SOME INADMISSIBILITY RESULTS FOR ESTIMATING QUANTILE VECTOR OF SEVERAL EXPONENTIAL POPULATIONS WITH A COMMON LOCATION PARAMETER

Authors: Manas Ranjan Tripathy
- Department of Mathematics, National Institute of Technology Rourkela, Rourkela-769008, India manas@nitrkl.ac.in
\section*{Somesh Kumar}
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India smsh@maths.iitkgp.ernet.in

Received: July 2014
Revised: February 2015
Accepted: September 2015

Abstract

: - Suppose independent random samples are taken from $k(\geq 2)$ exponential populations with a common and unknown location parameter " μ " and possibly different unknown scale parameters $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ respectively. The estimation of $\underline{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$; where θ_{i} is the quantile of the $i^{\text {th }}$ population, has been considered with respect to either a sum of squared error loss functions or sum of quadratic losses. Estimators based on maximum likelihood estimators (MLEs) and uniformly minimum variance unbiased estimators (UMVUEs) for each component θ_{i} have been obtained. An admissible class of estimators has been obtained. Improvement over an estimator based on UMVUEs is obtained by an application of the Brewster-Zidek technique. Further, classes of equivariant estimators are derived under affine and location groups of transformations and some inadmissibility results are proved. Finally, a numerical comparison of risk performance of all proposed estimators has been done and the recommendations are made for the use of these estimators.

Key-Words:

- common location; complete class; equivariant estimators; inadmissibility; MLE; quantile estimation; risk comparison; simultaneous estimation; UMVUE.

1. INTRODUCTION

Let $\left(X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}\right) ; i=1,2$ be independent random samples taken from two exponential populations with a common unknown location parameter μ and possibly different scale parameters σ_{1}, σ_{2} respectively. The probability density function of the random variable $X_{i j}$ is given by

$$
\begin{array}{r}
f\left(x_{i j} \mid \mu, \sigma_{i}\right)=\frac{1}{\sigma_{i}} \exp \left\{-\left(\frac{x_{i j}-\mu}{\sigma_{i}}\right)\right\}, \quad x_{i j}>\mu, \quad-\infty<\mu<\infty, \quad \sigma_{i}>0 \\
j=1,2, \ldots, n_{i} ; i=1,2
\end{array}
$$

The $p^{\text {th }}$ quantile of the $i^{\text {th }}$ population is denoted by $\theta_{i}=\mu+\eta \sigma_{i}$, where $\eta=$ $-\log (1-p)>0 ; 0<p<1$. We are interested in estimating the quantile vector $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right)$. The loss function is taken to be either the sum of the squared errors

$$
\begin{equation*}
L_{1}(\underline{\alpha}, \underline{d})=\sum_{i=1}^{2}\left(d_{i}-\theta_{i}\right)^{2} \tag{1.1}
\end{equation*}
$$

or, the sum of the quadratic losses

$$
\begin{equation*}
L_{2}(\underline{\alpha}, \underline{d})=\sum_{i=1}^{2}\left(\frac{d_{i}-\theta_{i}}{\sigma_{i}}\right)^{2} \tag{1.2}
\end{equation*}
$$

where $\underline{\alpha}=\left(\mu, \sigma_{1}, \sigma_{2}\right)$ and $\underline{d}=\left(d_{1}, d_{2}\right)$ be an estimate of $\underline{\theta}$.
When parameters of same nature are thought to be equal, it is then customary to pool samples for inference purposes on that common parameter. This is also known as meta-analysis, and has received considerable attention from the researchers lately. For example, the problem of estimation of a common mean of two or more normal populations has been extensively studied by several authors in the recent past. The problem is popularly known as common mean problem and arises in the study of recovery of inter-block information in balanced incomplete block designs (BIBDs). For a complete bibliography and some recent results on estimation of a common mean of several normal populations one may refer to Pal and Sinha [15], Kumar [10], Mitra and Sinha [12], Pal et al. [13] and Tripathy and Kumar [20] and the references cited therein.

The problem of estimating a common location parameter μ of several exponential populations when the scale parameters are unknown has been studied by several authors in the recent past. The parameter μ is also referred to as the "minimum guarantee time" in the study of reliability. This problem was probably first considered by Ghosh and Razmpour [5]. They have obtained the maximum likelihood estimator (MLE), a modified maximum likelihood estimator (MMLE) and the uniformly minimum variance unbiased estimator (UMVUE). They have also compared numerically the risk values of all these estimators with respect
to the squared error loss function whereas the MLE and the MMLE have been compared asymptotically in terms of their bias and mean squared errors (MSEs). Pal and Sinha [14] considered this problem from a decision theoretic point of view. They proposed a class of improved estimators which are better than the MLE in terms of MSE as well as Pitman measure of closeness (PMC). However, these improved estimators are different from the MMLE and the UMVUE. Jin and Pal [9] obtained a wide class of estimators which dominate the MLE under a class of convex loss functions. Jin and Crouse [7] proposed a larger class of estimators for μ which includes the MMLE and the UMVUE for special choices of their constants (see Equation (3.1) in [7]). They obtained estimators which dominate the MLE using a class of convex loss functions.

For this particular model, the problem of estimation of quantiles is important and also interesting for its practical applications. Quantiles of exponential populations are very much useful in the study of reliability, life testing, and survival analysis. For some applications of quantiles of exponential populations we refer to Epstein and Sobel [3] and Saleh [18]. Estimation of quantiles $\theta_{1}=\mu+\eta \sigma_{1}$, of an exponential population was probably first considered by Rukhin and Strawderman [17] using a decision theoretic approach. They proved that the best affine equivariant estimator (BAEE) for the quantile θ_{1} is inadmissible when either $0 \leq \eta<\frac{1}{n}$ or $\eta>1+\frac{1}{n}$ where $n \geq 2$ is the sample size. Rukhin [16] proved its admissibility when $\frac{1}{n} \leq \eta \leq 1+\frac{1}{n}$. He also obtained a class of minimax estimators for $\eta>1+\frac{1}{n}$. This class contains some generalized Bayes estimators. One of these generalized Bayes estimators is shown to be admissible within a class of scale equivariant estimators.

For the model studied in this paper, Sharma and Kumar [19] and Kumar and Sharma [11] considered estimation of the quantiles $\theta_{1}=\mu+\eta \sigma_{1}$ of the first population when the other $k-1(k \geq 2)$ populations are available. They show that the MLE, the UMVUE and the BAEE based on the first sample alone can be improved by using other $k-1$ samples. They have also obtained a general inadmissibility result for the class of affine equivariant estimators for $0 \leq \eta<\frac{1}{n}$. Jin and Crouse [8] considered the problem of estimating the quantile $\theta_{i}=\mu+\eta \sigma_{i}$ of the $i^{\text {th }}$ population. They established an identity for the exponential distributions, and using it, compared the risk functions of the UMVUE and the MLE. They also proposed a class of estimators which dominate the MLE and the UMVUE.

It is interesting to note that all the above work relates to estimating either the common location parameter μ or a component θ_{i} of the vector $\underline{\theta}$ of quantiles. From a theoretical as well as a practical viewpoint, it is important to consider the problem of simultaneous estimation of $\underline{\theta}$. For example, suppose an electronic item is produced by several manufacturers and lifetimes of these follow exponential distributions. It is very likely that the average lives of items from different manufacturers will be different due to quality specifications used by them.

However, due to competition in the market, they will maintain a common minimum guarantee time. Then the problem of simultaneous estimation of average lives is a special case of the problem of simultaneous estimation of the vector of quantiles. One may refer to Ghosh and Auer [4], Berger [1] and Gupta [6] for some results on the simultaneous estimation of parameters.

In this paper, we consider the general problem of estimating the vector of quantiles of several exponential populations with a common location but different scale parameters. In Section 2, some basic estimators of the quantile vector are proposed based on the MLE, the MMLE and the UMVUE of each component. In Section 3, we consider classes of affine and location equivariant estimators and prove some inadmissibility results. In Section 4, we extend some of these results to $k(\geq 2)$ exponential populations. A detailed numerical comparison of risk values for several proposed estimators has been done by using Monte-Carlo simulations in Section 5. Also recommendations are made for using these estimators. Certain proofs have been given in the Appendix.

2. SOME BASIC RESULTS \& IMPROVEMENT OVER UMVUE

In this section we derive some baseline estimators for the quantile vector $\underline{\theta}$ and obtain an estimator which dominates the UMVUE using a result of Brewster and Zidek (Brewster and Zidek [2]).

2.1. Some Basic Estimators

Suppose $\left(X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}\right) ; i=1,2$ are independent random samples taken from two exponential populations $E x\left(\mu, \sigma_{1}\right)$ and $E x\left(\mu, \sigma_{2}\right)$ having the probability density functions,

$$
\begin{array}{r}
f\left(x_{i j}\right)=\frac{1}{\sigma_{i}} \exp \left\{-\left(\frac{x_{i j}-\mu}{\sigma_{i}}\right)\right\}, \quad x_{i j}>\mu, \quad-\infty<\mu<\infty, \quad \sigma_{i}>0, \\
j=1,2, \ldots, n_{i} ; i=1,2
\end{array}
$$

respectively. We are interested in estimating the quantile vector $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right)$, where $\theta_{i}=\mu+\eta \sigma_{i}$ denotes the quantile of the $i^{\text {th }}$ population, $i=1,2$. The loss function is taken to be either the sum of the squared errors (1.1) or the sum of the quadratic losses (1.2).

Let us denote $X_{i}=\min \left(X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}\right)$ and $Y_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j} ; i=1,2$. Further define $Z=\min \left(X_{1}, X_{2}\right), T_{1}=Y_{1}-Z$, and $T_{2}=Y_{2}-Z$. Here Y_{1} and Y_{2} are the means of the first and the second samples respectively. Then $\left(Z, T_{1}, T_{2}\right)$
is a complete sufficient statistic. The random variables Z and $\underline{T}=\left(T_{1}, T_{2}\right)$ are independently distributed. The probability density function of Z is given by

$$
f_{Z}(z)=a \exp (-a(z-\mu)), \quad z>\mu, \quad-\infty<\mu<\infty,
$$

where $a=\frac{n_{1}}{\sigma_{1}}+\frac{n_{2}}{\sigma_{2}}$. The joint probability density function of T_{1} and T_{2} can be obtained from Ghosh and Razmpour [5] by using a simple transformation, and is given by

$$
\begin{array}{r}
f_{\underline{T}}(\underline{t})=\frac{n_{1}^{n_{1}} n_{2}^{n_{2}}}{\sigma_{1}^{n_{1}} \sigma_{2}^{n_{2}} a}\left[\frac{t_{1}^{n_{1}-1} t_{2}^{n_{2}-2}}{\Gamma n_{1} \Gamma\left(n_{2}-1\right)}+\frac{t_{1}^{n_{1}-2} t_{2}^{n_{2}-1}}{\Gamma n_{2} \Gamma\left(n_{1}-1\right)}\right] \exp \left(-n_{1} t_{1} / \sigma_{1}-n_{2} t_{2} / \sigma_{2}\right), \\
t_{1}, t_{2}>0
\end{array}
$$

The MLE of μ and σ_{i} are $\hat{\mu}=Z$, and $\hat{\sigma}_{i}=T_{i}, i=1,2$ respectively. Thus collecting the MLEs for each component we obtain the estimator for quantile vector $\underline{\theta}$ as

$$
\underline{\delta}_{M L}=\left(Z+\eta T_{1}, Z+\eta T_{2}\right),
$$

and we call it the MLE of $\underline{\theta}$. Further noticing $E(Z)=\mu+a^{-1}$, the MLE $\underline{\delta}_{M L}$ of $\underline{\theta}$ can be modified and we call this a modified MLE for the vector $\underline{\theta}$ and is given by

$$
\underline{\delta}_{M M}=\left(Z-\hat{a}^{-1}+\eta T_{1}, Z-\hat{a}^{-1}+\eta T_{2}\right),
$$

where $\hat{a}=\frac{n_{1}}{T_{1}}+\frac{n_{2}}{T_{2}}$.
Next we collect the UMVUEs of θ_{i} for each component and form an estimator for the quantile vector $\underline{\theta}$. It is easy to see that $E\left(T_{j}\right)=\sigma_{j}-a^{-1} ; j=1,2$ and $E\left[\left(\sum_{i=1}^{2}\left(n_{i}-1\right) T_{i}^{-1}\right)^{-1}\right]=a^{-1}$. Using these results and the fact that (Z, \underline{T}) is a complete sufficient statistic, we get the uniformly minimum variance unbiased estimator for each component θ_{i} as $Z+(\eta-1) T^{*}+\eta T_{i}$, where we denote $T^{*}=\left(\sum_{i=1}^{2}\left(n_{i}-1\right) T_{i}^{-1}\right)^{-1}$. Now collecting the UMVUEs for each component θ_{i}, we form an estimator for the quantile vector $\underline{\theta}$, denoted as $\underline{\delta}_{M V}$ and is given by

$$
\underline{\delta}_{M V}=\left(Z+\eta T_{1}+(\eta-1) T^{*}, Z+\eta T_{2}+(\eta-1) T^{*}\right) .
$$

The expressions for the risk functions of $\underline{\delta}_{M L}, \underline{\delta}_{M M}$ and $\underline{\delta}_{M V}$ with respect to the loss (1.2) are obtained as follows:

$$
\begin{aligned}
R\left(\underline{\delta}_{M L}, \underline{\theta}\right)= & \eta^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\frac{2(1-\eta)\left(1+\tau^{2}\right)}{\left(n_{1}+n_{2} \tau\right)^{2}} \\
R\left(\underline{\delta}_{M M}, \underline{\theta}\right)= & \eta^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\frac{2(1-\eta)\left(1+\tau^{2}\right)}{\left(n_{1}+n_{2} \tau\right)^{2}} \\
& +\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)\left(\frac{2(\eta-1)}{a} E S+E S^{2}\right) \\
R\left(\underline{\delta}_{M V}, \underline{\theta}\right)= & \eta^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\frac{4(1-\eta)\left(1+\tau^{2}\right)}{\left(n_{1}+n_{2} \tau\right)^{2}}+2(\eta-1)^{2} E T^{* 2}
\end{aligned}
$$

where $S=1 / \hat{a}$ and $\tau=\sigma_{1} / \sigma_{2}>0$.
In the rest of the paper, when we say UMVUE for the quantile vector $\underline{\theta}$, we mean "the collection of the UMVUEs for each component θ_{i} and form a vector" to get the estimator for the quantile vector $\underline{\theta}$.

