (when η < n1+1

2n1
) or (δb1 , δc2)

(when η ≥ n1+1
2n1

) where c2 = 1. If 1
n2
< η < 1

n1
, then the estima-

tor δMV is inadmissible and is improved by either (δc1 , δa2
) (when

η < n2+1
2n2

) or (δc1 , δb2) (when η ≥ n2+1
2n2

) where c1 = 1.

(vi) Let q1 < η < q2. If n1+1
2n1

< η < n2+1
2n2

, then the estimator δMV is inad-

missible and is improved by either (δb1 , δa2
) (when η > 1

n2
) or (δb1 , δc2)

(when η < 1
n2

) where c2 = 1. If n2+1
2n2

< η < n1+1
2n1

, then the estima-

tor δMV is inadmissible and is improved by either (δa1
, δb2) (when

η > 1
n1

) or (δc1 , δb2) (when η < 1
n1

) where c1 = 1.

Proof: The proof is immediate as an application of Theorem 2.1.

Applying the above Theorem 2.2 it is easy to write the estimator which

improves upon δMV . However, we give the expression only for the case η ≥ q2
and p2 < η ≤ q1 below. The expressions for other cases can be written easily:

δIMV =











(

Z + ηb1T1 + (η−1)T ∗, Z + ηb2T2 + (η−1)T ∗
)

, if η ≥ q2 ,

(

Z + ηa1T1 + (η−1)T ∗, Z + ηa2T2 + (η−1)T ∗
)

, if p2 < η ≤ q1 .
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3. INADMISSIBILITY OF EQUIVARIANT ESTIMATORS FOR

QUANTILES

In this section, we consider affine and location class of equivariant esti-

mators for the quantile vector θ. We derive sufficient conditions for improving

estimators in these classes and as a consequence we prove some complete class

results.

3.1. Affine Equivariant Estimators

Let us consider the affine group of transformations, GA =
{

ga,b : ga,b(x) =

ax+ b, a > 0, b ∈ R
}

. Under the transformation ga,b, we have Xij → aXij + b,

Z → aZ+ b, Ti → aTi, σi → aσi, µ→ aµ+ b, and θi = µ+ησi → aθi+ b; i = 1, 2.

So θ = (θ1, θ2) → aθ + be, where e = (1, 1). The estimation problem is invariant

if we take the loss function as the sum of the affine invariant loss functions (1.2).

The invariance loss condition is

L
(

ḡa,b(α), d̃
)

=
2

∑

i=1

(

aθi + b− d̃i
aσi

)2

= L(α, d) ,

which is satisfied if d̃i = adi + b = g̃a,b(di), i = 1, 2. Here α = (µ, σ1, σ2). There-

fore an affine equivariant estimator satisfies

δ(aZ + b, aT1, aT2) = aδ(Z, T1, T2) + be .

Substituting b = −aZ where a = 1/T1, we get

δ

(

0, 1,
T2

T1

)

=
1

T1

[

δ(Z, T1, T2) − Ze
]

.

From the above relation, we get the form of an affine equivariant estimator as

δ(Z, T1, T2) = Ze+ T1Ψ(W )

= δΨ , say ,(3.1)

where W= T2

T1
. To proceed further we denote η1=

ηn1−1
n1+n2

, and η2 = n2w
n1+n2

(

η− 1
n2

)

.

Let us define the following functions:

(3.2) Ψ∗
1 =

{

η1 , if 0 ≤ w ≤ 1
1−ηn1

,

Ψ̂1(τ
+, w) , if w > 1

1−ηn1
,
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where τ+ = −n1

n2
+ 1

n2

√

n1(w−1)
ηw

, and

(3.3) Ψ∗
2 =

{

η2 , if w ≥ 1 − ηn2 ,

Ψ̂2(α
+, w) , if w < 1 − ηn2 ,

where α+ = ηn1

1−ηn2−w
+

n1

√
ηn2(1−w)

n2(1−ηn2−w) .

Next, for the affine equivariant estimator δΨ define functions Ψ0, Ψ0, Ψ11

and Ψ22 as follows:

Ψ0 =
(

max(Ψ1,Ψ
∗
1), max(Ψ2,Ψ

∗
2)

)

,(3.4)

Ψ0 =
(

max(Ψ1, η1), max(Ψ2, η2)
)

,(3.5)

Ψ11 =
(

max(Ψ1, η1), max(Ψ2,Ψ
∗
2)

)

,(3.6)

Ψ22 =
(

max(Ψ1,Ψ
∗
1), max(Ψ2, η2)

)

.(3.7)

Let p1 and p2 be defined as in Section 2. Next we prove an inadmissibility

result for estimators which are equivariant under the affine group of transforma-

tions.

Theorem 3.1. Let the loss function be (1.2) and the functions Ψ0, Ψ0,

Ψ11 and Ψ11 be defined as in (3.4), (3.5), (3.6) and (3.7) respectively.

(i) The estimator δΨ is inadmissible and is improved by δΨ0
if there

exist some values of parameters α such that P (δΨ 6= δΨ0
) > 0 when

0 < η < p1.

(ii) The estimator δΨ is inadmissible and is improved by δΨ0 if there exist

some values of parameters α such that P (δΨ 6= δΨ0) > 0 when η ≥ p2.

(iii) Let p1 ≤ η < p2. If 1
n1

≤ 1
n2

, then the estimator δΨ is inadmissible

and is improved by δΨ11
if there exist some values of parameters α

such that, P (δΨ 6= δΨ11
) > 0. If 1

n2
≤ 1

n1
, then the estimator δΨ is

inadmissible and is improved by δΨ22
if there exist some values of

parameters α such that, P (δΨ 6= δΨ22
) > 0.

Proof: For proof see Appendix.

Remark 3.1. The Theorem 3.1 is basically a complete class theorem for

affine equivariant estimators. It says that any affine equivariant estimator of the

form (3.1) will be inadmissible if P{(Ψ1 < Ψ∗
1)∪ (Ψ2 < Ψ∗

2)} > 0 when η < p1 and

P{(Ψ1 < η1) ∪ (Ψ2 < η2))} > 0 for η ≥ p2. A similar type of statement holds for
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the case p1 ≤ η ≤ p2. However, for small values of η and for small sample sizes

the improvements over the MLE and the MMLE are very marginal and we omit

the risk values in the tables. For η > p2, improvement over these is not possible

by using the result of Theorem 3.1. Improvement over δMV has been shown in

the Tables 1–3 for 0 < η < p1.

Remark 3.2. The results of the Theorem 3.1 will remain valid, if instead

of the loss function (1.2), we use any sum of the weighted squared error loss

functions.

3.2. Location Equivariant Estimator

Let us introduce the location group of transformations, GL = {ga : ga(x) =

x+ a, a ∈ R} to our model. Under the transformation ga, Xij →Xij + a, Xi →
Xi+a, Z → Z+a, Ti → Ti, σi → σi, µ→ µ+a, and θ = (θ1, θ2) → (θ1+a, θ2+a) =

θ + ae, where θi = µ+ ησi; i = 1, 2.

The estimation problem will be invariant if we choose the loss function

as the sum of the squared error loss functions (1.1). The location equivariant

estimator δ must satisfy the relation

δ(Z + a, T1, T2) = ae+ δ(Z, T1, T2) .

Substituting a = −Z, we get

δ(0, T1, T2) = δ(Z, T1, T2) − Ze .

From this relation we get the form of a location equivariant estimator as

δ(Z, T1, T2) = Ze+ ψ(T1, T2)

= δψ , say ,(3.8)

where ψ(T1, T2) = (ψ1(T1, T2), ψ2(T1, T2)).

For the location equivariant estimator δψ = (δψ1
, δψ2

) let us define func-

tions, ψ0, ψ
11

and ψ
22

as

ψ0 =
(

max(0, ψ1), max(0, ψ2)
)

,(3.9)

ψ
11

=
(

max(0, ψ1), ψ2

)

,(3.10)

and

ψ
22

=
(

ψ1, max(0, ψ2)
)

.(3.11)
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Next we prove an inadmissibility result for estimators which are invariant

under the location group of transformations.

Theorem 3.2. Let the loss function be (1.1) and the functions ψ0, ψ
11

and ψ
22

be defined as in (3.9), (3.10) and (3.11) respectively.

(i) When η ≥ p2 the estimator δψ is inadmissible and is improved

by δψ0 if there exist some values of the parameters α such that

Pα(δψ 6= δψ0) > 0.

(ii) Let p1 ≤ η < p2. If 1
n1

≤ η < 1
n2

, then the estimator δψ is inadmissible

and is improved by δψ
11

if there exist some values of parameters

α such that Pα(δψ 6= δψ
11

) > 0. If 1
n2

≤ η < 1
n1

the estimator δψ is

inadmissible and is improved by δψ
22

if there exist some values of

parameters α such that Pα(δψ 6= δψ
22

) > 0.

(iii) For η < p1 the class of estimators (3.8) is an essentially complete

class. The estimator δψ can not be improved by using Theorem 3.2.

Proof: The proof is similar to the arguments used in proving the Theorem

3.1.

Remark 3.3. The above Theorem 3.2 is also a complete class result.

Basically it says that any location equivariant estimator for the quantile vec-

tor θ = (θ1, θ2) of the form (3.8) is inadmissible if Pα{(ψ1 < 0) ∪ (ψ2 < 0)} > 0

for η ≥ max( 1
n1
, 1
n2

). A similar type of statement holds for the case p1 ≤ η ≤ p2.

Remark 3.4. It can be further noticed that all the estimators considered

such as δML, δMM and δMV belong to the class of estimators obtained in (3.6),

with choices of ψ = (ψ1, ψ2) as (ηT1, ηT2),
(

ηT1 − T1T2

n2T1+n1T2
, ηT2 − T1T2

n2T1+n1T2

)

and
(

ηT1 + (η−1)T1T2

(n1−1)T2 +(n2−1)T1
, ηT2 + (η−1)T1T2

(n1−1)T2 +(n2−1)T1

)

respectively. But none

of these can be improved by using the result of Theorem 3.2 as the values of ψ1

and ψ2 fall within the interval [0,+∞) when η ≥ max
(

1
n1
, 1
n2

)

with probability 1.

However, an example where our result will be useful is as follows: suppose we

consider an estimator for θ as δ = (Z − ηT1, Z − ηT2) or any estimator of the

form (Z − g1(T1, T2), Z − g2(T1, T2)), with g1(t1, t2) > 0, or g2(t1, t2) > 0 and η ≥
max

(

1
n1
, 1
n2

)

. Certainly, these estimators fall in the class (3.8) with ψ1 < 0 or

ψ2 < 0. The improved estimator for these are obtained as δ∗ = (Z,Z).

Example 3.1. An example of a practical situation where the model of

this paper is applicable is presented here. Suppose µ is the common minimum

guaranteed time in years of two brands of electronics products say brand A and
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brand B. It is most likely that the mean residual life times (σ1 and σ2) will

be different. On the basis of random samples of sizes 10 from brand A and B,

the following summary data has been recorded. Here Z = 7.82, T1 = 12.49 and

T2 = 15.44. Suppose η = 3.0, then the estimators for the quantile vector are ob-

tained as δML = (45.31, 54.14), δMM = (44.62, 53.45), δMV = (46.85, 55.68), and

δIMV = (43.44, 51.47). In this situation, the estimator δIMV = (43.44, 51.47) is

recommended for use.

Example 3.2 (Simulated Data). The following two data sets A and B of

sizes each 10 and 12 has been generated from two exponential populations for

illustration purpose. We have taken µ = 5.0, σ1 = 5 and σ2 = 10. The sample

values have been written up to 3 decimal places only:

A : 16.555, 9.685, 11.863, 11.248, 6.894, 20.933, 6.435, 8.573, 18.745, 9.036,

B : 5.455, 6.806, 10.667, 13.687, 11.739, 9.006, 7.612, 18.846, 23.978,

21.418, 10.639, 13.061.

Here Z = 5.455, T1 = 6.541 and T2 = 7.287. Suppose, η = 0.001, then the

estimators for the quantile vector θ are obtained as, δML = (5.462, 5.462), δMM =

(5.147, 5.147), δMV = (5.115, 5.116), and δaMV = (5.145, 5.128), where δaMV de-

notes the improved version of δMV obtained by using Theorem 3.1. In this situ-

ation we recommend to use the estimator δaMV .

4. A GENERALIZATION

In this section we extend some of the results obtained in Sections 2 and 3

to the k (≥ 2) exponential populations and obtain the improved estimators for

the UMVUE δMV .

Specifically, let Xi1, Xi2, ..., Xini
be a random sample of size ni taken from

the ith exponential population Ex(µ, σi). The random variable Xij has probabil-

ity density function,

f(xij) =
1

σi
exp

{

−
(xij − µ

σi

)}

, xij > µ, −∞ < µ <∞ , σi > 0 ,

j = 1, 2, ..., ni ; i = 1, 2, ..., k .

We estimate the quantile vector θ = (θ1, θ2, ..., θk); where θi = µ+ ησi be the

quantile of the ith population, with respect to the loss function either

L1(α, d) =
k

∑

i=1

(di − θi)
2 ,(4.1)
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or

L2(α, d) =
k

∑

i=1

(

di − θi
σi

)2

.(4.2)

Let us denote Xi = min(Xi1, Xi2, ..., Xini
) and Yi = 1

ni

∑ni

j=1Xij . Further

define Z = min(X1, X2, ..., Xk), and Ti = Yi−Z; i=1, 2, ..., k. Here Yi is the sam-

ple mean from the ith population. Then (Z, T1, T2, ..., Tk) is a complete sufficient

statistic. Now the random variables Z and T = (T1, T2, ..., Tk) are independently

distributed. The probability density function of Z is given by

fZ(z) = a exp
(

−a(z − µ)
)

, z > µ, −∞ < µ <∞ ,

where a =
∑k

i=1
ni

σi
. The joint probability density function of T = (T1, T2, ..., Tk)

is given by

fT (t) =
1

a

k
∏

i=1

(

nni

i

σni

i

) k
∏

i=1

(

tni−1
i

Γni

)

[

k
∑

i=1

ni−1

ti

]

exp

{

−
k

∑

i=1

ni ti/σi

}

, ti > 0 .