2.2. An Estimator Dominating the UMVUE

In this section, we propose an estimator for the quantile vector $\underline{\theta}$, which improves upon the UMVUE for the quantile vector $\underline{\theta}$, with respect to the loss function (1.1). Let us consider a class of estimators for the quantile vector $\underline{\theta}$ as

$$
D=\left\{\underline{\delta}_{\mathbf{c}}: \underline{\delta}_{\mathbf{c}}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right) ; c_{1}, c_{2} \in \mathbb{R}\right\}
$$

where we denote $\delta_{c_{j}}=Z+\eta c_{j} T_{j}+(\eta-1) T^{*} ; j=1,2$.
Now for the class of estimators $D=\left\{\underline{\delta}_{\mathbf{c}}: \underline{\delta}_{\mathbf{c}}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right) ; c_{1}, c_{2} \in \mathbb{R}\right\}$, let us define

$$
\begin{equation*}
\mathbf{c}^{*}=\left(\min \left\{\max \left(c_{1}, a_{1}\right), b_{1}\right\}, \min \left\{\max \left(c_{2}, a_{2}\right), b_{2}\right\}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{c}_{*}=\left(\min \left\{\max \left(c_{1}, c_{1}^{+}\right), d_{1}\right\}, \min \left\{\max \left(c_{2}, c_{2}^{+}\right), d_{2}\right\}\right) \tag{2.2}
\end{equation*}
$$

where $a_{j}=\frac{\eta n_{j}\left(n_{j}-2\right)+1}{\eta n_{j}\left(n_{j}-1\right)}, \quad b_{j}=\frac{n_{j}}{n_{j}+1}, d_{j}=\max \left\{a_{j}, b_{j}\right\}, c_{j}^{+}=\hat{c}_{j}\left(\lambda_{j}^{+}\right)$, and $\lambda_{j}^{+}=$ $\left\{\left(n_{j}+1\right)-\sqrt{\left(n_{j}+1\right)^{2}-4 \eta n_{j}}\right\} / 2 n_{j} ; j=1,2$. Next we have the following inadmissibility result for estimators in the class D.

Theorem 2.1. Let D be the class of estimators for the quantile vector $\underline{\theta}$, and define the functions \boldsymbol{c}^{*} and \boldsymbol{c}_{*} as in (2.1) and (2.2) respectively. Let the loss function be (1.1).
(i) The estimator $\underline{\delta}_{\boldsymbol{c}}$ is inadmissible and is improved by $\underline{\delta}_{c^{*}}$ if $\boldsymbol{c} \neq \boldsymbol{c}^{*}$, when $\eta \geq 1$.
(ii) The estimator $\underline{\delta}_{\boldsymbol{c}}$ is inadmissible and is improved by $\underline{\delta}_{\boldsymbol{c}_{*}}$ if $\boldsymbol{c} \neq \boldsymbol{c}_{*}$ when $0<\eta<1$.

Proof: See Appendix.

Corollary 2.1.

(i) Let $\eta \geq 1$. The class of estimators $\left\{\underline{\delta}_{\boldsymbol{c}}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right): a_{j} \leq c_{j} \leq b_{j} ; j=1,2\right\}$ is essentially complete in D.
(ii) Let $0<\eta<1$. The class of estimators $\left\{\underline{\delta}_{\boldsymbol{c}}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right): c_{j}^{+} \leq c_{j} \leq d_{j}\right.$; $j=1,2\}$ is essentially complete in D.

The class of estimators D also contains the UMVUE for the quantile vector $\underline{\theta}$ when $c_{1}=c_{2}=1$. Consequently, the UMVUE $\underline{\delta}_{M V}$ is inadmissible. The result we write as a theorem which is immediate. Let $p_{1}=\min \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}, p_{2}=$ $\max \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}, q_{1}=\min \left\{\frac{n_{1}+1}{2 n_{1}}, \frac{n_{2}+1}{2 n_{2}}\right\}$ and $q_{2}=\max \left\{\frac{n_{1}+1}{2 n_{1}}, \frac{n_{2}+1}{2 n_{2}}\right\}$.

Theorem 2.2. Let the loss function be (1.1).
(i) If $\eta \geq 1$, then the uniformly minimum variance unbiased estimator $\underline{\delta}_{M V}$ for the quantile vector $\underline{\theta}$ is inadmissible and is improved by the estimator $\underline{\delta}_{I M V}=\left(\delta_{b_{1}}, \delta_{b_{2}}\right)$. Further the class $\left\{\underline{\delta}_{c}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right): a_{j} \leq\right.$ $\left.c_{j} \leq b_{j} ; j=1,2\right\}$ is essentially complete in D.
(ii) If $q_{2} \leq \eta<1$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=\left(\delta_{b_{1}}, \delta_{b_{2}}\right)$. The class of estimators $\left\{\underline{\delta}_{c}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right): c_{j}^{+} \leq\right.$ $\left.c_{j} \leq b_{j} ; j=1,2\right\}$ is essentially complete in D.
(iii) If $p_{2} \leq \eta \leq q_{1}$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=\left(\delta_{a_{1}}, \delta_{a_{2}}\right)$. The class of estimators $\left\{\underline{\delta}_{c}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right)\right.$: $\left.c_{j}^{+} \leq c_{j} \leq a_{j} ; j=1,2\right\}$ is essentially complete in D.
(iv) If $0 \leq \eta<p_{1}$, then the estimator $\underline{\delta}_{M V}$ is admissible in the class D. The class of estimators $\left\{\underline{\delta}_{c}=\left(\delta_{c_{1}}, \delta_{c_{2}}\right): c_{j}^{+} \leq c_{j} \leq a_{j} ; j=1,2\right\}$ is essentially complete in D.
(v) Let $p_{1}<\eta<p_{2}$. If $\frac{1}{n_{1}}<\eta<\frac{1}{n_{2}}$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by either ($\delta_{a_{1}}, \delta_{c_{2}}$) (when $\eta<\frac{n_{1}+1}{2 n_{1}}$) or ($\delta_{b_{1}}, \delta_{c_{2}}$) (when $\eta \geq \frac{n_{1}+1}{2 n_{1}}$) where $c_{2}=1$. If $\frac{1}{n_{2}}<\eta<\frac{1}{n_{1}}$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by either ($\delta_{c_{1}}, \delta_{a_{2}}$) (when $\eta<\frac{n_{2}+1}{2 n_{2}}$) or ($\delta_{c_{1}}, \delta_{b_{2}}$) (when $\eta \geq \frac{n_{2}+1}{2 n_{2}}$) where $c_{1}=1$.
(vi) Let $q_{1}<\eta<q_{2}$. If $\frac{n_{1}+1}{2 n_{1}}<\eta<\frac{n_{2}+1}{2 n_{2}}$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by either ($\delta_{b_{1}}, \delta_{a_{2}}$) (when $\eta>\frac{1}{n_{2}}$) or ($\delta_{b_{1}}, \delta_{c_{2}}$) (when $\eta<\frac{1}{n_{2}}$) where $c_{2}=1$. If $\frac{n_{2}+1}{2 n_{2}}<\eta<\frac{n_{1}+1}{2 n_{1}}$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by either ($\delta_{a_{1}}, \delta_{b_{2}}$) (when $\eta>\frac{1}{n_{1}}$) or ($\delta_{c_{1}}, \delta_{b_{2}}$) (when $\eta<\frac{1}{n_{1}}$) where $c_{1}=1$.

Proof: The proof is immediate as an application of Theorem 2.1.

Applying the above Theorem 2.2 it is easy to write the estimator which improves upon $\underline{\delta}_{M V}$. However, we give the expression only for the case $\eta \geq q_{2}$ and $p_{2}<\eta \leq q_{1}$ below. The expressions for other cases can be written easily:
$\underline{\delta}_{I M V}= \begin{cases}\left(Z+\eta b_{1} T_{1}+(\eta-1) T^{*}, Z+\eta b_{2} T_{2}+(\eta-1) T^{*}\right), & \text { if } \eta \geq q_{2}, \\ \left(Z+\eta a_{1} T_{1}+(\eta-1) T^{*}, Z+\eta a_{2} T_{2}+(\eta-1) T^{*}\right), & \text { if } p_{2}<\eta \leq q_{1} .\end{cases}$

3. INADMISSIBILITY OF EQUIVARIANT ESTIMATORS FOR QUANTILES

In this section, we consider affine and location class of equivariant estimators for the quantile vector $\underline{\theta}$. We derive sufficient conditions for improving estimators in these classes and as a consequence we prove some complete class results.

3.1. Affine Equivariant Estimators

Let us consider the affine group of transformations, $G_{A}=\left\{g_{a, b}: g_{a, b}(x)=\right.$ $a x+b, a>0, b \in \mathbb{R}\}$. Under the transformation $g_{a, b}$, we have $X_{i j} \rightarrow a X_{i j}+b$, $Z \rightarrow a Z+b, T_{i} \rightarrow a T_{i}, \sigma_{i} \rightarrow a \sigma_{i}, \mu \rightarrow a \mu+b$, and $\theta_{i}=\mu+\eta \sigma_{i} \rightarrow a \theta_{i}+b ; i=1,2$. So $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right) \rightarrow a \underline{\theta}+b \underline{e}$, where $\underline{e}=(1,1)$. The estimation problem is invariant if we take the loss function as the sum of the affine invariant loss functions (1.2). The invariance loss condition is

$$
\begin{aligned}
L\left(\bar{g}_{a, b}(\underline{\alpha}), \tilde{d}\right) & =\sum_{i=1}^{2}\left(\frac{a \theta_{i}+b-\tilde{d}_{i}}{a \sigma_{i}}\right)^{2} \\
& =L(\underline{\alpha}, \underline{d})
\end{aligned}
$$

which is satisfied if $\tilde{d}_{i}=a d_{i}+b=\tilde{g}_{a, b}\left(d_{i}\right), i=1,2$. Here $\underline{\alpha}=\left(\mu, \sigma_{1}, \sigma_{2}\right)$. Therefore an affine equivariant estimator satisfies

$$
\underline{\delta}\left(a Z+b, a T_{1}, a T_{2}\right)=a \underline{\delta}\left(Z, T_{1}, T_{2}\right)+b \underline{e} .
$$

Substituting $b=-a Z$ where $a=1 / T_{1}$, we get

$$
\underline{\delta}\left(0,1, \frac{T_{2}}{T_{1}}\right)=\frac{1}{T_{1}}\left[\underline{\delta}\left(Z, T_{1}, T_{2}\right)-Z \underline{e}\right]
$$

From the above relation, we get the form of an affine equivariant estimator as

$$
\begin{align*}
\underline{\delta}\left(Z, T_{1}, T_{2}\right) & =Z \underline{e}+T_{1} \underline{\Psi}(W) \\
& =\underline{\delta}_{\underline{\Psi}}, \quad \text { say } \tag{3.1}
\end{align*}
$$

where $W=\frac{T_{2}}{T_{1}}$. To proceed further we denote $\eta_{1}=\frac{\eta n_{1}-1}{n_{1}+n_{2}}$, and $\eta_{2}=\frac{n_{2} w}{n_{1}+n_{2}}\left(\eta-\frac{1}{n_{2}}\right)$.
Let us define the following functions:

$$
\Psi_{1}^{*}= \begin{cases}\eta_{1}, & \text { if } 0 \leq w \leq \frac{1}{1-\eta n_{1}} \tag{3.2}\\ \hat{\Psi}_{1}\left(\tau^{+}, w\right), & \text { if } w>\frac{1}{1-\eta n_{1}}\end{cases}
$$

where $\tau^{+}=-\frac{n_{1}}{n_{2}}+\frac{1}{n_{2}} \sqrt{\frac{n_{1}(w-1)}{\eta w}}$, and

$$
\Psi_{2}^{*}= \begin{cases}\eta_{2}, & \text { if } w \geq 1-\eta n_{2} \tag{3.3}\\ \hat{\Psi}_{2}\left(\alpha^{+}, w\right), & \text { if } w<1-\eta n_{2}\end{cases}
$$

where $\alpha^{+}=\frac{\eta n_{1}}{1-\eta n_{2}-w}+\frac{n_{1} \sqrt{\eta n_{2}(1-w)}}{n_{2}\left(1-\eta n_{2}-w\right)}$.
Next, for the affine equivariant estimator $\underline{\delta}_{\underline{\Psi}}$ define functions $\underline{\Psi}_{0}, \underline{\Psi}^{0}, \underline{\Psi}_{11}$ and $\underline{\Psi}_{22}$ as follows:

$$
\begin{align*}
& \underline{\Psi}_{0}=\left(\max \left(\Psi_{1}, \Psi_{1}^{*}\right), \max \left(\Psi_{2}, \Psi_{2}^{*}\right)\right) \tag{3.4}\\
& \underline{\Psi}^{0}=\left(\max \left(\Psi_{1}, \eta_{1}\right), \max \left(\Psi_{2}, \eta_{2}\right)\right) \tag{3.5}\\
& \underline{\Psi}_{11}=\left(\max \left(\Psi_{1}, \eta_{1}\right), \max \left(\Psi_{2}, \Psi_{2}^{*}\right)\right) \tag{3.6}\\
& \underline{\Psi}_{22}=\left(\max \left(\Psi_{1}, \Psi_{1}^{*}\right), \max \left(\Psi_{2}, \eta_{2}\right)\right) \tag{3.7}
\end{align*}
$$

Let p_{1} and p_{2} be defined as in Section 2. Next we prove an inadmissibility result for estimators which are equivariant under the affine group of transformations.