It should be noted that the MLE δML, modification to the MLE δMM and the

UMVUE δMV can easily be obtained as

δML = Ze+ ηT ,

δMM = (Z − â−1)e+ ηT

and

δMV =
(

Z + (η−1)T ∗
)

e+ ηT ,

where e = (1, 1, ..., 1)1×k and T ∗ =
(
∑k

i=1(ni − 1)T−1
i

)−1
.

Consider the class of estimators for the quantile vector θ as

Dc =
{

δ
c
: δ

c
= (δc1 , δc2 , ..., δck); ci ∈ R

}

,

where we denote c = (c1, c2, ..., ck), and

δcj = Z + η cj Tj + (η−1)T ∗ ; j = 1, 2, ..., k .

It should be noted that, this class contains the estimator δMV for c1 = c2 = ··· =

ck = 1.

Now for the class of estimators Dc define

c∗ =
(

min
{

max(c1, a1), b1
}

, ..., min
{

max(ck, ak), bk
}

)

(4.3)
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and

c∗ =
(

min
{

max(c1, c
+
1 ), d1

}

, ..., min
{

max(ck, c
+
k ), dk

}

)

,(4.4)

where aj =
ηnj(nj−2)+1
ηnj(nj−1) , bj =

nj

nj+1 , dj = max{aj , bj}, c+j = ĉj(λ
+
j ), and λ+

j =
{

(nj + 1) −
√

(nj + 1)2 − 4η nj
}

/2nj ; j = 1, 2, ..., k. Next we have the follow-

ing inadmissibility result for estimators in the class Dc.

Theorem 4.1. Let Dc be the class of estimators for the quantile vector θ,

and define the functions c
∗ and c∗ as in (4.3) and (4.4) respectively. Let the loss

function be (4.1).

(i) The estimator δ
c

is inadmissible and is improved by δ
c
∗ if c 6= c

∗,

when η ≥ 1.

(ii) The estimator δ
c

is inadmissible and is improved by δ
c∗

if c 6= c∗

when 0 < η < 1.

Proof: The proof is similar to the proof of the Theorem 2.1.

The class of estimators Dc contains the UMVUE of the quantile vector θ

when ci = 1; i = 1, 2, ..., k. Consequently, the UMVUE δMV is inadmissible. Let

p1 = min
{

1
n1
, ..., 1

nk

}

, p2 = max
{

1
n1
, ..., 1

nk

}

, q1 = min
{

n1+1
2n1

, ..., nk+1
2nk

}

and q2 =

max
{

n1+1
2n1

, ..., nk+1
2nk

}

.

Theorem 4.2. Let the loss function be (4.1).

(i) If η ≥ 1, then the uniformly minimum variance unbiased estimator

δMV for the quantile vector θ is inadmissible and is improved by the

estimator δIMV = (δb1 , ..., δbk). Further the class {δ
c

= (δc1 , ..., δck) :

aj ≤ cj ≤ bj ; j = 1, 2, ..., k} is essentially complete in Dc.

(ii) If q2 ≤ η < 1, then the estimator δMV is inadmissible and is

improved by δIMV = (δb1 , ..., δbk). The class of estimators {δ
c

=

(δc1 , ..., δck) : c+j ≤ cj ≤ bj ; j = 1, 2, ..., k} is essentially complete in

Dc.

(iii) If p2 ≤ η ≤ q1, then the estimator δMV is inadmissible and is

improved by δIMV = (δa1
, ..., δak

). The class of estimators {δ
c

=

(δc1 , ..., δck) : c+j ≤ cj ≤ aj ; j = 1, 2, ..., k} is essentially complete in

Dc.

(iv) If 0 ≤ η < p1, then the estimator δMV is admissible in the class D.

The class of estimators {δ
c

= (δc1 , ..., δck) : c+j ≤ cj ≤ aj ; j =

1, 2, ..., k} is essentially complete in Dc.

(v) Let p1 < η < p2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that 1/nl1< η, ..., 1/nlp< η, and 1/nlp+1
≥ η, ..., 1/nlk ≥ η.
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Then the estimator δMV is inadmissible and is improved by δIMV =

(δal1
, ..., δalp

, δclp+1
, ..., δclk ), when η <

nl1
+1

2nl1

, ..., η <
nlp+1

2nlp
, and im-

proved by δIMV = (δbl1 , ..., δblp , δclp+1
, ..., δclk ), when η ≥ nl1

+1

2nl1

, ...,

η ≥ nlp+1

2np+1
where clp+1

= clp+2
= ··· = clk = 1.

(vi) Let p1 < η < p2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that 1/nl1 ≥ η, ..., 1/nlp ≥ η, and 1/nlp+1
< η, ..., 1/nlk < η.

Then the estimator δMV is inadmissible and is improved by δIMV =

(δcl1 , ..., δclp , δalp+1
, ..., δalk

), when η <
nlp+1

+1

2nlp+1

, ..., η <
nlk

+1

2nlk

, and

improved by δIMV = (δcl1, ..., δclp , δblp+1
, ..., δblk ), when η ≥ nlp+1

+1

2nlp+1

,

..., η ≥ nlk
+1

2nk
, where cl1 = cl2 = ··· = clp = 1.

(vii) Let q1 < η < q2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that
nl1

+1

2nl1

< η,
nl2

+1

2nl2

< η, ...,
nlp+1

2nlp
< η and

nlp+1
+1

2nlp+1

≥ η,

nlp+2
+1

2nlp+2

≥ η, ...,
nlk

+1

2nlk

≥ η. The estimator δMV is inadmissible and is

improved by δIMV = (δbl1, ..., δblp , δalp+1
, ..., δalk

), when η > 1/nlp+1
,

η > 1/nlp+2
, ..., η > 1/nlk and by δIMV = (δbl1 , ..., δblp , δclp+1

, ..., δclk ),

when η ≤ 1/nlp+1
, η ≤ 1/nlp+2

, ..., η ≤ 1/nlk , where clp+1
= clp+2

=

··· = clk = 1.

(viii) Let q1 < η < q2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that
nl1

+1

2nl1

≥ η,
nl2

+1

2nl2

≥ η, ...,
nlp+1

2nlp
≥ η and

nlp+1
+1

2nlp+1

< η,

nlp+2
+1

2nlp+2

< η, ...,
nlk

+1

2nlk

< η. The estimator δMV is inadmissible and

is improved by δIMV = (δal1
, ..., δalp

, δblp+1
, ..., δblk), when η > 1/nl1 ,

η > 1/nl2 , ..., η > 1/nlp and by δIMV = (δcl1, ..., δclp , δblp+1
, ..., δblk),

when η ≤ 1/nl1 , η ≤ 1/nl2 , ..., η ≤ 1/nlp , where cl1 = cl2 = ··· =

clp = 1.

Applying the above Theorem 4.2 we can obtain the estimator which im-

proves upon δMV . However, we have obtained the expressions for some specific

values of η. One can easily write the estimator for other choices of η:

δIMV =

{
(

Z + (η−1)T ∗
)

e+ ηB , if η ≥ q2 ,
(

Z + (η−1)T ∗
)

e+ ηA , if p2 < η ≤ q1 ,

where A = (A1, A2, ..., Ak); Ai = aiTi and B = (B1, B2, ..., Bk); Bi = biTi; i =

1, 2, ..., k.

Next we generalize the results obtained in Theorem 3.1 and Theorem 3.2.

Let us consider the affine group of transformations, GA = {ga,b : ga,b(x) = ax+ b,

a > 0, b ∈ R. Under the transformation ga,b, we have Z → aZ+ b, Ti → aTi, σi →
aσi, µ→ aµ+ b, and θi = µ+ ησi → aθi+ b; i=1, 2, ..., k. So θ → aθ+ be, where

e = (1, 1, ..., 1)1×k. Under this transformation the problem remains invariant if
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we choose the loss function (4.2), and the form of an affine equivariant estimator

is obtained as

δ(Z, T1, T2, ..., Tk) = Ze+ T1Ψ(W )

= δΨ , say ,(4.5)

where W = (W2,W3, ...,Wk) and Wi = Ti

T1
; i = 2, 3, ..., k.

Consider the conditional risk function:

R(δΨ, α |W ) =

k
∑

i=1

E

{(

Z + T1Ψi(W ) − θi
σi

)2 ∣

∣

∣
W

}

.(4.6)

It is easy to observe that the above conditional risk is a convex function in each

Ψi and hence the sum. The minimizing choices for each Ψi is obtained as

Ψ̂i = −E(Z−θi) E(T1 |W )

E(T 2
1 |W )

; i = 1, 2, ..., k .(4.7)

After evaluating the conditional expectations and simplifying we have the mini-

mizing choice of Ψi as

Ψ̂i =
1

∑k
j=1 nj

[

ησi − a−1
]

[

n1

σ1
+

k
∑

j=2

njwj
σj

]

; i = 1, 2, ..., k .(4.8)

To apply the Brewster and Zidek technique we need to find the supremum

and infimum of each Ψ̂i with respect to σ = (σ1, ..., σk) for fixed values of η,

ni and W . We are not able to obtain the supremum and infimum for each Ψ̂i

for the case k (≥ 3). However, for the first component Ψ̂1, Sharma and Kumar

[19] obtained the bounds for equal sample sizes. We feel that the lower bounds

for other components will be finite. Since we are not able to derive the bounds

for the case k (≥ 3), it could not be possible to provide the inadmissibility result

for k (≥ 3) populations. It will be interesting to obtain the bounds for the case

k (≥ 3) and obtain improved estimators better than δMV .

5. NUMERICAL COMPARISONS

In this section, we carry out a detailed simulation study to numerically

compare the risk functions of various estimators proposed in previous sections

for the quantile vector θ for the case k = 2. Specifically, we have proposed some

baseline estimators such as δML, δMM and δMV for θ. An improved estimator

δIMV which dominates δMV has been obtained in Section 2 for the case η ≥ p1.

From the Remark 3.1, it is quite evident that, we only consider the estimator δMV

and obtain its improved version by using the Theorem 3.1, which we denote as
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δaMV for the case 0 < η < p2. For numerically comparing the risk functions of all

these estimators for θ, we use Monte-Carlo simulation procedure. We have gen-

erated 10,000 random samples each from two exponential populations Exp(µ, σ1)

and E(µ, σ2) respectively. Here µ is the common location parameter and σ1, σ2

are different scale parameters. The loss function is taken as the sum of the

quadratic losses (1.2). It should be noted that, with respect to the loss (1.2),

the risk functions of each estimator is a function of only τ = σ1/σ2 > 0 for fixed

values of η and sample sizes. A massive simulation study has been carried out

to see the behavior of the risk functions and the performance of each estimator

for the quantile vector θ. The error of the simulation has been checked and it

is quite satisfactory (up to order of 10−3). We have also calculated the percent-

age of relative risk performances for each estimator with respect to the baseline

estimator δML. For this purpose we define the equation,

RMM =

(

δML − δMM

δML

)

× 100 , RMV =

(

δML − δMV

δML

)

× 100 ,

RMVA =

(

δML − δaMV

δML

)

× 100 , RIMV =

(

δML − δIMV

δML

)

× 100 .

For illustration purpose, we choose some specific values of η and n1, n2.

Though the values of τ can be from 0 to ∞, we choose the values up to 5 to

avoid simulation error. The percentage of relative risk improvements of all the

estimators over the MLE has been tabulated in Tables 1 to 3. In Table 1, we

have tabulated the percentage of relative risk values for equal sample sizes whereas

Tables 2, 3 gives for unequal sample sizes. In each table, the first row gives the

various choices of η. We have taken conveniently the values of η as 0.05 and 2.50.

The first column represents the values of τ which ranges from 0 to 5. Further, for

each value of η, there corresponds three columns (columns 1, 2, 3 correspond to

η = 0.05 and columns 4, 5, 6 correspond to η = 2.50). For each value of τ , there

corresponds three values of percentage of relative risk values. These three values

corresponds to three different pairs of sample sizes, for example in Table 1, the

percentage of relative risk values have been tabulated for the sample sizes (5, 5),

(10, 10) and (15, 15). Similarly in Tables 2 and 3, the percentage of relative risk

performances have been tabulated for the sample sizes (3, 7), (5, 10), (10, 15) and

(7, 3), (10, 5), (15, 10) respectively.

The following conclusions can be drawn from our simulation study as well

as from the Tables 1, 2 and 3.

(i) It is observed that as the sample sizes (n1 and n2) increase the risk

values decrease for fixed value of η.

(ii) For 0 < η ≤ p1, the estimator δaMV has the least risk for almost

all values of the parameters except few values where the estimator

δMM performs marginally better. The percentage of relative risk

improvement has been noticed and is near 50%.
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(iii) For η > p2, the estimator δIMV performs the best and the per-

centage of relative risk improvement is near 21%. However, the

performance decreases as the sample sizes increase.

(iv) When η lies in the interval [p1, p2], the estimators δIMV and δaMV

compete well with each other. In fact for small values of τ , the es-

timator δIMV performs better compared to δaMV whereas for larger

values of τ , the estimator δaMV performs better. However, the es-

timator δMM has the best percentage of relative risk improvement

for this choice of η.

(v) For η = 1, (the problem reduces to simultaneous estimation of means

of two exponential populations) the estimators δML and δMV are

equal and it is also noticed that the performance of δIMV is the

best.

(vi) The numerical study also shows that the estimator δaMV improves

upon δMV , which agrees with the Theorem 3.1. Further the estima-

tor δMV is improved by δIMV which also agrees with the Theorem

2.1.

(vii) Similar type of observations were made for other combinations of η

and sample sizes during our simulation study.

(viii) On the basis of our simulation study and theoretical findings, we

recommend using the estimator δaMV when η < p1 and δIMV when

η ≥ p2, whereas we recommend to use δMM for η lying in the interval

[p1, p2].