Theorem 3.1. Let the loss function be (1.2) and the functions $\underline{\Psi}_{0}, \underline{\Psi}^{0}$, $\underline{\Psi}_{11}$ and $\underline{\Psi}_{11}$ be defined as in (3.4), (3.5), (3.6) and (3.7) respectively.
(i) The estimator $\underline{\delta}_{\underline{\Psi}}$ is inadmissible and is improved by $\underline{\delta}_{\Psi_{0}}$ if there exist some values of parameters $\underline{\alpha}$ such that $P\left(\underline{\delta}_{\Psi} \neq \underline{\delta}_{\Psi_{0}}\right)>0$ when $0<\eta<p_{1}$.
(ii) The estimator $\underline{\delta}_{\underline{\Psi}}$ is inadmissible and is improved by $\underline{\delta}_{\underline{\Psi}^{0}}$ if there exist some values of parameters $\underline{\alpha}$ such that $P\left(\underline{\delta}_{\underline{\Psi}} \neq \underline{\delta}_{\underline{\Psi}^{0}}\right)>0$ when $\eta \geq p_{2}$.
(iii) Let $p_{1} \leq \eta<p_{2}$. If $\frac{1}{n_{1}} \leq \frac{1}{n_{2}}$, then the estimator $\underline{\delta}_{\underline{\Psi}}$ is inadmissible and is improved by $\underline{\delta}_{\Psi_{11}}$ if there exist some values of parameters $\underline{\alpha}$ such that, $P\left(\underline{\delta}_{\Psi} \neq \underline{\delta}_{\underline{\Psi}_{11}}\right)>0$. If $\frac{1}{n_{2}} \leq \frac{1}{n_{1}}$, then the estimator $\underline{\delta}_{\underline{\Psi}}$ is inadmissible and is improved by $\underline{\delta}_{\underline{\Psi}_{22}}$ if there exist some values of parameters $\underline{\alpha}$ such that, $P\left(\underline{\delta}_{\Psi} \neq \underline{\delta}_{\Psi_{22}}\right)>0$.

Proof: For proof see Appendix.

Remark 3.1. The Theorem 3.1 is basically a complete class theorem for affine equivariant estimators. It says that any affine equivariant estimator of the form (3.1) will be inadmissible if $P\left\{\left(\Psi_{1}<\Psi_{1}^{*}\right) \cup\left(\Psi_{2}<\Psi_{2}^{*}\right)\right\}>0$ when $\eta<p_{1}$ and $\left.P\left\{\left(\Psi_{1}<\eta_{1}\right) \cup\left(\Psi_{2}<\eta_{2}\right)\right)\right\}>0$ for $\eta \geq p_{2}$. A similar type of statement holds for
the case $p_{1} \leq \eta \leq p_{2}$. However, for small values of η and for small sample sizes the improvements over the MLE and the MMLE are very marginal and we omit the risk values in the tables. For $\eta>p_{2}$, improvement over these is not possible by using the result of Theorem 3.1. Improvement over $\underline{\delta}_{M V}$ has been shown in the Tables $1-3$ for $0<\eta<p_{1}$.

Remark 3.2. The results of the Theorem 3.1 will remain valid, if instead of the loss function (1.2), we use any sum of the weighted squared error loss functions.

3.2. Location Equivariant Estimator

Let us introduce the location group of transformations, $G_{L}=\left\{g_{a}: g_{a}(x)=\right.$ $x+a, a \in \mathbb{R}\}$ to our model. Under the transformation $g_{a}, X_{i j} \rightarrow X_{i j}+a, X_{i} \rightarrow$ $X_{i}+a, Z \rightarrow Z+a, T_{i} \rightarrow T_{i}, \sigma_{i} \rightarrow \sigma_{i}, \mu \rightarrow \mu+a$, and $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right) \rightarrow\left(\theta_{1}+a, \theta_{2}+a\right)=$ $\underline{\theta}+a \underline{e}$, where $\theta_{i}=\mu+\eta \sigma_{i} ; i=1,2$.

The estimation problem will be invariant if we choose the loss function as the sum of the squared error loss functions (1.1). The location equivariant estimator $\underline{\delta}$ must satisfy the relation

$$
\underline{\delta}\left(Z+a, T_{1}, T_{2}\right)=a \underline{e}+\underline{\delta}\left(Z, T_{1}, T_{2}\right) .
$$

Substituting $a=-Z$, we get

$$
\underline{\delta}\left(0, T_{1}, T_{2}\right)=\underline{\delta}\left(Z, T_{1}, T_{2}\right)-Z \underline{e} .
$$

From this relation we get the form of a location equivariant estimator as

$$
\begin{align*}
\underline{\delta}\left(Z, T_{1}, T_{2}\right) & =Z \underline{e}+\underline{\psi}\left(T_{1}, T_{2}\right) \\
& =\underline{\delta}_{\psi}, \quad \text { say }, \tag{3.8}
\end{align*}
$$

where $\underline{\psi}\left(T_{1}, T_{2}\right)=\left(\psi_{1}\left(T_{1}, T_{2}\right), \psi_{2}\left(T_{1}, T_{2}\right)\right)$.
For the location equivariant estimator $\underline{\delta}_{\psi}=\left(\delta_{\psi_{1}}, \delta_{\psi_{2}}\right)$ let us define functions, $\underline{\psi}^{0}, \underline{\psi}_{11}$ and $\underline{\psi}_{22}$ as

$$
\begin{align*}
\underline{\psi}^{0} & =\left(\max \left(0, \psi_{1}\right), \max \left(0, \psi_{2}\right)\right), \tag{3.9}\\
\underline{\psi}_{11} & =\left(\max \left(0, \psi_{1}\right), \psi_{2}\right), \tag{3.10}
\end{align*}
$$

and

$$
\begin{equation*}
\underline{\psi}_{22}=\left(\psi_{1}, \max \left(0, \psi_{2}\right)\right) \tag{3.11}
\end{equation*}
$$

Next we prove an inadmissibility result for estimators which are invariant under the location group of transformations.

Theorem 3.2. Let the loss function be (1.1) and the functions $\underline{\psi}^{0}, \underline{\psi}_{11}$ and $\underline{\psi}_{22}$ be defined as in (3.9), (3.10) and (3.11) respectively.
(i) When $\eta \geq p_{2}$ the estimator $\underline{\delta}_{\psi}$ is inadmissible and is improved by $\underline{\delta}_{\psi^{0}}$ if there exist some values of the parameters $\underline{\alpha}$ such that $P_{\underline{\alpha}}\left(\underline{\delta}_{\underline{\psi}} \neq \underline{\delta}_{\psi^{0}}\right)>0$.
(ii) Let $p_{1} \leq \eta<p_{2}$. If $\frac{1}{n_{1}} \leq \eta<\frac{1}{n_{2}}$, then the estimator $\underline{\delta}_{\underline{\psi}}$ is inadmissible and is improved by $\underline{\delta}_{\underline{\psi}_{11}}$ if there exist some values of parameters $\underline{\alpha}$ such that $P_{\underline{\alpha}}\left(\underline{\delta}_{\underline{\psi}} \neq \underline{\underline{\delta}}_{\underline{w}_{11}}\right)>0$. If $\frac{1}{n_{2}} \leq \eta<\frac{1}{n_{1}}$ the estimator $\underline{\delta}_{\underline{\psi}}$ is inadmissible and is improved by $\underline{\delta}_{\underline{\psi}_{22}}$ if there exist some values of parameters $\underline{\alpha}$ such that $P_{\underline{\alpha}}\left(\underline{\delta}_{\underline{\psi}} \neq \underline{\delta}_{\underline{\psi}_{22}} \underline{\underline{q}}_{22}\right)>0$.
(iii) For $\eta<p_{1}$ the class of estimators (3.8) is an essentially complete class. The estimator $\underline{\delta}_{\underline{\psi}}$ can not be improved by using Theorem 3.2.

Proof: The proof is similar to the arguments used in proving the Theorem 3.1.

Remark 3.3. The above Theorem 3.2 is also a complete class result. Basically it says that any location equivariant estimator for the quantile vector $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right)$ of the form (3.8) is inadmissible if $P_{\underline{\alpha}}\left\{\left(\psi_{1}<0\right) \cup\left(\psi_{2}<0\right)\right\}>0$ for $\eta \geq \max \left(\frac{1}{n_{1}}, \frac{1}{n_{2}}\right)$. A similar type of statement holds for the case $p_{1} \leq \eta \leq p_{2}$.

Remark 3.4. It can be further noticed that all the estimators considered such as $\underline{\delta}_{M L}, \underline{\delta}_{M M}$ and $\underline{\delta}_{M V}$ belong to the class of estimators obtained in (3.6), with choices of $\underline{\psi}=\left(\psi_{1}, \psi_{2}\right)$ as $\left(\eta T_{1}, \eta T_{2}\right),\left(\eta T_{1}-\frac{T_{1} T_{2}}{n_{2} T_{1}+n_{1} T_{2}}, \eta T_{2}-\frac{T_{1} T_{2}}{n_{2} T_{1}+n_{1} T_{2}}\right)$ and $\left(\eta T_{1}+\frac{\overline{(\eta-1) T_{1} T_{2}}}{\left(n_{1}-1\right) T_{2}+\left(n_{2}-1\right) T_{1}}, \eta T_{2}+\frac{(\eta-1) T_{1} T_{2}}{\left(n_{1}-1\right) T_{2}+\left(n_{2}-1\right) T_{1}}\right)$ respectively. But none of these can be improved by using the result of Theorem 3.2 as the values of ψ_{1} and ψ_{2} fall within the interval $[0,+\infty)$ when $\eta \geq \max \left(\frac{1}{n_{1}}, \frac{1}{n_{2}}\right)$ with probability 1 . However, an example where our result will be useful is as follows: suppose we consider an estimator for $\underline{\theta}$ as $\underline{\delta}=\left(Z-\eta T_{1}, Z-\eta T_{2}\right)$ or any estimator of the form $\left(Z-g_{1}\left(T_{1}, T_{2}\right), Z-g_{2}\left(T_{1}, T_{2}\right)\right)$, with $g_{1}\left(t_{1}, t_{2}\right)>0$, or $g_{2}\left(t_{1}, t_{2}\right)>0$ and $\eta \geq$ $\max \left(\frac{1}{n_{1}}, \frac{1}{n_{2}}\right)$. Certainly, these estimators fall in the class (3.8) with $\psi_{1}<0$ or $\psi_{2}<0$. The improved estimator for these are obtained as $\underline{\delta}^{*}=(Z, Z)$.

Example 3.1. An example of a practical situation where the model of this paper is applicable is presented here. Suppose μ is the common minimum guaranteed time in years of two brands of electronics products say brand A and
brand B . It is most likely that the mean residual life times (σ_{1} and σ_{2}) will be different. On the basis of random samples of sizes 10 from brand A and B, the following summary data has been recorded. Here $Z=7.82, T_{1}=12.49$ and $T_{2}=15.44$. Suppose $\eta=3.0$, then the estimators for the quantile vector are obtained as $\underline{\delta}_{M L}=(45.31,54.14), \underline{\delta}_{M M}=(44.62,53.45), \underline{\delta}_{M V}=(46.85,55.68)$, and $\underline{\delta}_{I M V}=(43.44,51.47)$. In this situation, the estimator $\underline{\delta}_{I M V}=(43.44,51.47)$ is recommended for use.

Example 3.2 (Simulated Data). The following two data sets A and B of sizes each 10 and 12 has been generated from two exponential populations for illustration purpose. We have taken $\mu=5.0, \sigma_{1}=5$ and $\sigma_{2}=10$. The sample values have been written up to 3 decimal places only:

A: 16.555, 9.685, 11.863, 11.248, 6.894, 20.933, 6.435, 8.573, 18.745, 9.036,
$B: 5.455,6.806,10.667,13.687,11.739,9.006,7.612,18.846,23.978$, 21.418, 10.639, 13.061.

Here $Z=5.455, T_{1}=6.541$ and $T_{2}=7.287$. Suppose, $\eta=0.001$, then the estimators for the quantile vector $\underline{\theta}$ are obtained as, $\underline{\delta}_{M L}=(5.462,5.462), \underline{\delta}_{M M}=$ (5.147, 5.147), $\underline{\delta}_{M V}=(5.115,5.116)$, and $\underline{\delta}_{M V}^{a}=(5.145,5.128)$, where $\underline{\delta}_{M V}^{a}$ denotes the improved version of $\underline{\delta}_{M V}$ obtained by using Theorem 3.1. In this situation we recommend to use the estimator $\underline{\delta}_{M V}^{a}$.

4. A GENERALIZATION

In this section we extend some of the results obtained in Sections 2 and 3 to the $k(\geq 2)$ exponential populations and obtain the improved estimators for the UMVUE $\underline{\delta}_{M V}$.

Specifically, let $X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}$ be a random sample of size n_{i} taken from the $i^{\text {th }}$ exponential population $E x\left(\mu, \sigma_{i}\right)$. The random variable $X_{i j}$ has probability density function,

$$
\begin{array}{r}
f\left(x_{i j}\right)=\frac{1}{\sigma_{i}} \exp \left\{-\left(\frac{x_{i j}-\mu}{\sigma_{i}}\right)\right\}, \quad x_{i j}>\mu,-\infty<\mu<\infty, \sigma_{i}>0, \\
j=1,2, \ldots, n_{i} ; i=1,2, \ldots, k .
\end{array}
$$

We estimate the quantile vector $\underline{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$; where $\theta_{i}=\mu+\eta \sigma_{i}$ be the quantile of the $i^{\text {th }}$ population, with respect to the loss function either

$$
\begin{equation*}
L_{1}(\underline{\alpha}, \underline{d})=\sum_{i=1}^{k}\left(d_{i}-\theta_{i}\right)^{2}, \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{2}(\underline{\alpha}, \underline{d})=\sum_{i=1}^{k}\left(\frac{d_{i}-\theta_{i}}{\sigma_{i}}\right)^{2} . \tag{4.2}
\end{equation*}
$$

Let us denote $X_{i}=\min \left(X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}\right)$ and $Y_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j}$. Further define $Z=\min \left(X_{1}, X_{2}, \ldots, X_{k}\right)$, and $T_{i}=Y_{i}-Z ; i=1,2, \ldots, k$. Here Y_{i} is the sample mean from the $i^{\text {th }}$ population. Then $\left(Z, T_{1}, T_{2}, \ldots, T_{k}\right)$ is a complete sufficient statistic. Now the random variables Z and $\underline{T}=\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ are independently distributed. The probability density function of Z is given by

$$
f_{Z}(z)=a \exp (-a(z-\mu)), \quad z>\mu, \quad-\infty<\mu<\infty
$$

where $a=\sum_{i=1}^{k} \frac{n_{i}}{\sigma_{i}}$. The joint probability density function of $\underline{T}=\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ is given by

$$
f_{\underline{T}}(\underline{t})=\frac{1}{a} \prod_{i=1}^{k}\left(\frac{n_{i}^{n_{i}}}{\sigma_{i}^{n_{i}}}\right) \prod_{i=1}^{k}\left(\frac{t_{i}^{n_{i}-1}}{\Gamma n_{i}}\right)\left[\sum_{i=1}^{k} \frac{n_{i}-1}{t_{i}}\right] \exp \left\{-\sum_{i=1}^{k} n_{i} t_{i} / \sigma_{i}\right\}, \quad t_{i}>0 .
$$

It should be noted that the MLE $\underline{\delta}_{M L}$, modification to the MLE $\underline{\delta}_{M M}$ and the UMVUE $\underline{\delta}_{M V}$ can easily be obtained as

$$
\begin{aligned}
\underline{\delta}_{M L} & =Z \underline{e}+\eta \underline{T} \\
\underline{\delta}_{M M} & =\left(Z-\hat{a}^{-1}\right) \underline{e}+\eta \underline{T}
\end{aligned}
$$

and

$$
\underline{\delta}_{M V}=\left(Z+(\eta-1) T^{*}\right) \underline{e}+\eta \underline{T},
$$

where $\underline{e}=(1,1, \ldots, 1)_{1 \times k}$ and $T^{*}=\left(\sum_{i=1}^{k}\left(n_{i}-1\right) T_{i}^{-1}\right)^{-1}$.
Consider the class of estimators for the quantile vector $\underline{\theta}$ as

$$
D_{\mathbf{c}}=\left\{\underline{\delta}_{\mathbf{c}}: \underline{\delta}_{\mathbf{c}}=\left(\delta_{c_{1}}, \delta_{c_{2}}, \ldots, \delta_{c_{k}}\right) ; c_{i} \in \mathbb{R}\right\},
$$

where we denote $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$, and

$$
\delta_{c_{j}}=Z+\eta c_{j} T_{j}+(\eta-1) T^{*} ; \quad j=1,2, \ldots, k
$$

It should be noted that, this class contains the estimator $\underline{\delta}_{M V}$ for $c_{1}=c_{2}=\cdots=$ $c_{k}=1$.

Now for the class of estimators D_{c} define

$$
\begin{equation*}
\mathbf{c}^{*}=\left(\min \left\{\max \left(c_{1}, a_{1}\right), b_{1}\right\}, \ldots, \min \left\{\max \left(c_{k}, a_{k}\right), b_{k}\right\}\right) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{c}_{*}=\left(\min \left\{\max \left(c_{1}, c_{1}^{+}\right), d_{1}\right\}, \ldots, \min \left\{\max \left(c_{k}, c_{k}^{+}\right), d_{k}\right\}\right) \tag{4.4}
\end{equation*}
$$

where $a_{j}=\frac{\eta n_{j}\left(n_{j}-2\right)+1}{\eta n_{j}\left(n_{j}-1\right)}, b_{j}=\frac{n_{j}}{n_{j}+1}, d_{j}=\max \left\{a_{j}, b_{j}\right\}, c_{j}^{+}=\hat{c}_{j}\left(\lambda_{j}^{+}\right)$, and $\lambda_{j}^{+}=$ $\left\{\left(n_{j}+1\right)-\sqrt{\left(n_{j}+1\right)^{2}-4 \eta n_{j}}\right\} / 2 n_{j} ; j=1,2, \ldots, k$. Next we have the following inadmissibility result for estimators in the class $D_{\mathbf{c}}$.

Theorem 4.1. Let $D_{\boldsymbol{c}}$ be the class of estimators for the quantile vector $\underline{\theta}$, and define the functions \boldsymbol{c}^{*} and \boldsymbol{c}_{*} as in (4.3) and (4.4) respectively. Let the loss function be (4.1).
(i) The estimator $\underline{\delta}_{\boldsymbol{c}}$ is inadmissible and is improved by $\underline{\delta}_{\boldsymbol{c}^{*}}$ if $\boldsymbol{c} \neq \boldsymbol{c}^{*}$, when $\eta \geq 1$.
(ii) The estimator $\underline{\delta}_{\boldsymbol{c}}$ is inadmissible and is improved by $\underline{\delta}_{\boldsymbol{c}_{*}}$ if $\boldsymbol{c} \neq \boldsymbol{c}_{*}$ when $0<\eta<1$.

Proof: The proof is similar to the proof of the Theorem 2.1.

The class of estimators $D_{\mathbf{c}}$ contains the UMVUE of the quantile vector $\underline{\theta}$ when $c_{i}=1 ; i=1,2, \ldots, k$. Consequently, the UMVUE $\underline{\delta}_{M V}$ is inadmissible. Let $p_{1}=\min \left\{\frac{1}{n_{1}}, \ldots, \frac{1}{n_{k}}\right\}, p_{2}=\max \left\{\frac{1}{n_{1}}, \ldots, \frac{1}{n_{k}}\right\}, q_{1}=\min \left\{\frac{n_{1}+1}{2 n_{1}}, \ldots, \frac{n_{k}+1}{2 n_{k}}\right\}$ and $q_{2}=$ $\max \left\{\frac{n_{1}+1}{2 n_{1}}, \ldots, \frac{n_{k}+1}{2 n_{k}}\right\}$.

Theorem 4.2. Let the loss function be (4.1).
(i) If $\eta \geq 1$, then the uniformly minimum variance unbiased estimator $\underline{\delta}_{M V}$ for the quantile vector $\underline{\theta}$ is inadmissible and is improved by the estimator $\underline{\delta}_{I M V}=\left(\delta_{b_{1}}, \ldots, \delta_{b_{k}}\right)$. Further the class $\left\{\underline{\delta}_{\boldsymbol{c}}=\left(\delta_{c_{1}}, \ldots, \delta_{c_{k}}\right)\right.$: $\left.a_{j} \leq c_{j} \leq b_{j} ; j=1,2, \ldots, k\right\}$ is essentially complete in D_{c}.
(ii) If $q_{2} \leq \eta<1$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=\left(\delta_{b_{1}}, \ldots, \delta_{b_{k}}\right)$. The class of estimators $\left\{\underline{\delta}_{c}=\right.$ $\left.\left(\delta_{c_{1}}, \ldots, \delta_{c_{k}}\right): c_{j}^{+} \leq c_{j} \leq b_{j} ; j=1,2, \ldots, k\right\}$ is essentially complete in D_{c}.
(iii) If $p_{2} \leq \eta \leq q_{1}$, then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=\left(\delta_{a_{1}}, \ldots, \delta_{a_{k}}\right)$. The class of estimators $\left\{\underline{\delta}_{c}=\right.$ $\left.\left(\delta_{c_{1}}, \ldots, \delta_{c_{k}}\right): c_{j}^{+} \leq c_{j} \leq a_{j} ; j=1,2, \ldots, k\right\}$ is essentially complete in D_{c}.
(iv) If $0 \leq \eta<p_{1}$, then the estimator $\underline{\delta}_{M V}$ is admissible in the class D. The class of estimators $\left\{\underline{\delta}_{\boldsymbol{c}}=\left(\delta_{c_{1}}, \ldots, \delta_{c_{k}}\right): c_{j}^{+} \leq c_{j} \leq a_{j} ; j=\right.$ $1,2, \ldots, k\}$ is essentially complete in D_{c}.
(v) Let $p_{1}<\eta<p_{2}$ and $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ be a permutation of $(1,2, \ldots, k)$ such that $1 / n_{l_{1}}<\eta, \ldots, 1 / n_{l_{p}}<\eta$, and $1 / n_{l_{p+1}} \geq \eta, \ldots, 1 / n_{l_{k}} \geq \eta$.

Then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=$ $\left(\delta_{a_{l_{1}}}, \ldots, \delta_{a_{l_{p}}}, \delta_{c_{l_{p+1}}}, \ldots, \delta_{c_{l_{k}}}\right)$, when $\eta<\frac{n_{l_{1}}+1}{2 n_{l_{1}}}, \ldots, \eta<\frac{n_{l_{p}}+1}{2 n_{l_{p}}}$, and improved by $\underline{\delta}_{I M V}=\left(\delta_{b_{l_{1}}}, \ldots, \delta_{b_{l_{p}}}, \delta_{c_{l_{p+1}}}, \ldots, \delta_{c_{l_{k}}}\right)$, when $\eta \geq \frac{n_{l_{1}}+1}{2 n_{l_{1}}}, \ldots$, $\eta \geq \frac{n_{l_{p}}+1}{2 n_{p+1}}$ where $c_{l_{p+1}}=c_{l_{p+2}}=\cdots=c_{l_{k}}=1$.
(vi) Let $p_{1}<\eta<p_{2}$ and $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ be a permutation of $(1,2, \ldots, k)$ such that $1 / n_{l_{1}} \geq \eta, \ldots, 1 / n_{l_{p}} \geq \eta$, and $1 / n_{l_{p+1}}<\eta, \ldots, 1 / n_{l_{k}}<\eta$. Then the estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=$ $\left(\delta_{c_{l_{1}}}, \ldots, \delta_{c_{l_{p}}}, \delta_{a_{l_{p+1}}}, \ldots, \delta_{a_{l_{k}}}\right)$, when $\eta<\frac{n_{l_{p+1}}+1}{2 n_{l_{p+1}}}, \ldots, \eta<\frac{n_{l_{k}}+1}{2 n_{l_{k}}}$, and improved by $\underline{\delta}_{I M V}=\left(\delta_{c_{l_{1}}}, \ldots, \delta_{c_{l_{p}}}, \delta_{b_{l_{p+1}}}, \ldots, \delta_{b_{l_{k}}}\right)$, when $\eta \geq \frac{n_{l_{p+1}}+1}{2 n_{l_{p+1}}}$, $\ldots, \eta \geq \frac{n_{l_{k}}+1}{2 n_{k}}$, where $c_{l_{1}}=c_{l_{2}}=\cdots=c_{l_{p}}=1$.
(vii) Let $q_{1}<\eta<q_{2}$ and $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ be a permutation of $(1,2, \ldots, k)$ such that $\frac{n_{l_{1}}+1}{2 n_{l_{1}}}<\eta, \frac{n_{l_{2}}+1}{2 n_{l_{2}}}<\eta, \ldots, \frac{n_{l_{p}}+1}{2 n_{l_{p}}}<\eta$ and $\frac{n_{l_{p+1}}+1}{2 n_{p+1}} \geq \eta$, $\frac{n_{l_{p+2}+1}}{2 n_{p+2}} \geq \eta, \ldots, \frac{n_{l_{k}}+1}{2 n_{l_{k}}} \geq \eta$. The estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=\left(\delta_{b_{l_{1}}}, \ldots, \delta_{b_{l_{p}}}, \delta_{a_{l_{p+1}}}, \ldots, \delta_{a_{l_{k}}}\right)$, when $\eta>1 / n_{l_{p+1}}$, $\eta>1 / n_{l_{p+2}}, \ldots, \eta>1 / n_{l_{k}}$ and by $\underline{\delta}_{I M V}=\left(\delta_{b_{l_{1}}}, \ldots, \delta_{b_{l_{p}}}, \delta_{c_{l_{p+1}}}, \ldots, \delta_{c_{l_{k}}}\right)$, when $\eta \leq 1 / n_{l_{p+1}}, \eta \leq 1 / n_{l_{p+2}}, \ldots, \eta \leq 1 / n_{l_{k}}$, where $c_{l_{p+1}}=c_{l_{p+2}}=$ $\cdots=c_{l_{k}}=1$.
(viii) Let $q_{1}<\eta<q_{2}$ and $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ be a permutation of $(1,2, \ldots, k)$ such that $\frac{n_{l_{1}}+1}{2 n_{l_{1}}} \geq \eta, \frac{n_{l_{2}}+1}{2 n_{l_{2}}} \geq \eta, \ldots, \frac{n_{l_{p}}+1}{2 n_{l_{p}}} \geq \eta$ and $\frac{n_{l_{p+1}+1}}{2 n_{l_{p+1}}}<\eta$, $\frac{n_{l_{p+2}+1}}{2 n_{l_{p+2}}}<\eta, \ldots, \frac{n l_{k}+1}{2 n_{l_{k}}}<\eta$. The estimator $\underline{\delta}_{M V}$ is inadmissible and is improved by $\underline{\delta}_{I M V}=\left(\delta_{a_{1}}, \ldots, \delta_{a_{p}}, \delta_{b_{l_{p+1}}}, \ldots, \delta_{b_{l_{k}}}\right)$, when $\eta>1 / n_{l_{1}}$, $\eta>1 / n_{l_{2}}, \ldots, \eta>1 / n_{l_{p}}$ and by $\underline{\delta}_{I M V} \stackrel{p+1}{=}\left(\delta_{c_{l_{1}}}, \ldots, \delta_{c_{l_{p}}}, \delta_{b_{l_{p+1}}}, \ldots, \delta_{b_{l_{k}}}\right)$, when $\eta \leq 1 / n_{l_{1}}, \eta \leq 1 / n_{l_{2}}, \ldots, \eta \leq 1 / n_{l_{p}}$, where $c_{l_{1}} \stackrel{p_{p+1}}{=} c_{l_{2}}=\cdots=$ $c_{l_{p}}=1$.