6. CONCLUDING REMARKS

In this paper we have considered the estimation of the quantile vector

θ = (θ1, θ2, ..., θk) of k (≥ 2) exponential populations with respect to the sum of

the quadratic loss functions or the sum of the squared error losses. We first pro-

posed estimators for θ which are based on some baseline estimators for each com-

ponent θi, such as MLE and UMVUE. We have constructed a class containing the

estimator based on UMVUE of θi. Some techniques for improving estimators have

been used to obtain estimators which dominate the UMVUE of θ. Further an

admissible class has been obtained within the class. Next we have introduced the

concept of invariance to our model and derive sufficient conditions for improving

estimators which are equivariant under the location and affine group of transfor-

mations for the case k = 2. The inadmissibility result for the case k (≥ 3) popu-

lations is not available. Finally, we have conducted a simulation study to numeri-

cally compare the risk functions of all the proposed estimators and recommended

their use in practice. It may be noted that the simultaneous estimation of quantiles

of k (≥ 2) exponential populations has not been studied in the literature before.
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Table 1: Relative risk performances of various estimators of exponential
quantiles for (n1, n2) = (5, 5), (10, 10), (15, 15).

η → 0.05 2.5

τ ↓ RMM RMV RMV A RMM RMV RIMV

43.037 42.598 43.374 0.956 − 6.395 12.066
0.25 46.808 46.703 46.834 0.733 − 3.383 07.430

48.318 48.335 48.337 0.558 − 2.280 04.900

45.155 45.148 45.766 0.904 − 5.236 14.091
0.50 46.311 46.313 46.385 0.422 − 2.411 07.394

46.890 46.924 46.924 0.284 − 1.579 05.167

45.279 45.535 46.122 0.723 − 4.625 14.678
0.75 47.002 47.151 47.170 0.427 − 2.288 07.784

46.913 46.967 46.967 0.349 − 1.602 05.419

45.610 45.619 46.350 0.888 − 4.906 15.309
1.00 46.767 46.899 46.914 0.283 − 1.975 07.316

46.952 46.988 46.988 0.196 − 1.335 04.996

45.067 44.954 45.740 0.887 − 4.856 14.926
1.25 46.928 47.097 47.114 0.388 − 2.220 07.611

46.842 46.877 46.877 0.357 − 1.583 05.452

44.834 45.058 45.588 0.751 − 4.758 14.388
1.50 46.555 46.651 46.695 0.411 − 2.283 07.798

47.772 47.818 47.818 0.231 − 1.442 05.076

44.454 44.741 45.233 0.771 − 4.958 14.146
1.75 46.699 46.759 46.802 0.398 − 2.331 07.490

46.982 47.000 47.000 0.197 − 1.428 04.570

44.042 44.125 44.621 0.484 − 4.520 13.347
2.00 47.795 47.894 47.959 0.446 − 2.465 07.531

46.428 46.478 46.478 0.388 − 1.764 05.469

43.780 43.699 44.397 0.604 − 4.902 13.734
2.25 47.813 47.923 47.982 0.424 − 2.473 07.530

46.457 46.483 46.483 0.384 − 1.785 05.191

45.520 45.264 45.949 0.884 − 5.517 14.398
2.50 46.369 46.472 46.514 0.509 − 2.688 06.946

48.159 48.209 48.210 0.323 − 1.729 05.094

44.021 43.564 44.495 0.677 − 5.304 13.024
2.75 45.821 45.882 45.934 0.623 − 2.921 07.492

46.457 46.476 46.477 0.349 − 1.812 04.967

44.332 44.338 44.891 1.007 − 5.999 13.630
3.00 47.501 47.549 47.618 0.562 − 2.880 07.435

47.773 47.815 47.818 0.363 − 1.879 05.051

44.406 43.960 44.874 0.882 − 5.972 12.737
3.25 46.898 46.943 47.001 0.361 − 2.632 06.610

47.658 47.686 47.689 0.249 − 1.684 04.841

43.503 43.082 43.878 1.084 − 6.421 13.541
3.50 47.113 47.175 47.218 0.356 − 2.651 06.900

47.248 47.282 47.284 0.295 − 1.828 04.781

43.657 43.236 43.999 0.856 − 6.091 12.500
3.75 46.720 46.767 46.771 0.382 − 2.740 07.112

47.962 47.972 47.975 0.363 − 1.968 04.365

43.683 43.505 44.188 1.107 − 6.681 12.581
4.00 47.308 47.372 47.399 0.412 − 2.830 06.585

47.804 47.831 47.836 0.229 − 1.748 04.923

43.373 43.061 43.748 1.053 − 6.755 12.813
4.50 47.327 47.423 47.448 0.451 − 2.971 06.532

47.789 47.838 47.843 0.520 − 2.294 04.967

44.398 43.750 44.536 1.066 − 6.961 11.409
5.00 45.883 45.957 45.990 0.459 − 3.029 06.346

47.180 47.197 47.212 0.519 − 2.339 04.823
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Table 2: Relative risk performances of various estimators of exponential
quantiles for (n1, n2) = (3, 7), (5, 10), (10, 15).

η → 0.05 2.5

τ ↓ RMM RMV RMV A RMM RMV RIMV

41.906 41.323 43.081 1.669 − 9.291 16.740
0.25 45.474 45.569 45.924 1.036 − 5.772 10.976

47.309 47.391 47.405 0.272 − 2.487 05.275

42.950 43.248 44.022 1.333 − 6.102 19.997
0.50 46.733 46.888 47.201 0.709 − 3.726 12.461

47.516 47.558 47.599 0.524 − 2.323 06.857

44.397 44.332 45.282 0.821 − 4.296 20.276
0.75 46.547 46.741 46.994 0.511 − 2.926 12.607

47.023 47.052 47.062 0.308 − 1.779 06.602

45.131 45.321 46.071 0.644 − 3.677 20.487
1.00 46.561 46.768 46.934 0.571 − 2.775 13.186

47.745 47.789 47.790 0.180 − 1.442 06.457

45.226 45.386 46.131 0.721 − 3.704 20.581
1.25 46.731 46.724 46.896 0.500 − 2.604 12.887

47.602 47.710 47.710 0.357 − 1.713 07.150

44.199 44.099 44.772 0.544 − 3.329 20.346
1.50 45.620 45.780 45.906 0.459 − 2.490 12.689

47.137 47.204 47.204 0.189 − 1.450 06.663

44.278 44.194 44.857 0.453 − 3.072 20.837
1.75 44.896 44.962 45.059 0.437 − 2.428 12.735

47.072 47.097 47.097 0.192 − 1.462 06.699

43.354 43.583 44.053 0.572 − 3.335 20.450
2.00 46.011 45.911 46.086 0.374 − 2.328 12.562

47.194 47.230 47.232 0.261 − 1.589 06.637

44.806 44.845 45.397 0.522 − 3.291 19.334
2.25 46.415 46.399 46.520 0.438 − 2.407 13.214

46.523 46.534 46.535 0.248 − 1.596 06.240

44.570 44.353 44.797 0.440 − 3.195 19.147
2.50 45.588 45.585 45.687 0.433 − 2.389 13.896

46.890 46.951 46.953 0.278 − 1.630 06.169

45.507 45.258 45.759 0.529 − 3.319 20.592
2.75 45.795 45.688 45.817 0.459 − 2.505 12.584

46.556 46.616 46.618 0.293 − 1.688 06.672

43.824 43.592 44.095 0.466 − 3.226 19.385
3.00 45.929 45.869 45.975 0.367 − 2.334 12.770

46.921 46.927 46.936 0.293 − 1.705 06.848

44.325 44.097 44.547 0.399 − 3.162 19.697
3.25 46.165 46.129 46.258 0.318 − 2.313 11.657