Applying the above Theorem 4.2 we can obtain the estimator which improves upon $\underline{\delta}_{M V}$. However, we have obtained the expressions for some specific values of η. One can easily write the estimator for other choices of η :

$$
\underline{\delta}_{I M V}= \begin{cases}\left(Z+(\eta-1) T^{*}\right) \underline{e}+\eta \underline{B}, & \text { if } \eta \geq q_{2} \\ \left(Z+(\eta-1) T^{*}\right) \underline{e}+\eta \underline{A}, & \text { if } p_{2}<\eta \leq q_{1}\end{cases}
$$

where $\underline{A}=\left(A_{1}, A_{2}, \ldots, A_{k}\right) ; A_{i}=a_{i} T_{i}$ and $\underline{B}=\left(B_{1}, B_{2}, \ldots, B_{k}\right) ; B_{i}=b_{i} T_{i} ; i=$ $1,2, \ldots, k$.

Next we generalize the results obtained in Theorem 3.1 and Theorem 3.2. Let us consider the affine group of transformations, $G_{A}=\left\{g_{a, b}: g_{a, b}(x)=a x+b\right.$, $a>0, b \in \mathbb{R}$. Under the transformation $g_{a, b}$, we have $Z \rightarrow a Z+b, T_{i} \rightarrow a T_{i}, \sigma_{i} \rightarrow$ $a \sigma_{i}, \mu \rightarrow a \mu+b$, and $\theta_{i}=\mu+\eta \sigma_{i} \rightarrow a \theta_{i}+b ; i=1,2, \ldots, k$. So $\underline{\theta} \rightarrow a \underline{\theta}+b \underline{e}$, where $\underline{e}=(1,1, \ldots, 1)_{1 \times k}$. Under this transformation the problem remains invariant if
we choose the loss function (4.2), and the form of an affine equivariant estimator is obtained as

$$
\begin{align*}
\underline{\delta}\left(Z, T_{1}, T_{2}, \ldots, T_{k}\right) & =Z \underline{e}+T_{1} \underline{\Psi}(\underline{W}) \\
& =\underline{\delta}_{\underline{\Psi}}, \quad \text { say } \tag{4.5}
\end{align*}
$$

where $\underline{W}=\left(W_{2}, W_{3}, \ldots, W_{k}\right)$ and $W_{i}=\frac{T_{i}}{T_{1}} ; i=2,3, \ldots, k$.
Consider the conditional risk function:

$$
\begin{equation*}
R\left(\underline{\delta}_{\underline{\Psi}}, \underline{\alpha} \mid \underline{W}\right)=\sum_{i=1}^{k} E\left\{\left.\left(\frac{Z+T_{1} \Psi_{i}(\underline{W})-\theta_{i}}{\sigma_{i}}\right)^{2} \right\rvert\, \underline{W}\right\} \tag{4.6}
\end{equation*}
$$

It is easy to observe that the above conditional risk is a convex function in each Ψ_{i} and hence the sum. The minimizing choices for each Ψ_{i} is obtained as

$$
\begin{equation*}
\hat{\Psi}_{i}=-\frac{E\left(Z-\theta_{i}\right) E\left(T_{1} \mid \underline{W}\right)}{E\left(T_{1}^{2} \mid \underline{W}\right)} ; \quad i=1,2, \ldots, k \tag{4.7}
\end{equation*}
$$

After evaluating the conditional expectations and simplifying we have the minimizing choice of Ψ_{i} as

$$
\begin{equation*}
\hat{\Psi}_{i}=\frac{1}{\sum_{j=1}^{k} n_{j}}\left[\eta \sigma_{i}-a^{-1}\right]\left[\frac{n_{1}}{\sigma_{1}}+\sum_{j=2}^{k} \frac{n_{j} w_{j}}{\sigma_{j}}\right] ; \quad i=1,2, \ldots, k \tag{4.8}
\end{equation*}
$$

To apply the Brewster and Zidek technique we need to find the supremum and infimum of each $\hat{\Psi}_{i}$ with respect to $\underline{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ for fixed values of η, n_{i} and \underline{W}. We are not able to obtain the supremum and infimum for each $\hat{\Psi}_{i}$ for the case $k(\geq 3)$. However, for the first component $\hat{\Psi}_{1}$, Sharma and Kumar [19] obtained the bounds for equal sample sizes. We feel that the lower bounds for other components will be finite. Since we are not able to derive the bounds for the case $k(\geq 3)$, it could not be possible to provide the inadmissibility result for $k(\geq 3)$ populations. It will be interesting to obtain the bounds for the case $k(\geq 3)$ and obtain improved estimators better than $\underline{\delta}_{M V}$.

5. NUMERICAL COMPARISONS

In this section, we carry out a detailed simulation study to numerically compare the risk functions of various estimators proposed in previous sections for the quantile vector $\underline{\theta}$ for the case $k=2$. Specifically, we have proposed some baseline estimators such as $\underline{\delta}_{M L}, \underline{\delta}_{M M}$ and $\underline{\delta}_{M V}$ for $\underline{\theta}$. An improved estimator $\underline{\delta}_{I M V}$ which dominates $\underline{\delta}_{M V}$ has been obtained in Section 2 for the case $\eta \geq p_{1}$. From the Remark 3.1, it is quite evident that, we only consider the estimator $\underline{\delta}_{M V}$ and obtain its improved version by using the Theorem 3.1, which we denote as
$\underline{\delta}_{M V}^{a}$ for the case $0<\eta<p_{2}$. For numerically comparing the risk functions of all these estimators for $\underline{\theta}$, we use Monte-Carlo simulation procedure. We have generated 10,000 random samples each from two exponential populations $\operatorname{Exp}\left(\mu, \sigma_{1}\right)$ and $E\left(\mu, \sigma_{2}\right)$ respectively. Here μ is the common location parameter and σ_{1}, σ_{2} are different scale parameters. The loss function is taken as the sum of the quadratic losses (1.2). It should be noted that, with respect to the loss (1.2), the risk functions of each estimator is a function of only $\tau=\sigma_{1} / \sigma_{2}>0$ for fixed values of η and sample sizes. A massive simulation study has been carried out to see the behavior of the risk functions and the performance of each estimator for the quantile vector $\underline{\theta}$. The error of the simulation has been checked and it is quite satisfactory (up to order of 10^{-3}). We have also calculated the percentage of relative risk performances for each estimator with respect to the baseline estimator $\underline{\delta}_{M L}$. For this purpose we define the equation,

$$
\begin{array}{ll}
R_{M M}=\left(\frac{\underline{\delta}_{M L}-\underline{\delta}_{M M}}{\underline{\delta}_{M L}}\right) \times 100, & R_{M V}=\left(\frac{\underline{\delta}_{M L}-\underline{\delta}_{M V}}{\underline{\delta}_{M L}}\right) \times 100 \\
R_{M V A}=\left(\frac{\underline{\delta}_{M L}-\underline{\delta}_{M V}^{a}}{\underline{\delta}_{M L}}\right) \times 100, & R_{I M V}=\left(\frac{\underline{\delta}_{M L}-\underline{\delta}_{I M V}}{\underline{\delta}_{M L}}\right) \times 100 .
\end{array}
$$

For illustration purpose, we choose some specific values of η and n_{1}, n_{2}. Though the values of τ can be from 0 to ∞, we choose the values up to 5 to avoid simulation error. The percentage of relative risk improvements of all the estimators over the MLE has been tabulated in Tables 1 to 3. In Table 1, we have tabulated the percentage of relative risk values for equal sample sizes whereas Tables 2, 3 gives for unequal sample sizes. In each table, the first row gives the various choices of η. We have taken conveniently the values of η as 0.05 and 2.50 . The first column represents the values of τ which ranges from 0 to 5 . Further, for each value of η, there corresponds three columns (columns 1, 2, 3 correspond to $\eta=0.05$ and columns 4, 5, 6 correspond to $\eta=2.50$). For each value of τ, there corresponds three values of percentage of relative risk values. These three values corresponds to three different pairs of sample sizes, for example in Table 1, the percentage of relative risk values have been tabulated for the sample sizes $(5,5)$, $(10,10)$ and $(15,15)$. Similarly in Tables 2 and 3 , the percentage of relative risk performances have been tabulated for the sample sizes $(3,7),(5,10),(10,15)$ and $(7,3),(10,5),(15,10)$ respectively.

The following conclusions can be drawn from our simulation study as well as from the Tables 1,2 and 3.
(i) It is observed that as the sample sizes (n_{1} and n_{2}) increase the risk values decrease for fixed value of η.
(ii) For $0<\eta \leq p_{1}$, the estimator $\underline{\delta}_{M V}^{a}$ has the least risk for almost all values of the parameters except few values where the estimator $\underline{\delta}_{M M}$ performs marginally better. The percentage of relative risk improvement has been noticed and is near 50%.
(iii) For $\eta>p_{2}$, the estimator $\underline{\delta}_{I M V}$ performs the best and the percentage of relative risk improvement is near 21%. However, the performance decreases as the sample sizes increase.
(iv) When η lies in the interval $\left[p_{1}, p_{2}\right]$, the estimators $\underline{\delta}_{I M V}$ and $\underline{\delta}_{M V}^{a}$ compete well with each other. In fact for small values of τ, the estimator $\underline{\delta}_{I M V}$ performs better compared to $\underline{\delta}_{M V}^{a}$ whereas for larger values of τ, the estimator $\underline{\delta}_{M V}^{a}$ performs better. However, the estimator $\underline{\delta}_{M M}$ has the best percentage of relative risk improvement for this choice of η.
(v) For $\eta=1$, (the problem reduces to simultaneous estimation of means of two exponential populations) the estimators $\underline{\delta}_{M L}$ and $\underline{\delta}_{M V}$ are equal and it is also noticed that the performance of $\underline{\delta}_{I M V}$ is the best.
(vi) The numerical study also shows that the estimator $\underline{\delta}_{M V}^{a}$ improves upon $\underline{\delta}_{M V}$, which agrees with the Theorem 3.1. Further the estimator $\underline{\delta}_{M V}$ is improved by $\underline{\delta}_{I M V}$ which also agrees with the Theorem 2.1.
(vii) Similar type of observations were made for other combinations of η and sample sizes during our simulation study.
(viii) On the basis of our simulation study and theoretical findings, we recommend using the estimator $\underline{\delta}_{M V}^{a}$ when $\eta<p_{1}$ and $\underline{\delta}_{I M V}$ when $\eta \geq p_{2}$, whereas we recommend to use $\underline{\delta}_{M M}$ for η lying in the interval $\left.{ }_{[} p_{1}, p_{2}\right]$.

6. CONCLUDING REMARKS

In this paper we have considered the estimation of the quantile vector $\underline{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ of $k(\geq 2)$ exponential populations with respect to the sum of the quadratic loss functions or the sum of the squared error losses. We first proposed estimators for $\underline{\theta}$ which are based on some baseline estimators for each component θ_{i}, such as MLE and UMVUE. We have constructed a class containing the estimator based on UMVUE of θ_{i}. Some techniques for improving estimators have been used to obtain estimators which dominate the UMVUE of $\underline{\theta}$. Further an admissible class has been obtained within the class. Next we have introduced the concept of invariance to our model and derive sufficient conditions for improving estimators which are equivariant under the location and affine group of transformations for the case $k=2$. The inadmissibility result for the case $k(\geq 3)$ populations is not available. Finally, we have conducted a simulation study to numerically compare the risk functions of all the proposed estimators and recommended their use in practice. It may be noted that the simultaneous estimation of quantiles of $k(\geq 2)$ exponential populations has not been studied in the literature before.

Table 1: Relative risk performances of various estimators of exponential quantiles for $\left(n_{1}, n_{2}\right)=(5,5),(10,10),(15,15)$.

$\eta \rightarrow$	0.05			2.5		
$\tau \downarrow$	$R_{M M}$	$R_{M V}$	$R_{M V A}$	$R_{M M}$	$R_{M V}$	$R_{I M V}$
0.25	43.037	42.598	43.374	0.956	-6.395	12.066
	46.808	46.703	46.834	0.733	- 3.383	07.430
	48.318	48.335	48.337	0.558	-2.280	04.900
0.50	45.155	45.148	45.766	0.904	- 5.236	14.091
	46.311	46.313	46.385	0.422	- 2.411	07.394
	46.890	46.924	46.924	0.284	-1.579	05.167
0.75	45.279	45.535	46.122	0.723	-4.625	14.678
	47.002	47.151	47.170	0.427	- 2.288	07.784
	46.913	46.967	46.967	0.349	-1.602	05.419
1.00	45.610	45.619	46.350	0.888	-4.906	15.309
	46.767	46.899	46.914	0.283	- 1.975	07.316
	46.952	46.988	46.988	0.196	-1.335	04.996
1.25	45.067	44.954	45.740	0.887	-4.856	14.926
	46.928	47.097	47.114	0.388	-2.220	07.611
	46.842	46.877	46.877	0.357	-1.583	05.452
1.50	44.834	45.058	45.588	0.751	-4.758	14.388
	46.555	46.651	46.695	0.411	- 2.283	07.798
	47.772	47.818	47.818	0.231	- 1.442	05.076
1.75	44.454	44.741	45.233	0.771	-4.958	14.146
	46.699	46.759	46.802	0.398	- 2.331	07.490
	46.982	47.000	47.000	0.197	- 1.428	04.570
2.00	44.042	44.125	44.621	0.484	-4.520	13.347
	47.795	47.894	47.959	0.446	-2.465	07.531
	46.428	46.478	46.478	0.388	- 1.764	05.469
2.25	43.780	43.699	44.397	0.604	-4.902	13.734
	47.813	47.923	47.982	0.424	-2.473	07.530
	46.457	46.483	46.483	0.384	-1.785	05.191
2.50	45.520	45.264	45.949	0.884	-5.517	14.398
	46.369	46.472	46.514	0.509	- 2.688	06.946
	48.159	48.209	48.210	0.323	-1.729	05.094
2.75	44.021	43.564	44.495	0.677	-5.304	13.024
	45.821	45.882	45.934	0.623	- 2.921	07.492
	46.457	46.476	46.477	0.349	-1.812	04.967
3.00	44.332	44.338	44.891	1.007	- 5.999	13.630
	47.501	47.549	47.618	0.562	-2.880	07.435
	47.773	47.815	47.818	0.363	- 1.879	05.051
3.25	44.406	43.960	44.874	0.882	- 5.972	12.737
	46.898	46.943	47.001	0.361	- 2.632	06.610
	47.658	47.686	47.689	0.249	-1.684	04.841
3.50	43.503	43.082	43.878	1.084	-6.421	13.541
	47.113	47.175	47.218	0.356	-2.651	06.900
	47.248	47.282	47.284	0.295	-1.828	04.781
3.75	43.657	43.236	43.999	0.856	-6.091	12.500
	46.720	46.767	46.771	0.382	-2.740	07.112
	47.962	47.972	47.975	0.363	-1.968	04.365
4.00	43.683	43.505	44.188	1.107	-6.681	12.581
	47.308	47.372	47.399	0.412	-2.830	06.585
	47.804	47.831	47.836	0.229	-1.748	04.923
4.50	43.373	43.061	43.748	1.053	-6.755	12.813
	47.327	47.423	47.448	0.451	- 2.971	06.532
	47.789	47.838	47.843	0.520	-2.294	04.967
5.00	44.398	43.750	44.536	1.066	-6.961	11.409
	45.883	45.957	45.990	0.459	-3.029	06.346
	47.180	47.197	47.212	0.519	-2.339	04.823

Table 2: Relative risk performances of various estimators of exponential quantiles for $\left(n_{1}, n_{2}\right)=(3,7),(5,10),(10,15)$.

$\eta \rightarrow$	0.05			2.5		
$\tau \downarrow$	$R_{M M}$	$R_{M V}$	$R_{M V A}$	$R_{M M}$	$R_{M V}$	$R_{\text {IMV }}$
0.25	41.906	41.323	43.081	1.669	-9.291	16.740
	45.474	45.569	45.924	1.036	- 5.772	10.976
	47.309	47.391	47.405	0.272	-2.487	05.275
0.50	42.950	43.248	44.022	1.333	-6.102	19.997
	46.733	46.888	47.201	0.709	-3.726	12.461
	47.516	47.558	47.599	0.524	-2.323	06.857
0.75	44.397	44.332	45.282	0.821	-4.296	20.276
	46.547	46.741	46.994	0.511	- 2.926	12.607
	47.023	47.052	47.062	0.308	-1.779	06.602
1.00	45.131	45.321	46.071	0.644	-3.677	20.487
	46.561	46.768	46.934	0.571	-2.775	13.186
	47.745	47.789	47.790	0.180	-1.442	06.457
1.25	45.226	45.386	46.131	0.721	-3.704	20.581
	46.731	46.724	46.896	0.500	-2.604	12.887
	47.602	47.710	47.710	0.357	-1.713	07.150
1.50	44.199	44.099	44.772	0.544	-3.329	20.346
	45.620	45.780	45.906	0.459	-2.490	12.689
	47.137	47.204	47.204	0.189	-1.450	06.663
1.75	44.278	44.194	44.857	0.453	-3.072	20.837
	44.896	44.962	45.059	0.437	-2.428	12.735
	47.072	47.097	47.097	0.192	-1.462	06.699
2.00	43.354	43.583	44.053	0.572	-3.335	20.450
	46.011	45.911	46.086	0.374	-2.328	12.562
	47.194	47.230	47.232	0.261	-1.589	06.637
2.25	44.806	44.845	45.397	0.522	-3.291	19.334
	46.415	46.399	46.520	0.438	-2.407	13.214
	46.523	46.534	46.535	0.248	-1.596	06.240
2.50	44.570	44.353	44.797	0.440	-3.195	19.147
	45.588	45.585	45.687	0.433	-2.389	13.896
	46.890	46.951	46.953	0.278	-1.630	06.169
2.75	45.507	45.258	45.759	0.529	-3.319	20.592
	45.795	45.688	45.817	0.459	-2.505	12.584
	46.556	46.616	46.618	0.293	-1.688	06.672
3.00	43.824	43.592	44.095	0.466	-3.226	19.385
	45.929	45.869	45.975	0.367	-2.334	12.770
	46.921	46.927	46.936	0.293	-1.705	06.848
3.25	44.325	44.097	44.547	0.399	-3.162	19.697
	46.165	46.129	46.258	0.318	-2.313	11.657
	47.061	47.054	47.064	0.289	-1.752	06.671
3.50	44.469	44.156	44.536	0.503	-3.380	19.444
	47.253	47.241	47.366	0.242	-2.167	12.236
	46.078	46.081	46.095	0.236	-1.670	06.318
3.75	45.216	44.809	45.341	0.401	-3.146	19.755
	45.286	45.188	45.343	0.340	-2.374	11.737
	46.998	47.056	47.069	0.358	-1.832	06.970
4.00	44.480	43.966	44.530	0.443	-3.305	19.008
	46.173	46.131	46.227	0.401	-2.472	12.908
	46.851	46.880	46.895	0.344	-1.844	07.032
4.50	45.394	44.937	45.334	0.217	-2.858	18.840
	45.033	44.991	45.061	0.352	-2.414	12.076
	46.975	46.970	46.978	0.284	-1.774	06.626
5.00	43.720	43.404	43.822	0.507	-3.385	19.881
	45.965	45.931	46.002	0.404	-2.543	12.480
	46.456	46.492	46.496	0.314	-1.870	06.477

Table 3: Relative risk performances of various estimators of exponential quantiles for $\left(n_{1}, n_{2}\right)=(7,3),(10,5),(15,10)$.

$\eta \rightarrow$	0.05			2.5		
$\tau \downarrow$	$R_{M M}$	$R_{M V}$	$R_{M V A}$	$R_{M M}$	$R_{M V}$	$R_{\text {IMV }}$
0.25	45.446	44.948	45.439	0.435	-3.278	19.087
	45.940	45.996	46.036	0.494	- 2.602	13.201
	47.235	47.222	47.237	0.266	-1.737	06.439
0.50	43.214	43.298	43.805	0.455	-3.153	19.717
	46.619	46.648	46.770	0.378	- 2.303	12.980
	47.152	47.149	47.151	0.469	- 1.929	07.236
0.75	44.330	44.142	44.969	0.594	- 3.472	19.887
	45.780	45.801	45.959	0.427	- 2.390	13.113
	47.580	47.639	47.639	0.319	- 1.657	06.724
1.00	44.521	44.644	45.443	0.629	- 3.662	20.348
	46.106	46.110	46.330	0.347	- 2.378	12.591
	46.928	46.982	46.984	0.265	- 1.605	06.852
1.25	45.323	45.618	46.424	0.850	-4.282	20.591
	46.781	47.000	47.221	0.578	- 2.945	12.776
	47.166	47.143	47.149	0.292	- 1.690	06.746
1.50	43.385	43.322	44.350	1.014	-4.806	21.011
	46.763	46.766	47.085	0.772	-3.466	13.435
	47.490	47.5304	47.538	0.456	-2.055	07.111
1.75	44.075	44.128	45.052	1.306	- 5.750	20.317
	47.294	47.384	47.732	0.515	-3.208	12.078
	47.159	47.170	47.196	0.443	-2.137	06.862
2.00	42.991	43.446	44.243	0.968	-5.305	19.192
	46.865	47.210	47.448	0.730	-3.761	12.445
	47.128	47.208	47.224	0.409	-2.164	06.537
2.25	43.771	44.121	44.938	1.630	- 7.037	20.335
	46.120	46.198	46.525	0.912	-4.282	12.849
	46.895	46.937	46.979	0.417	- 2.228	06.382
2.50	43.007	42.970	44.183	1.373	-6.872	19.011
	46.586	46.613	47.026	0.698	-4.150	11.695
	47.448	47.503	47.556	0.358	-2.244	06.047
2.75	43.741	43.624	44.675	1.554	- 7.584	18.337
	46.123	46.068	46.504	0.913	-4.627	12.069
	48.110	48.221	48.257	0.480	-2.523	06.138
3.00	43.166	42.889	44.267	1.744	-8.175	18.991
	45.193	45.383	45.637	0.918	- 4.830	11.355
	47.727	47.848	47.875	0.511	-2.656	06.237
3.25	42.960	43.097	44.335	1.845	-8.768	18.520
	45.672	45.976	46.113	0.888	- 5.019	11.025
	47.430	47.459	47.546	0.527	-2.755	06.115
3.50	41.211	40.899	42.355	1.603	- 8.551	17.837
	45.775	45.681	46.111	1.078	- 5.463	11.228
	46.820	46.848	46.931	0.591	-2.955	05.738
3.75	42.765	42.426	44.002	1.943	-9.507	18.044
	45.668	45.778	46.103	1.048	- 5.678	10.862
	48.711	48.813	48.853	0.475	- 2.794	05.613
4.00	41.437	40.853	42.613	2.086	- 10.158	17.591
	45.805	45.877	46.266	1.226	-6.067	10.923
	47.696	47.710	47.768	0.578	-3.029	05.695
4.50	42.217	41.511	43.183	2.007	- 10.418	17.181
	45.568	45.667	46.074	1.177	-6.297	10.417
	48.148	48.199	48.243	0.640	-3.251	05.778
5.00	40.642	39.702	41.661	2.120	- 11.496	16.171
	45.277	45.013	45.486	1.145	-6.369	10.399
	47.350	47.432	47.445	0.665	-3.375	05.678

APPENDIX

Proof of Theorem 2.1: In order to prove the theorem we use the orbit-by-orbit improvement technique of Brewster and Zidek [2].

Consider the risk function of $\underline{\delta}_{\mathbf{c}}$ with respect to the loss function (1.1),

$$
\begin{align*}
R\left(\underline{\alpha}, \underline{\delta}_{\mathbf{c}}\right)= & E\left[Z+\eta c_{1} T_{1}+(\eta-1) T^{*}-\mu-\eta \sigma_{1}\right]^{2} \\
& +E\left[Z+\eta c_{2} T_{2}+(\eta-1) T^{*}-\mu-\eta \sigma_{2}\right]^{2} \tag{A.1}
\end{align*}
$$

It can be easily seen that the above risk (A.1) is a convex function in both c_{1} and c_{2}. After some calculations, the minimizing choices for c_{1} and c_{2} are obtained as

$$
\begin{equation*}
\hat{c}_{j}(\underline{\alpha})=\frac{\left(\mu+\eta \sigma_{j}\right) E T_{j}-E\left(Z T_{j}\right)-(\eta-1) E\left(T_{j} T^{*}\right)}{\eta E T_{j}^{2}} ; \quad j=1,2 \tag{A.2}
\end{equation*}
$$

Let $\lambda_{j}=\left(\sigma_{j} a\right)^{-1}$, and using this we obtain the minimizing choice of each c_{j} as

$$
\begin{equation*}
\hat{c}_{j}\left(\lambda_{j}\right)=\frac{n_{j}\left(\eta-2 \eta \lambda_{j}+\lambda_{j}^{2}\right)}{\eta\left(1+n_{j}-2 n_{j} \lambda_{j}\right)} ; \quad j=1,2 \tag{A.3}
\end{equation*}
$$

To apply the orbit-by-orbit improvement technique of Brewster and Zidek [2], we need to get the supremum and infimum values of \hat{c}_{1} and \hat{c}_{2} with respect to λ_{j} and for fixed η. It is easy to see that $0<\lambda_{j}<\frac{1}{n_{j}}$. We consider the following three separate cases.