47.061 47.054 47.064 0.289 − 1.752 06.671

44.469 44.156 44.536 0.503 − 3.380 19.444
3.50 47.253 47.241 47.366 0.242 − 2.167 12.236

46.078 46.081 46.095 0.236 − 1.670 06.318

45.216 44.809 45.341 0.401 − 3.146 19.755
3.75 45.286 45.188 45.343 0.340 − 2.374 11.737

46.998 47.056 47.069 0.358 − 1.832 06.970

44.480 43.966 44.530 0.443 − 3.305 19.008
4.00 46.173 46.131 46.227 0.401 − 2.472 12.908

46.851 46.880 46.895 0.344 − 1.844 07.032

45.394 44.937 45.334 0.217 − 2.858 18.840
4.50 45.033 44.991 45.061 0.352 − 2.414 12.076

46.975 46.970 46.978 0.284 − 1.774 06.626

43.720 43.404 43.822 0.507 − 3.385 19.881
5.00 45.965 45.931 46.002 0.404 − 2.543 12.480

46.456 46.492 46.496 0.314 − 1.870 06.477
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Table 3: Relative risk performances of various estimators of exponential
quantiles for (n1, n2) = (7, 3), (10, 5), (15, 10).

η → 0.05 2.5

τ ↓ RMM RMV RMV A RMM RMV RIMV

45.446 44.948 45.439 0.435 − 3.278 19.087
0.25 45.940 45.996 46.036 0.494 − 2.602 13.201

47.235 47.222 47.237 0.266 − 1.737 06.439

43.214 43.298 43.805 0.455 − 3.153 19.717
0.50 46.619 46.648 46.770 0.378 − 2.303 12.980

47.152 47.149 47.151 0.469 − 1.929 07.236

44.330 44.142 44.969 0.594 − 3.472 19.887
0.75 45.780 45.801 45.959 0.427 − 2.390 13.113

47.580 47.639 47.639 0.319 − 1.657 06.724

44.521 44.644 45.443 0.629 − 3.662 20.348
1.00 46.106 46.110 46.330 0.347 − 2.378 12.591

46.928 46.982 46.984 0.265 − 1.605 06.852

45.323 45.618 46.424 0.850 − 4.282 20.591
1.25 46.781 47.000 47.221 0.578 − 2.945 12.776

47.166 47.143 47.149 0.292 − 1.690 06.746

43.385 43.322 44.350 1.014 − 4.806 21.011
1.50 46.763 46.766 47.085 0.772 − 3.466 13.435

47.490 47.5304 47.538 0.456 − 2.055 07.111

44.075 44.128 45.052 1.306 − 5.750 20.317
1.75 47.294 47.384 47.732 0.515 − 3.208 12.078

47.159 47.170 47.196 0.443 − 2.137 06.862

42.991 43.446 44.243 0.968 − 5.305 19.192
2.00 46.865 47.210 47.448 0.730 − 3.761 12.445

47.128 47.208 47.224 0.409 − 2.164 06.537

43.771 44.121 44.938 1.630 − 7.037 20.335
2.25 46.120 46.198 46.525 0.912 − 4.282 12.849

46.895 46.937 46.979 0.417 − 2.228 06.382

43.007 42.970 44.183 1.373 − 6.872 19.011
2.50 46.586 46.613 47.026 0.698 − 4.150 11.695

47.448 47.503 47.556 0.358 − 2.244 06.047

43.741 43.624 44.675 1.554 − 7.584 18.337
2.75 46.123 46.068 46.504 0.913 − 4.627 12.069

48.110 48.221 48.257 0.480 − 2.523 06.138

43.166 42.889 44.267 1.744 − 8.175 18.991
3.00 45.193 45.383 45.637 0.918 − 4.830 11.355

47.727 47.848 47.875 0.511 − 2.656 06.237

42.960 43.097 44.335 1.845 − 8.768 18.520
3.25 45.672 45.976 46.113 0.888 − 5.019 11.025

47.430 47.459 47.546 0.527 − 2.755 06.115

41.211 40.899 42.355 1.603 − 8.551 17.837
3.50 45.775 45.681 46.111 1.078 − 5.463 11.228

46.820 46.848 46.931 0.591 − 2.955 05.738

42.765 42.426 44.002 1.943 − 9.507 18.044
3.75 45.668 45.778 46.103 1.048 − 5.678 10.862

48.711 48.813 48.853 0.475 − 2.794 05.613

41.437 40.853 42.613 2.086 − 10.158 17.591
4.00 45.805 45.877 46.266 1.226 − 6.067 10.923

47.696 47.710 47.768 0.578 − 3.029 05.695

42.217 41.511 43.183 2.007 − 10.418 17.181
4.50 45.568 45.667 46.074 1.177 − 6.297 10.417

48.148 48.199 48.243 0.640 − 3.251 05.778

40.642 39.702 41.661 2.120 − 11.496 16.171
5.00 45.277 45.013 45.486 1.145 − 6.369 10.399

47.350 47.432 47.445 0.665 − 3.375 05.678
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APPENDIX

Proof of Theorem 2.1: In order to prove the theorem we use the orbit-

by-orbit improvement technique of Brewster and Zidek [2].

Consider the risk function of δ
c

with respect to the loss function (1.1),

R(α, δ
c
) = E

[

Z + ηc1T1 + (η−1)T ∗ − µ− ησ1

]2

+ E
[

Z + ηc2T2 + (η−1)T ∗ − µ− ησ2

]2
.(A.1)

It can be easily seen that the above risk (A.1) is a convex function in both

c1 and c2. After some calculations, the minimizing choices for c1 and c2 are

obtained as

ĉj(α) =
(µ+ ησj)ETj − E(ZTj) − (η−1)E(Tj T

∗)

ηET 2
j

; j = 1, 2 .(A.2)

Let λj = (σj a)
−1, and using this we obtain the minimizing choice of each cj as

ĉj(λj) =
nj

(

η − 2ηλj + λ2
j

)

η
(

1 + nj − 2nj λj
) ; j = 1, 2 .(A.3)

To apply the orbit-by-orbit improvement technique of Brewster and Zidek

[2], we need to get the supremum and infimum values of ĉ1 and ĉ2 with respect to

λj and for fixed η. It is easy to see that 0 < λj <
1
nj

. We consider the following

three separate cases.

Case-(I): Let η ≥ max
(

(n1+1)2/4n1, (n2+1)2/4n2

)

. Differentiating ĉj(λj)

with respect to λj we have
dĉj
dλj

=
−2nj(njλ

2
j−λj(nj+1)+η)

η(nj+1−2njλj)2
; j = 1, 2. It is easy to

observe that the derivative is g(λj) = −njλ2
j + λj(nj + 1) − η multiplied by a

positive factor. Now g(λj) is a concave function of λj ; j = 1, 2. The maxi-

mum value is attained at λj = (nj + 1)/2nj < 1/nj . The maximum value is

(nj + 1)2/4nj − η < 0. This implies g(λj) < 0 for 0 < λj <
1
nj

; j = 1, 2. Hence

the function ĉj(λj) is decreasing with respect to λj . Hence we have

inf
0<λj≤

1

nj

ĉj(λj) = ĉj(1/nj) =
nj η (nj − 2) + 1

nj η (nj − 1)
= aj (say)

and

sup
0<λj≤

1

nj

ĉj(λj) = ĉj(0) =
nj

nj + 1
= bj ; j = 1, 2 , (say) .
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Case-(II): Let 1 ≤ η < min
{

(n1+1)2/4n1, (n2+1)2/4n2

}

. It is easy to see

that the maximum value of g(λj) is positive. The equation g(λj) = 0, has two real

roots say λ−j =
(nj+1)+

√
(nj+1)2−4ηnj

2nj
and λ+

j =
(nj+1)−

√
(nj+1)2−4ηnj

2nj
; j=1, 2.