Case-(I): Let $\eta \geq \max \left(\left(n_{1}+1\right)^{2} / 4 n_{1},\left(n_{2}+1\right)^{2} / 4 n_{2}\right)$. Differentiating $\hat{c}_{j}\left(\lambda_{j}\right)$ with respect to λ_{j} we have $\frac{d \hat{c}_{j}}{d \lambda_{j}}=\frac{-2 n_{j}\left(n_{j} \lambda_{j}^{2}-\lambda_{j}\left(n_{j}+1\right)+\eta\right)}{\eta\left(n_{j}+1-2 n_{j} \lambda_{j}\right)^{2}} ; j=1,2$. It is easy to observe that the derivative is $g\left(\lambda_{j}\right)=-n_{j} \lambda_{j}^{2}+\lambda_{j}\left(n_{j}+1\right)-\eta$ multiplied by a positive factor. Now $g\left(\lambda_{j}\right)$ is a concave function of $\lambda_{j} ; j=1,2$. The maximum value is attained at $\lambda_{j}=\left(n_{j}+1\right) / 2 n_{j}<1 / n_{j}$. The maximum value is $\left(n_{j}+1\right)^{2} / 4 n_{j}-\eta<0$. This implies $g\left(\lambda_{j}\right)<0$ for $0<\lambda_{j}<\frac{1}{n_{j}} ; j=1,2$. Hence the function $\hat{c}_{j}\left(\lambda_{j}\right)$ is decreasing with respect to λ_{j}. Hence we have

$$
\inf _{0<\lambda_{j} \leq \frac{1}{n_{j}}} \hat{c}_{j}\left(\lambda_{j}\right)=\hat{c}_{j}\left(1 / n_{j}\right)=\frac{n_{j} \eta\left(n_{j}-2\right)+1}{n_{j} \eta\left(n_{j}-1\right)}=a_{j} \quad \text { (say) }
$$

and

$$
\sup _{0<\lambda_{j} \leq \frac{1}{n_{j}}} \hat{c}_{j}\left(\lambda_{j}\right)=\hat{c}_{j}(0)=\frac{n_{j}}{n_{j}+1}=b_{j} ; \quad j=1,2, \quad \text { (say) }
$$

Case-(II): Let $1 \leq \eta<\min \left\{\left(n_{1}+1\right)^{2} / 4 n_{1},\left(n_{2}+1\right)^{2} / 4 n_{2}\right\}$. It is easy to see that the maximum value of $g\left(\lambda_{j}\right)$ is positive. The equation $g\left(\lambda_{j}\right)=0$, has two real roots say $\lambda_{j}^{-}=\frac{\left(n_{j}+1\right)+\sqrt{\left(n_{j}+1\right)^{2}-4 \eta n_{j}}}{2 n_{j}}$ and $\lambda_{j}^{+}=\frac{\left(n_{j}+1\right)-\sqrt{\left(n_{j}+1\right)^{2}-4 \eta n_{j}}}{2 n_{j}} ; j=1,2$. It is also noticed that, these two roots are outside the interval $\left(0, \frac{1}{n_{j}}\right]$. Hence for $0<\lambda_{j} \leq \frac{1}{n_{j}}$ the function $g\left(\lambda_{j}\right)<0$. This implies that the function $\hat{c}_{j}\left(\lambda_{j}\right)$ is decreasing in the concerned interval. Hence we have

$$
\inf _{0<\lambda_{j} \leq \frac{1}{n_{j}}} \hat{c}_{j}\left(\lambda_{j}\right)=\hat{c}_{j}\left(1 / n_{j}\right)=\frac{n_{j} \eta\left(n_{j}-2\right)+1}{n_{j} \eta\left(n_{j}-1\right)}=a_{j}
$$

and

$$
\sup _{0<\lambda_{j} \leq \frac{1}{n_{j}}} \hat{c}_{j}\left(\lambda_{j}\right)=\hat{c}_{j}(0)=\frac{n_{j}}{n_{j}+1}=b_{j} ; \quad j=1,2
$$

Case-(III): Let $0 \leq \eta<1$. For this case it can be observed that the root λ_{j}^{-}is outside the concerned interval, but λ_{j}^{+}is inside the interval ($\left.0, \frac{1}{n_{j}}\right]$. Also $\hat{c}_{j}{ }^{\prime \prime}\left(\lambda_{j}^{+}\right)>0$ and $\hat{c}_{j}^{\prime \prime}\left(\lambda_{j}^{-}\right)<0$, hence λ_{j}^{-}is a point of local maxima and λ_{j}^{+}is a point of local minima. Hence the function $g\left(\lambda_{j}\right)<0$ in the interval $\left(0, \lambda_{j}^{+}\right]$and $g\left(\lambda_{j}\right) \geq 0$ in the interval $\left(\lambda_{j}^{+}, 1 / n_{j}\right]$. Thus the function $\hat{c}_{j}\left(\lambda_{j}\right)$ is decreasing in the interval $\left(0, \lambda_{j}^{+}\right]$and increasing in the interval $\left(\lambda_{j}^{+}, 1 / n_{j}\right.$]. We have

$$
\inf _{0<\lambda_{j}<\frac{1}{n_{j}}} \hat{c}_{j}\left(\lambda_{j}\right)=\hat{c}_{j}\left(\lambda_{j}^{+}\right)=c_{j}^{+},
$$

and
$\sup _{0<\lambda_{j}<\frac{1}{n_{j}}} \hat{c}_{j}\left(\lambda_{j}\right)=\max \left\{\hat{c}_{j}(0), \hat{c}_{j}\left(1 / n_{j}\right)\right\}=\max \left\{\frac{n_{j}}{n_{j}+1}, \frac{1+\eta n_{j}\left(n_{j}-2\right)}{\eta n_{j}\left(n_{j}-1\right)}\right\}=d_{j}$,
where

$$
\lambda_{j}^{+}=\left\{\left(n_{j}+1\right)-\sqrt{\left(n_{j}+1\right)^{2}-4 \eta n_{j}}\right\} / 2 n_{j} ; \quad j=1,2
$$

Now combining Cases I-III, it is easy to define the functions \mathbf{c}^{*} and \mathbf{c}_{*} as in (2.1) and (2.2) respectively. The loss function is (1.1), which is the sum of the squared errors, and it is convex with respect to both c_{1} and c_{1}. Then by applying the orbit-by-orbit improvement technique of Brewster and Zidek [2] we get the improved estimators for $\underline{\delta}_{\mathbf{c}}$ in the class D, if either c_{1} lies outside the interval $\left[a_{1}, b_{1}\right]$ (when $\eta \geq 1$) and $\left[c_{1}{ }^{+}, d_{1}\right]$ (when $0 \leq \eta<1$) or c_{2} lies outside the interval $\left[a_{2}, b_{2}\right]$ (when $\eta \geq 1$) and $\left[c_{2}{ }^{+}, d_{2}\right]$ (when $0 \leq \eta<1$) with probability 1 . Applying the Brewster and Zidek [2] technique we have $R\left(\underline{\delta}_{\mathbf{c}^{*}}, \underline{\alpha}\right) \leq R\left(\underline{\delta}_{\mathbf{c}}, \underline{\alpha}\right)$ when $\eta \geq 1$, and $R\left({\underline{\delta_{c}^{*}}}, \underline{\alpha}\right) \leq R\left(\underline{\delta}_{\mathbf{c}}, \underline{\alpha}\right)$ when $0 \leq \eta<1$. This completes the proof of the theorem.

Proof of Theorem 3.1: The proof of the theorem can be done by using the orbit-by-orbit improvement technique for improving equivariant estimators proposed by Brewster and Zidek [2]. Consider the conditional risk function of $\underline{\delta}_{\Psi}$ given $W=T_{2} / T_{1}$:

$$
\begin{equation*}
R\left(\underline{\delta}_{\underline{\Psi}} \mid W=w\right)=\sum_{i=1}^{2} \frac{1}{\sigma_{i}^{2}} E\left(Z+T_{1} \Psi_{i}(W)-\theta_{i}\right)^{2} . \tag{A.4}
\end{equation*}
$$

It is easy to observe that the above risk (A.4) is a convex function of both Ψ_{1} and Ψ_{2}. Hence, the minimizing choice of $\Psi_{i}(w)$ is obtained as

$$
\hat{\Psi}_{i}(w)=-\frac{E\left(Z-\theta_{i}\right) E\left(T_{1} \mid W=w\right)}{E\left(T_{1}^{2} \mid W=w\right)}, \quad i=1,2 .
$$

Using the joint probability density function of $\left(T_{1}, T_{2}\right)$, we can easily derive the joint probability density function of $\left(T_{1}, W\right)$. The conditional probability density function of T_{1} given W is a gamma distribution with shape parameter $n_{1}+$ $n_{2}-1$ and scale parameter $1 / M$ where $M=\frac{n_{1}}{\sigma_{1}}+\frac{n_{2}}{\sigma_{2}} w$. Hence the conditional expectations are calculated as

$$
E\left(T_{1} \mid W\right)=\frac{n_{1}+n_{2}-1}{M}, \quad E\left(T_{1}^{2} \mid W\right)=\frac{\left(n_{1}+n_{2}-1\right)\left(n_{1}+n_{2}\right)}{M^{2}}
$$

Substituting all these values and simplifying we obtain the minimizing choice of $\hat{\Psi}_{1}$ and $\hat{\Psi}_{2}$ as

$$
\hat{\Psi}_{1}(w, \tau)=\frac{\left[\eta-\left(n_{2} \tau+n_{1}\right)^{-1}\right]\left[n_{1}+w n_{2} \tau\right]}{\left(n_{1}+n_{2}\right)}
$$

and

$$
\hat{\Psi}_{2}(w, \tau)=\frac{\left[\frac{\eta}{\tau}-\left(n_{2} \tau+n_{1}\right)^{-1}\right]\left[n_{1}+w n_{2} \tau\right]}{\left(n_{1}+n_{2}\right)}
$$

respectively, where we denote $\tau=\sigma_{1} / \sigma_{2}>0$.
In order to apply the orbit-by-orbit improvement technique of Brewster and Zidek [2] for improving equivariant estimator, we need the supremum and infimum of both $\hat{\Psi}_{1}$ and $\hat{\Psi}_{2}$ with respect to $\tau>0$ for fixed values of n_{1}, n_{2}, η and for given w. We consider the following three separate cases for calculating the supremum and infimum.

Case I: Let $0<\eta<\min \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$. Consider the first component $\hat{\Psi}_{1}(w, \tau)$. Differentiating with respect to τ we have $\frac{d \hat{\Psi}_{1}}{d \tau}=\frac{\eta n_{2}^{3} w \tau^{2}+2 \eta n_{1} n_{2} w \tau+n_{1} n_{2}\left(\eta n_{1} w-w+1\right)}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2} \tau\right)^{2}}$. Let $h(\tau)=\eta n_{2}^{3} w \tau^{2}+2 \eta n_{1} n_{2}^{2} w \tau+n_{1} n_{2}\left(\eta n_{1} w-w+1\right)$. Now $h(\tau)$ is a convex function of $\tau \in(0, \infty)$. Its minimum is attained at $\tau=-\frac{n_{1}}{n_{2}}<0$. Hence in the region $(0, \infty)$ the minimum will be attained at $\tau=0$ and the minimum value of $h(\tau)$ is $n_{1} n_{2}\left(1-w+\eta n_{1} w\right)$. Assume that the minimum value is positive that
is $0<w \leq \frac{1}{1-\eta n_{1}}$. For this case $h(\tau) \geq 0$ for $\tau \in(0, \infty)$. Hence the function $\hat{\Psi}_{1}(w, \tau)$ is an increasing function of $\tau>o$. Hence we have

$$
\inf _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\frac{\eta n_{1}-1}{n_{1}+n_{2}} \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\infty, \quad \text { when } \quad 0<w \leq \frac{1}{\left(1-\eta n_{1}\right)}
$$

If $w>\frac{1}{1-\eta n_{1}}$, then the minimum value of $h(\tau)$ is negative and it will cross the τ axis. The function $h(\tau)$ has two real roots say $\tau^{-}=-\frac{n_{1}}{n_{2}}-\frac{1}{n_{2}} \sqrt{\frac{n_{1}(w-1)}{\eta w}}$ and $\tau^{+}=-\frac{n_{1}}{n_{2}}+\frac{1}{n_{2}} \sqrt{\frac{n_{1}(w-1)}{\eta w}}$. It is easy to observe that $\tau^{-}<0$ and $\tau^{+}>0$. Hence $h(\tau)<0$ in the region $0<\tau<\tau^{+}$and $h(\tau) \geq 0$ in the region $\tau^{+}<\tau<\infty$. Hence the function $\hat{\Psi}_{1}(w, \tau)$ is decreasing in the region $0<\tau<\tau^{+}$and increasing in the region $\tau^{+}<\tau<\infty$. Hence we have

$$
\inf _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\hat{\Psi}_{1}\left(w, \tau^{+}\right) \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\infty, \quad \text { when } \quad w>\frac{1}{\left(1-\eta n_{1}\right)}
$$

where

$$
\hat{\Psi}_{1}\left(w, \tau^{+}\right)=\frac{\left[\eta-\left(n_{2} \tau^{+}+n_{1}\right)^{-1}\right]\left[n_{1}+w n_{2} \tau^{+}\right]}{\left(n_{1}+n_{2}\right)}
$$