It is also noticed that, these two roots are outside the interval
(

0, 1
nj

]

. Hence

for 0 < λj ≤ 1
nj

the function g(λj) < 0. This implies that the function ĉj(λj) is

decreasing in the concerned interval. Hence we have

inf
0<λj≤

1

nj

ĉj(λj) = ĉj(1/nj) =
nj η (nj − 2) + 1

nj η (nj − 1)
= aj

and

sup
0<λj≤

1

nj

ĉj(λj) = ĉj(0) =
nj

nj + 1
= bj ; j = 1, 2 ,

Case-(III): Let 0 ≤ η < 1. For this case it can be observed that the root

λ−j is outside the concerned interval, but λ+
j is inside the interval

(

0, 1
nj

]

. Also

ĉj
′′(λ+

j ) > 0 and ĉj
′′(λ−j ) < 0, hence λ−j is a point of local maxima and λ+

j is a

point of local minima. Hence the function g(λj) < 0 in the interval (0, λ+
j ] and

g(λj) ≥ 0 in the interval (λ+
j , 1/nj ]. Thus the function ĉj(λj) is decreasing in the

interval (0, λ+
j ] and increasing in the interval (λ+

j , 1/nj ]. We have

inf
0<λj<

1

nj

ĉj(λj) = ĉj(λ
+
j ) = cj

+ ,

and

sup
0<λj<

1

nj

ĉj(λj) = max
{

ĉj(0), ĉj(1/nj)
}

= max

{

nj
nj+1

,
1 + ηnj (nj −2)

ηnj (nj −1)

}

= dj ,

where

λ+
j =

{

(nj + 1) −
√

(nj + 1)2 − 4ηnj

}

/

2nj ; j = 1, 2 .

Now combining Cases I–III, it is easy to define the functions c∗ and c∗ as

in (2.1) and (2.2) respectively. The loss function is (1.1), which is the sum of

the squared errors, and it is convex with respect to both c1 and c1. Then by

applying the orbit-by-orbit improvement technique of Brewster and Zidek [2] we

get the improved estimators for δ
c

in the class D, if either c1 lies outside the

interval [a1, b1] (when η ≥ 1) and [c1
+, d1] (when 0 ≤ η < 1) or c2 lies outside the

interval [a2, b2] (when η ≥ 1) and [c2
+, d2] (when 0 ≤ η < 1) with probability 1.

Applying the Brewster and Zidek [2] technique we have R(δ
c
∗ , α) ≤ R(δ

c
, α) when

η ≥ 1, and R(δ
c∗
, α) ≤ R(δ

c
, α) when 0 ≤ η < 1. This completes the proof of the

theorem.
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Proof of Theorem 3.1: The proof of the theorem can be done by using

the orbit-by-orbit improvement technique for improving equivariant estimators

proposed by Brewster and Zidek [2]. Consider the conditional risk function of δΨ
given W = T2/T1 :

R
(

δΨ |W=w
)

=
2

∑

i=1

1

σ2
i

E
(

Z + T1Ψi(W ) − θi
)2
.(A.4)

It is easy to observe that the above risk (A.4) is a convex function of both Ψ1

and Ψ2. Hence, the minimizing choice of Ψi(w) is obtained as

Ψ̂i(w) = −E(Z − θi) E(T1 |W=w)

E(T 2
1 |W=w)

, i = 1, 2 .

Using the joint probability density function of (T1, T2), we can easily derive the

joint probability density function of (T1,W ). The conditional probability density

function of T1 given W is a gamma distribution with shape parameter n1 +

n2 − 1 and scale parameter 1/M where M = n1

σ1
+ n2

σ2
w. Hence the conditional

expectations are calculated as

E(T1 |W ) =
n1 + n2 − 1

M
, E(T 2

1 |W ) =
(n1 + n2 − 1) (n1 + n2)

M2
.

Substituting all these values and simplifying we obtain the minimizing choice of

Ψ̂1 and Ψ̂2 as

Ψ̂1(w, τ) =

[

η − (n2 τ + n1)
−1

] [

n1 + wn2 τ
]

(n1 + n2)

and

Ψ̂2(w, τ) =

[

η
τ
− (n2 τ + n1)

−1
] [

n1 + wn2 τ
]

(n1 + n2)

respectively, where we denote τ = σ1/σ2 > 0.

In order to apply the orbit-by-orbit improvement technique of Brewster

and Zidek [2] for improving equivariant estimator, we need the supremum and

infimum of both Ψ̂1 and Ψ̂2 with respect to τ > 0 for fixed values of n1, n2, η

and for given w. We consider the following three separate cases for calculating

the supremum and infimum.

Case I: Let 0 < η < min
{

1
n1
, 1
n2

}

. Consider the first component Ψ̂1(w, τ).

Differentiating with respect to τ we have dΨ̂1

dτ
=

ηn3
2
wτ2+2ηn1n

2
2
wτ+n1n2(ηn1w−w+1)

(n1+n2)(n1+n2τ)2
.

Let h(τ) = ηn3
2wτ

2 + 2 ηn1n
2
2wτ + n1n2(ηn1w − w + 1). Now h(τ) is a convex

function of τ ∈ (0,∞). Its minimum is attained at τ = −n1

n2
< 0. Hence in the

region (0,∞) the minimum will be attained at τ = 0 and the minimum value of

h(τ) is n1n2(1 − w + ηn1w). Assume that the minimum value is positive that
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is 0 < w ≤ 1
1−ηn1

. For this case h(τ) ≥ 0 for τ ∈ (0,∞). Hence the function

Ψ̂1(w, τ) is an increasing function of τ > o. Hence we have

inf
τ>0

Ψ̂1(w, τ) =
ηn1−1

n1+n2
and sup

τ>0
Ψ̂1(w, τ) = ∞ , when 0 < w ≤ 1

(1− ηn1)
.

If w > 1
1−ηn1

, then the minimum value of h(τ) is negative and it will cross the

τ axis. The function h(τ) has two real roots say τ− = −n1

n2
− 1

n2

√

n1(w−1)
ηw

and

τ+ = −n1

n2
+ 1

n2

√

n1(w−1)
ηw

. It is easy to observe that τ− < 0 and τ+ > 0. Hence

h(τ) < 0 in the region 0 < τ < τ+ and h(τ) ≥ 0 in the region τ+ < τ <∞. Hence

the function Ψ̂1(w, τ) is decreasing in the region 0 < τ < τ+ and increasing in the

region τ+ < τ <∞. Hence we have

inf
τ>0

Ψ̂1(w, τ) = Ψ̂1(w, τ
+) and sup

τ>0
Ψ̂1(w, τ) = ∞ , when w >

1

(1− ηn1)
,

where

Ψ̂1(w, τ
+) =

[

η − (n2 τ
+ + n1)

−1
] [

n1 + wn2 τ
+
]

(n1 + n2)
.

Next consider the second component Ψ̂2. The derivative of Ψ̂2 with re-

spect to τ is g(τ) = τ2(n1n2 − ηn1n
2
2 − n1n2w) − 2 ηn2

1n2 τ − ηn3
1 multiplied by

a positive factor. For this case g(τ) is a convex function of τ > 0. The mini-

mum attained at τ = ηn1

1−ηn2−w
> 0. Its minimum value is

ηn3
1
(w−1)

1−ηn2−w
< 0 as w < 1.

Since the minimum value of g(τ) is negative, it will cross the τ axis. The equa-

tion g(τ) = 0 has two real roots say α− = ηn1

1−ηn2−w
− n1

n2

√
ηn2(1−w)

1−ηn2−w
and α+ =

ηn1

1−ηn2−w
+ n1

n2

√
ηn2(1−w)

1−ηn2−w
. It is noticed that α− < 0 and 0 < ηn1

1−ηn2−w
< α+.

Hence the function g(τ) < 0 in the region (0, α+) and g(τ) ≥ 0 in the region

[α+,∞). This implies that Ψ̂2(w, τ) is decreasing in the region (0, α+) and in-

creasing in the region [α+,∞). Hence we have

inf
τ>0

Ψ̂2(w,τ) = Ψ̂2(w,α
+) and sup

τ>0
Ψ̂2(w,τ) = max

{

Ψ̂2(w,0), Ψ̂2(w,∞)
}

= ∞ ,

where

Ψ̂2(w,α
+) =

1

n1 + n2

[

η

α+
− 1

n1 + n2α+

]

[

n1 + n2wα
+
]

,

when 1 − ηn2 ≥ w.

Now assume that 1 − ηn2 < w. Then the function g(τ) is a concave func-

tion of τ . Its maximum value is attained at τ = ηn1

1−ηn2−w
< 0. Hence within

the concerned region the maximum is attained at τ = 0. Its maximum value is

−ηn3
1 < 0. This implies that the function g(τ) < 0 in the region (0,∞). Thus

the function Ψ̂2(w, τ) is decreasing in τ ∈ (0,∞). Hence we have

inf
τ>0

Ψ̂2(w, τ) =
n2w

n1 + n2

(

η − 1

n2

)

and sup
τ>0

Ψ̂2(w, τ) = ∞ ,

when 1 − ηn2 < w.
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Case II: Let η ≥ max
{

1
n1
, 1
n2

}

. Consider the first component Ψ1(w, τ).

Now the derivative of Ψ̂1(w, τ) with respect to τ is h(τ) multiplied by a pos-

itive factor. As in Case I, the function h(τ) is a convex function of τ . The

minimum is attained at τ = −n1

n2
< 0. Hence within the interval (0,∞) the min-

imum is attained at τ = 0. Its minimum value is n1n2(1 − w + ηn1w) ≥ 0 as

η ≥ max
{

1
n1
, 1
n2

}

. Hence h(τ) ≥ 0, ∀ τ > 0. Thus the function Ψ̂1(w, τ) is in-

creasing in the region (0,∞). Thus we have

inf
τ>0

Ψ̂1(w, τ) = Ψ̂1(w, 0) =
ηn1 − 1

n1 + n2
and sup

τ>0
Ψ̂1(w, τ) = Ψ̂1(w,∞) = ∞ .

Consider the second component Ψ̂2(w, τ). As in Case I, the derivative of

Ψ̂2(w, τ) is simply g(τ) multiplied by a positive factor. Also under the condition

η ≥ max
{

1
n1
, 1
n2

}

, the only possibility is 1 − ηn2 < w. The function g(τ) is a

concave function and the maximum is attained at τ = ηn1

1−ηn2−w
< 0. Hence the

maximum will be attained at τ = 0 in the concerned region (0,∞). The maxi-

mum value is −ηn3
1 < 0. Hence g(τ) < 0, ∀ τ > 0. Thus the function Ψ̂2(w, τ) is

decreasing in the region (0,∞). Thus we have

inf
τ>0

Ψ̂2(w, τ) =
n2w

n1 + n2

(

η − 1

n2

)

and sup
τ>0

Ψ̂2(w, τ) = ∞ .

Case III: Let min
{

1
n1
, 1
n2

}

≤ η < max
{

1
n1
, 1
n2

}

. For this case we have two

possibilities either 1
n1

≤ η < 1
n2

or 1
n2

≤ η < 1
n1

. Analyzing as in the above cases

we have for 1
n1

≤ η < 1
n2

,

inf
τ>0

Ψ̂1(w, τ) = Ψ̂1(w, 0) =
ηn1 − 1

n1 + n2
and sup

τ>0
Ψ̂1(w, τ) = Ψ̂1(w,∞) = ∞ ,

and

inf
τ>0

Ψ̂2(w, τ) =

{

Ψ̂2(w,α
+) , if w≤ 1− ηn2 ,

n2w
n1+n2

(

η − 1
n2

)

, if w> 1− ηn2 ,
and sup

τ>0
Ψ̂2(w, τ) = +∞ .

Likewise when 1
n2

≤ η < 1
n1

, we have

inf
τ>0

Ψ̂1(w, τ) =

{ ηn1−1
n1+n2

, if w≤ 1
1−ηn1

,

Ψ̂1(w, τ
+) , if w> 1

1−ηn1
,

and sup
τ>0

Ψ̂1(w, τ) = +∞ ,

and

inf
τ>0

Ψ̂2(w, τ) =
n2w

n1 + n2

(

η− 1

n2

)

and sup
τ>0

Ψ̂2(w, τ) = ∞ .
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Now it is easy to define the functions Ψ0

(

when 0 < η ≤ min
{

1
n1
, 1
n2

})

, Ψ0
(

when η ≥ max
{

1
n1
, 1
n2

})

, Ψ11

(

when 1
n1

≤ η < 1
n2

)

and Ψ22

(

when 1
n2

≤ η < 1
n1

)

as defined in (3.4), (3.5), (3.6) and (3.7) respectively. Since the loss function

(1.2) is a sum of the convex loss functions with respect to both Ψ̂1 and Ψ̂2, an

application of the Theorem 3.3.1 of Brewster and Zidek [2], gives R(δΨ0
, α) ≤

R(δΨ, α) if there exist some values of parameters α such that Pα(Ψ0 6= Ψ) > 0 for

the case 0 < η ≤ min
{

1
n1
, 1
n2

}

. Similarly by applying the Brewster and Zidek [2]

technique for the case η ≥ max
{

1
n1
, 1
n2

}

, we have R(δΨ0 , α) ≤ R(δΨ, α) if there

exist some values of parameters α such that Pα(Ψ0 6= Ψ) > 0. When 1
n1

≤ η < 1
n2

the estimator δΨ11
improves upon δΨ if Pα(Ψ11 6= Ψ) > 0 for some choices of α.

When 1
n2

≤ η < 1
n1

the estimator δΨ22
improves upon δΨ if Pα(Ψ22 6= Ψ) > 0 for

some choices of α. This completes the proof of the theorem.
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