Next consider the second component $\hat{\Psi}_{2}$. The derivative of $\hat{\Psi}_{2}$ with respect to τ is $g(\tau)=\tau^{2}\left(n_{1} n_{2}-\eta n_{1} n_{2}^{2}-n_{1} n_{2} w\right)-2 \eta n_{1}^{2} n_{2} \tau-\eta n_{1}^{3}$ multiplied by a positive factor. For this case $g(\tau)$ is a convex function of $\tau>0$. The minimum attained at $\tau=\frac{\eta n_{1}}{1-\eta n_{2}-w}>0$. Its minimum value is $\frac{\eta n_{1}^{3}(w-1)}{1-\eta n_{2}-w}<0$ as $w<1$. Since the minimum value of $g(\tau)$ is negative, it will cross the τ axis. The equation $g(\tau)=0$ has two real roots say $\alpha^{-}=\frac{\eta n_{1}}{1-\eta n_{2}-w}-\frac{n_{1}}{n_{2}} \frac{\sqrt{\eta n_{2}(1-w)}}{1-\eta n_{2}-w}$ and $\alpha^{+}=$ $\frac{\eta n_{1}}{1-\eta n_{2}-w}+\frac{n_{1}}{n_{2}} \frac{\sqrt{\eta n_{2}(1-w)}}{1-\eta n_{2}-w}$. It is noticed that $\alpha^{-}<0$ and $0<\frac{\eta n_{1}}{1-\eta n_{2}-w}<\alpha^{+}$. Hence the function $g(\tau)<0$ in the region $\left(0, \alpha^{+}\right)$and $g(\tau) \geq 0$ in the region $\left[\alpha^{+}, \infty\right)$. This implies that $\hat{\Psi}_{2}(w, \tau)$ is decreasing in the region $\left(0, \alpha^{+}\right)$and increasing in the region $\left[\alpha^{+}, \infty\right)$. Hence we have
$\inf _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\hat{\Psi}_{2}\left(w, \alpha^{+}\right)$and $\sup _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\max \left\{\hat{\Psi}_{2}(w, 0), \hat{\Psi}_{2}(w, \infty)\right\}=\infty$,
where

$$
\hat{\Psi}_{2}\left(w, \alpha^{+}\right)=\frac{1}{n_{1}+n_{2}}\left[\frac{\eta}{\alpha^{+}}-\frac{1}{n_{1}+n_{2} \alpha^{+}}\right]\left[n_{1}+n_{2} w \alpha^{+}\right]
$$

when $1-\eta n_{2} \geq w$.
Now assume that $1-\eta n_{2}<w$. Then the function $g(\tau)$ is a concave function of τ. Its maximum value is attained at $\tau=\frac{\eta n_{1}}{1-\eta n_{2}-w}<0$. Hence within the concerned region the maximum is attained at $\tau=0$. Its maximum value is $-\eta n_{1}^{3}<0$. This implies that the function $g(\tau)<0$ in the region $(0, \infty)$. Thus the function $\hat{\Psi}_{2}(w, \tau)$ is decreasing in $\tau \in(0, \infty)$. Hence we have

$$
\inf _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\frac{n_{2} w}{n_{1}+n_{2}}\left(\eta-\frac{1}{n_{2}}\right) \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\infty
$$

when $1-\eta n_{2}<w$.

Case II: Let $\eta \geq \max \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$. Consider the first component $\Psi_{1}(w, \tau)$. Now the derivative of $\hat{\Psi}_{1}(w, \tau)$ with respect to τ is $h(\tau)$ multiplied by a positive factor. As in Case I, the function $h(\tau)$ is a convex function of τ. The minimum is attained at $\tau=-\frac{n_{1}}{n_{2}}<0$. Hence within the interval $(0, \infty)$ the minimum is attained at $\tau=0$. Its minimum value is $n_{1} n_{2}\left(1-w+\eta n_{1} w\right) \geq 0$ as $\eta \geq \max \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$. Hence $h(\tau) \geq 0, \forall \tau>0$. Thus the function $\hat{\Psi}_{1}(w, \tau)$ is increasing in the region $(0, \infty)$. Thus we have

$$
\inf _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\hat{\Psi}_{1}(w, 0)=\frac{\eta n_{1}-1}{n_{1}+n_{2}} \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\hat{\Psi}_{1}(w, \infty)=\infty .
$$

Consider the second component $\hat{\Psi}_{2}(w, \tau)$. As in Case I, the derivative of $\hat{\Psi}_{2}(w, \tau)$ is simply $g(\tau)$ multiplied by a positive factor. Also under the condition $\eta \geq \max \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$, the only possibility is $1-\eta n_{2}<w$. The function $g(\tau)$ is a concave function and the maximum is attained at $\tau=\frac{\eta n_{1}}{1-\eta n_{2}-w}<0$. Hence the maximum will be attained at $\tau=0$ in the concerned region $(0, \infty)$. The maximum value is $-\eta n_{1}^{3}<0$. Hence $g(\tau)<0, \forall \tau>0$. Thus the function $\hat{\Psi}_{2}(w, \tau)$ is decreasing in the region $(0, \infty)$. Thus we have

$$
\inf _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\frac{n_{2} w}{n_{1}+n_{2}}\left(\eta-\frac{1}{n_{2}}\right) \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\infty .
$$

Case III: Let $\min \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\} \leq \eta<\max \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$. For this case we have two possibilities either $\frac{1}{n_{1}} \leq \eta<\frac{1}{n_{2}}$ or $\frac{1}{n_{2}} \leq \eta<\frac{1}{n_{1}}$. Analyzing as in the above cases we have for $\frac{1}{n_{1}} \leq \eta<\frac{1}{n_{2}}$,

$$
\inf _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\hat{\Psi}_{1}(w, 0)=\frac{\eta n_{1}-1}{n_{1}+n_{2}} \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\hat{\Psi}_{1}(w, \infty)=\infty
$$

and
$\inf _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\left\{\begin{array}{ll}\hat{\Psi}_{2}\left(w, \alpha^{+}\right), & \text {if } w \leq 1-\eta n_{2}, \\ \frac{n_{2} w}{n_{1}+n_{2}}\left(\eta-\frac{1}{n_{2}}\right), & \text { if } w>1-\eta n_{2},\end{array} \quad\right.$ and $\quad \sup _{\tau>0} \hat{\Psi}_{2}(w, \tau)=+\infty$.

Likewise when $\frac{1}{n_{2}} \leq \eta<\frac{1}{n_{1}}$, we have

$$
\inf _{\tau>0} \hat{\Psi}_{1}(w, \tau)=\left\{\begin{array}{ll}
\frac{\eta n_{1}-1}{n_{1}+n_{2}}, & \text { if } w \leq \frac{1}{1-\eta n_{1}}, \\
\hat{\Psi}_{1}\left(w, \tau^{+}\right), & \text {if } w>\frac{1}{1-\eta n_{1}},
\end{array} \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{1}(w, \tau)=+\infty\right.
$$

and

$$
\inf _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\frac{n_{2} w}{n_{1}+n_{2}}\left(\eta-\frac{1}{n_{2}}\right) \quad \text { and } \quad \sup _{\tau>0} \hat{\Psi}_{2}(w, \tau)=\infty .
$$

Now it is easy to define the functions $\underline{\Psi}_{0}\left(\right.$ when $\left.0<\eta \leq \min \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}\right), \underline{\Psi}^{0}$ (when $\eta \geq \max \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$), Ψ_{11} (when $\frac{1}{n_{1}} \leq \eta<\frac{1}{n_{2}}$) and Ψ_{22} (when $\frac{1}{n_{2}} \leq \eta<\frac{1}{n_{1}}$) as defined in (3.4), (3.5), (3.6) and (3.7) respectively. Since the loss function (1.2) is a sum of the convex loss functions with respect to both $\hat{\Psi}_{1}$ and $\hat{\Psi}_{2}$, an application of the Theorem 3.3.1 of Brewster and Zidek [2], gives $R\left(\underline{\delta}_{\Psi_{0}}, \underline{\alpha}\right) \leq$ $R\left(\underline{\delta_{\Psi}}, \underline{\alpha}\right)$ if there exist some values of parameters $\underline{\alpha}$ such that $P_{\underline{\alpha}}\left(\underline{\Psi}_{0} \neq \underline{\Psi}\right)>0$ for the case $0<\eta \leq \min \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$. Similarly by applying the Brewster and Zidek [2] technique for the case $\eta \geq \max \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}\right\}$, we have $R\left({\underline{\Psi_{\underline{\Psi}}}}, \underline{\alpha}\right) \leq R\left(\underline{\delta_{\Psi}}, \underline{\alpha}\right)$ if there exist some values of parameters $\underline{\alpha}$ such that $P_{\underline{\alpha}}\left(\underline{\Psi}^{0} \neq \underline{\Psi}\right)>0$. When $\frac{1}{n_{1}} \leq \eta<\frac{1}{n_{2}}$ the estimator $\underline{\delta}_{\underline{\Psi}_{11}}$ improves upon $\underline{\delta}_{\underline{\Psi}}$ if $P_{\underline{\alpha}}\left(\underline{\Psi}_{11} \neq \underline{\Psi}\right)>0$ for some choices of $\underline{\alpha}$. When $\frac{1}{n_{2}} \leq \eta<\frac{1}{n_{1}}$ the estimator $\underline{\delta}_{\underline{\Psi}_{22}}$ improves upon $\underline{\delta}_{\underline{\Psi}}$ if $P_{\underline{\alpha}}\left(\underline{\Psi}_{22} \neq \underline{\Psi}\right)>0$ for some choices of $\underline{\alpha}$. This completes the proof of the theorem.

ACKNOWLEDGMENTS

The first author (Manas Ranjan Tripathy) would like to thank DST (SERB), grant number SR/FTP/MS-37/2012 dated 04.10.2013 New Delhi, India for providing the financial support. The authors would like to thank the two unanimous referees and the editors for their valuable suggestions and comments which helped in strengthening the article.

REFERENCES

[1] Berger, J. (1980). Improving on inadmissible estimators in continuous exponential families with applications to simultaneous estimation of gamma scale parameters, The Annals of Statistics, 8(3), 545-571.
[2] Brewster, J.F. and Zidek, J.V. (1974). Improving on equivariant estimators, Annals of Statistics, 2, 21-38.
[3] Epstein, B. and Sobel, M. (1954). Some theorems relevant to life testing from an exponential distribution, Annals of Mathematical Statistics, 25, 373-381.
[4] Ghosh, M. and Auer, R. (1983). Simultaneous estimation of parameters in exponential families, Annals of The Institute of Statistical Mathematics, 35(3), A, 379-387.
[5] Ghosh, M. and Razmpour, A. (1984). Estimation of the common location parameter of several exponentials, Sankhya: The Indian Journal of Statistics, 46, Ser. A, pt. 3, 383-394.
[6] Gupta, A. (1986). Simultaneous estimation in the multiparameter gamma distribution under weighted quadratic losses, The Annals of Statistics, 14(1), 206-219.
[7] Jin, C. and Crouse, H. (1998a). A note on the common location parameter of several exponential populations, Communications in Statistics - Theory and Methods, 27(11), 2777-2789.
[8] Jin, C. and Crouse, H. (1998b). An identity for exponential distributions with the common location parameter and its applications, Communications in Statistics - Theory and Methods, 27(2), 409-422.
[9] Jin, C. and Pal, N. (1992). On common location of several exponentials under a class of convex loss functions, Calcutta Statistical Association Bulletin, 42(3-4), 191-200.
[10] Kumar, S. (1997). Estimation of common parameters, "Mathematics and Its Applications in Engineering and Industry" (B. Singh et al., Eds.), University of Roorkee, pp. 538-548.
[11] Kumar, S. and Sharma, D. (1996). A note on estimating quantiles of exponential populations, Statistics and Probability Letters, 26, 115-118.
[12] Mitra, P.K. and Sinha, B.K. (2007). On some aspects of estimation of a common mean of two independent normal populations, Journal of Statistical planning and Information, 137(1), 184-193.
[13] Pal, N.; Lin, J.J.; Chang, C.H. and Kumar, S. (2007). A revisit to the common mean problem: Comparing the maximum likelihood estimator with the Graybill-Deal estimator, Computational Statistics and Data Analysis, 51(12), 5673-5681.
[14] Pal, N. and Sinha, B.K. (1990). Estimation of a common location of several exponentials, Statistics and Decisions, 9, 27-36.
[15] Pal, N. and Sinha, B.K. (1996). Estimation of a common mean of several normal populations: A review, Far East Journal of Mathematical Sciences, Special Volume part-1 (Bhattacharya Memorial Volume), 97-110.
[16] Rukhin, A.L. (1986). Admissibility and minimaxity results in the estimation problem of exponential quantiles, Annals of Statistics, 14(1), 220-237.
[17] Rukhin, A.L. and Strawderman, W.E. (1982). Estimating a quantile of an exponential distribution, Journal of American Statistical Association, 77, 159162.
[18] Saleh, A.K.Md.E. (1981). Estimating quantiles of exponential distributions. In "Statistics and Related Topics" (M. Csorgo, D. Dawson, J.N.K. Rao, A.K.Md.E. Saleh, Eds.), North Holland, Amsterdam, 279-283.
[19] Sharma, D. and Kumar, S. (1994). Estimating quantiles of exponential populations, Statistics and Decisions, 12, 343-352.
[20] Tripathy, M.R. and Kumar, S. (2010). Estimating a common mean of two normal populations, Journal of Statistical Theory and Applications, 9(2), 197215.

